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How the growth rate of a microbial population responds to the environmental
availability of chemical nutrients and other resources is a fundamental question in
microbiology. Models of this response, such as the widely used Monod model, are
generally characterized by a maximum growth rate and a half-saturation concentration
of the resource. What values should we expect for these half-saturation concentrations,
and how should they depend on the environmental concentration of the resource?
We survey growth response data across a wide range of organisms and resources.
We find that the half-saturation concentrations vary across orders of magnitude,
even for the same organism and resource. To explain this variation, we develop an
evolutionary model to show that demographic fluctuations (genetic drift) can constrain
the adaptation of half-saturation concentrations. We find that this effect fundamentally
differs depending on the type of population dynamics: Populations undergoing periodic
bottlenecks of fixed size will adapt their half-saturation concentrations in proportion
to the environmental resource concentrations, but populations undergoing periodic
dilutions of fixed size will evolve half-saturation concentrations that are largely
decoupled from the environmental concentrations. Our model not only provides
testable predictions for laboratory evolution experiments, but it also reveals how an
evolved half-saturation concentration may not reflect the organism’s environment. In
particular, this explains how organisms in resource-rich environments can still evolve
fast growth at low resource concentrations. Altogether, our results demonstrate the
critical role of population dynamics in shaping fundamental ecological traits.

microbial evolution | Monod model | resource competition | half-saturation concentration |
selection–drift balance

Microbial populations rely on a wide range of resources, including chemical nutrients
such as sugars, minerals, and metals, as well as space, light, and prey (1). These resources
vary in abundance across time and environments, which typically elicits differences in
growth rates (2–4). A significant literature discusses how natural populations can be
classified as oligotrophs or copiotrophs (4–6), that differ, among other things, in their
growth rate response to resource concentration. The most widely used quantitative
model of the relationship between growth rate and resource concentration is attributed
to Jacques Monod (7). In the Monod model, growth rate increases linearly with resource
concentration at low concentrations, and then saturates at high concentrations, reaching
half its maximum value at some intermediate concentration of resources. This half-
saturation concentration of the growth response, also known as the Monod constant,
therefore plays a key role in determining the ability of the population to grow on scarce
resources. This suggests that lower resource concentrations in the environment may
drive populations to evolve commensurately lower half-saturation concentrations (8, 9),
one of the main predictions of resource-ratio theory (10–12). Quantitative models and
data for the dependence of growth rate on resource concentration are important both
for predicting the behavior of a population under different environmental conditions
(13–15) as well as for inferring the natural environmental niche from evolved traits of the
population. This inverse approach has been used, for example, to infer separate niches
for ammonia-oxidizing archaea and bacteria in the global nitrogen cycle based on kinetic
parameters for resource consumption (16–19).

Even though these concepts have been central elements of microbiology and
ecology for decades, there is limited experimental evidence that directly demonstrates
the evolution of growth rate response to resources. Continuous culture for 200
to 300 generations led to improved growth rates at low glucose concentrations
for Escherichia coli (20, 21) and Saccharomyces cerevisiae (22), but as the genetic
changes in these experiments are unknown, the improved growth could not be clearly
attributed to mutations (rather than physiological acclimation). The long-term evolution
experiment (LTEE) of E. coli found that the half-saturation concentration for glucose
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actually increased over the first 2,000 generations, although the
maximum growth rate at much higher glucose concentrations
significantly increased as well (23). More recently, Bernhardt
et al. (12) observed adaptation in the half-saturation concentra-
tion for phosphorus of Chlamydomonas reinhardtii when limited
for phosphorus, but they did not obtain consistent outcomes for
nitrogen and light. Perhaps the most explicit evidence so far is
from Hart et al. (24), who found that a synthetic auxotroph
strain of S. cerevisiae significantly reduced its half-saturation
concentration for lysine through genetic adaptations.

While laboratory experiments can test the basic principle,
mathematical models are better suited to exploring the wide
range of environments necessary to establish the link between
environment and evolved traits. Previous modeling studies on
this topic have focused on how tradeoffs in the growth rate
at low versus high resource concentrations define an optimum
strategy for a single strain (13) or can facilitate coexistence of
multiple strains or species when resource concentrations fluctu-
ate (25, 26). More recent work has shown how this coexistence
can spontaneously evolve if such tradeoffs constrain the effects
of mutations (27, 28). However, the evidence for these tradeoffs,
especially on spontaneous mutations, is limited (27–31). Thus,
their importance for explaining the evolved variation in growth
rate response, especially the half-saturation concentration, is
unclear.

Here, we address this problem using both empirical and
modeling approaches. We first perform a survey of data for the
growth rate response to resource concentration across a wide
range of organisms and resources. We find that the measured
half-saturation concentrations vary over orders of magnitude,
even within some single species on the same resource, such as
E. coli strains on glucose. We also find no evidence for tradeoffs
between growth rates at low versus high resource concentrations.
To better understand the potential causes of this variation,
we model evolution for populations with a single limiting re-
source under feast-and-famine conditions (batch dynamics with
fixed biomass or fixed dilution factor) and steady-state growth
(chemostat dynamics). We show how demographic fluctuations,
known as genetic drift, inhibit selection on lower half-saturation
concentration, which leads to a general relationship between the
evolved half-saturation concentration, environmental resource
concentration, and the effective population size. Using this
result, we determine that populations with fixed-bottleneck
batch dynamics will evolve half-saturation concentrations that
are proportional to the environmental resource concentration,
but populations with fixed-dilution batch dynamics evolve
half-saturation concentrations that are practically independent
of the environment. Besides providing a testable theory for
laboratory evolution experiments, our results help to explain
how species evolving under high concentrations can maintain
fast growth at low concentrations and why evolved half-
saturation concentrations may not reflect the environment of
origin.

Results

The Monod Model Quantifies Growth Rate Response to
Resource Concentration. Consider a population of microbes
consuming a resource; we will generally focus on chemical
nutrients such as carbon or nitrogen sources, but some aspects
of the model apply to other types of resources as well (e.g.,
prey or light). While microbes consume many different resources
simultaneously (32, 33), for simplicity, here, we assume only
a single resource limits growth (SI Appendix, section S1). The

best-known dependence of population growth rate g on resource
concentration R is the Monod model (7):

g(R) = gmax
·

R
R + K

, [1]

where gmax is the maximum growth rate—achieved when
the resource is unlimited—and K is the concentration for
the resource at which the growth rate is slowed to half its
maximum (Fig. 1). Decreasing the half-saturation concentration
K therefore allows the population to grow faster at lower resource
concentrations. The half-saturation concentration K is not to be
confused with a related but distinct concept of R∗ from resource-
ratio theory (10, 12). Note that the Monod model of Eq. 1 is used
to describe both steady state (12) and nonsteady state (25, 28)
relationships between growth rate and environmental resource
concentration. While there are many alternative models of how
growth rate depends on resource concentration (SI Appendix,
section S2 and Table S1), we focus on the Monod model due to
its wider usage and available data.

The parameter K is sometimes labeled as the affinity for the
resource (34), but this is potentially misleading as K is inversely
proportional to the ability to grow on the resource. We instead use
the term specific affinity to refer to the parameter combination
gmax/K , which measures how much the growth rate increases
per unit change in resource concentration, starting from a low
concentration (35). The specific affinity is therefore a common
measure for oligotrophic growth ability (9, 16, 19, 34). Note
that both K and gmax are required to fully characterize the
growth rate dependence; for example, the specific affinity gmax/K
alone does not suffice because while it describes the growth rate
response at low concentrations, it does not define the range of
low concentrations (which is determined separately by K ). Since
we are primarily interested in how these traits evolve in relation
to the environmental concentration R, we focus primarily on the
half-saturation concentration K since one can directly compare
it to R.

One can derive the Monod model of Eq. 1 by modeling
biomass growth as a two-step process, in which uptake of the

Fig. 1. Monod model of growth rate response to resource concentration.
The population growth rate g(R) as a function of the external resource
concentration R for two hypothetical strains: a wild-type (green) and a derived
mutant strain (orange), with equal maximum growth rates (gmax = 1) but
different half-saturation concentrations (Kwt = 5, Kmut = 3). The Inset
shows a magnified view at low concentrations near Kwt and Kmut (dotted
vertical lines). Note that the growth rates do not fully overlap at the highest
concentration shown but eventually converge to the same value gmax outside
the range of this plot.
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external resource into the cell occurs at a rate proportional to
the external concentration R (36). However, the dependence
of growth rate on resource concentration expressed by Eq. 1 is
surprisingly robust to additional model complexities (37, 38),
albeit with the resulting traits gmax and K being emergent
properties of whole cells or populations. In particular, the half-
saturation concentration K is not equivalent to the Michaelis–
Menten constant for resource uptake kinetics (37, 39, 40), despite
the mathematical similarity between the Michaelis–Menten and
Monod models (Eq. 1); this is because the Monod model
describes the whole process of producing new biomass, of which
uptake is just one step.

Half-Saturation Concentrations Vary Widely Across Resources
and Organisms. To explore the diversity of microbial growth re-
sponses, we have compiled 247 measurements of half-saturation
concentrations K from previously published studies (Methods,

Dataset S1, and SI Appendix, Fig. S1), substantially extending
previous surveys (41–44). Fig. 2A shows an overview of this data,
sorted by resource. The data include a wide range of resources,
with phosphate, glucose, and nitrate having the largest number
of measurements due to their emphasis in marine and laboratory
systems. Organisms include prokaryotes and eukaryotes as well
as autotrophs and heterotrophs (marked by different symbols in
Fig. 2A).

Measured values of the half-saturation concentration K vary
over several orders of magnitude, ranging from below 10−6 µM
(for thiamine and vitamin B12) to above 104 µM (for one glucose
measurement). This variation is not attributable to measurement
uncertainties, which never exceeded 20% in the studies that
reported them. It also is not an artifact of technical aspects of the
measurements (SI Appendix, Fig. S2) such as temperature (linear
regression, R2

≈ 0.089, P ≈ 1.2 × 10−5) or experimental
method (linear regression, R2

≈ 0.160, P ≈ 1.3 × 10−3),

A

B C D

Fig. 2. Survey of measured half-saturation concentrations. (A) Complete set of half-saturation concentrations K for the Monod model of growth rate (Eq. 1) in
our survey, grouped by resource (in decreasing order of number of data points). Each point represents a different measurement; color indicates whether the
organism is a prokaryote (green) or eukaryote (orange), and shape indicates whether the organism can grow as an autotroph (square) or only as a heterotroph
(circle). Dashed lines mark concentrations of one molecule per cell for approximate prokaryotic and eukaryotic cell volumes (45). (B) Subset of K measurements
from panel A for glucose, grouped by taxon (only those with at least two measurements). We use the taxonomic identity given in the original publications,
where an ending in sp. means that the isolate is a representative of the genus but was not identified at the species level. Symbols are the same as in panel
A. For brevity, we use “glucose half-saturation” to refer to the half-saturation concentration for glucose as the limiting nutrient. (C) Subset of K measurements
from panel A for phosphate, grouped by taxon (with at least three measurements). (D) Subset for silicate, grouped by taxon (with at least two measurements).
SI Appendix for additional plots with K measurements for nitrate (SI Appendix, Fig. S4A) and ammonium (SI Appendix, Fig. S4B).
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nor does the variation appear to be systematically biased by
experimental design such as the degree of preacclimation to
the growth medium (SI Appendix, Fig. S3). We furthermore
find no evidence for a major bias from simultaneous limitation
(colimitation) for other resources besides the focal resource
(SI Appendix, section S1).

Instead, most variation of concentrations K corresponds to
variation in the identity of the organisms and resources themselves
(SI Appendix, Fig. S2A). Fig. 2B shows a subset of measurements
on glucose, which have systematic differences in K between taxa.
For example, measurements of S. cerevisiae and Streptococcus
almost all have K values higher than those of E. coli (Mann–
Whitney U test, P ≈ 1.40 × 10−6). Phosphate and silicate
similarly show significant variation between species (Fig. 2C and
D), as do nitrate and ammonium (SI Appendix, Fig. S4). Even
within some taxa, there is large variation ofK ; glucoseK in E. coli
varies over four orders of magnitude (Fig. 2B). This variation
within a single resource and taxon does not appear to be explained
by technical covariates of the measurements (SI Appendix,
Fig. S2B) but rather corresponds to genetically distinct strains of
E. coli (SI Appendix, Fig. S5), suggesting that even subspecies-level
genetic variation can lead to significant differences in the half-
saturation concentrationK . Indeed, Ferenci (46) reported single-
target genes, like the membrane-associated lamB or the stress-
factor rpoS, that affect the half-saturation concentration of E. coli
on glucose when mutated. The genetic differences in our dataset
are mostly unknown, but we grouped E. coli measurements by
strain labels to find reproducible half-saturation concentrations
for glucose within strains (e.g., ML 30, SI Appendix, Fig. S5A).

How can we explain this wide variation in half-saturation
concentrations? Intuitively, we expect evolution to reduce K
since mutations that reduce K increase growth rate (Eq. 1).
For example, Fig. 1 shows the growth rate dependence for a
hypothetical wild-type strain (green line) and a mutant (orange)
with lower half-saturation K . Since the mutant has a greater
relative growth rate advantage at low resource concentrations,
there could be stronger selection pressure to reduceK at those low
concentrations. This is hinted by some patterns in the data: for
example, E. coli often grows in mammalian large intestines where
there are few simple sugars such as glucose, while S. cerevisiae
and Streptococcus often grow in high-sugar environments (fruit
and the oral microbiome, respectively) (47, 48), which could
explain their large difference in half-saturation concentrations
for glucose.

Variation in Specific Affinity Has Trends Similar to Those of the
Half-Saturation Concentration. Since K alone does not define
the growth rate at low resource concentrations, it is essential
to consider the maximum growth rate gmax or specific affinity
gmax/K as well. We show the variation in maximum growth rate
gmax across resources in Fig. 3A (reported for 97.6% of all entries
for half-saturation concentrationsK ; Dataset S1). The most strik-
ing feature of these data is that while maximum growth rates gmax

vary less between resources than do half-saturation concentrations
K (compare Figs. 3A and 2A), there is a clear bimodality between
fast-growing heterotrophs (circles) and slow-growing autotrophs
(squares). Indeed, a closer look at the covariation between gmax

and K in autotrophs (squares in Fig. 3B) reveals that resources
have comparable distributions of gmax but stratify in terms of
half-saturation concentrationsK , with the lowest values for phos-
phate. In particular, the distributions for phosphate and nitrate
are indistinguishable in terms of maximum growth rate (Mann–
Whitney U test, P = 0.080) but clearly different in terms of half-

saturation concentration (Mann–Whitney U test, P = 1.28 ×
10−12). Also, the species differences in maximum growth rate on
glucose and phosphate are less pronounced (SI Appendix, Fig. S6),
and more of the variation can be explained by experiment temper-
ature (SI Appendix, Figs. S7 and S8) compared to variation in K .

We can also compute the specific affinity gmax/K for each data
point. SI Appendix, Fig. S9 shows that the variation in specific
affinity is similar to variation in K : The variation spans orders
of magnitude, even for single species, and there are systematic
differences between taxa (e.g., E. coli compared to S. cerevisiae
and Streptococcus; Mann–Whitney U test, P ≈ 1.20 × 10−6;
SI Appendix, Fig. S9B). The similarity in patterns of variation
between the half-saturation concentration and specific affinity
is because variation in gmax/K is dominated by variation in K
(SI Appendix, Fig. S7B); on a logarithmic scale, gmax/K depends
on additive contributions from gmax and K , and variation in K is
much larger than variation in gmax (compare Figs. 2A and 3A).

There Is No Evidence for a Tradeoff Between Half-Saturation
Concentration and Maximum Growth Rate. Many previous
studies have considered the possibility of tradeoffs between gmax

and K (positive correlation), such that genotypes growing faster
with abundant resources will grow slower when resources are
scarce (13, 25–28). If this were true, evolution at high resource
concentrations may select for increasing maximum growth rate
gmax at the expense of the half-saturation concentration K ,
leading to high values of K . If we consider all organisms
and resources in our data set, we do find a significant positive
correlation between gmax and K (Spearman ρ ≈ 0.39, P ≈
5.7 × 10−10; Fig. 3B). However, this correlation is an artifact
of the biased sampling of organism–resource pairs, which are
dominated by fast-growing heterotrophs on glucose (which tend
to have higher concentrations K ) and slow-growing autotrophs
on other resources (which tend to have lower concentrations
K compared to glucose); the correlation disappears when we
separate heterotrophs (SI Appendix, Fig. S10 A and B) from
autotrophs (SI Appendix, Fig. S10 C and D). If we further
separate individual resources, we see no significant correlations
for phosphate, nitrate, ammonium, or glucose across organisms
(Fig. 3 C and D and SI Appendix, Fig. S10 E–H), while there is
actually a negative correlation (opposite of a tradeoff) for silicate
gmax and K (Spearman ρ ≈ −0.56, P ≈ 0.0025; Fig. 3E).
In Fig. 3F , we test the covariation of gmax with K for two
individual species (E. coli and S. cerevisiae) for a single resource
(glucose). The E. coli data show a positive correlation indicative
of a tradeoff, but it has modest magnitude and low statistical
significance (Spearman ρ ≈ 0.26, P ≈ 0.26). Saccharomyces
cerevisiae, on the other hand, shows a negative correlation between
the two traits (Spearman ρ ≈ −0.75, P ≈ 0.008). The lack
of tradeoff appears irrespective of experimental method (i.e.,
batch or chemostat; SI Appendix, Fig. S3B) and also holds when
comparing the maximum growth rate gmax to the specific affinity
gmax/K (SI Appendix, Fig. S11).

Much of the previous literature arguing for tradeoffs in
these traits based their evidence on measurements for resource
uptake kinetics (27, 28, 30, 49) rather than on population
growth as we consider here. However, we find little to no
correspondence between traits of uptake kinetics with traits of
population growth in data points where we have measurements
for both (SI Appendix, Fig. S12) (44), consistent with previous
analyses (37, 39). It is therefore not surprising that the observed
tradeoffs in uptake do not translate to tradeoffs in growth. For
example, Litchman et al. (30) reported a tradeoff between uptake
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C

Fig. 3. Survey of maximum growth rates and trait correlations. (A) Empirical maximum growth rates gmax for the microbial isolates in our survey. There
are slightly fewer data points for maximum growth rate compared to half-saturation concentrations in Fig. 2A since some publications reported only the
half-saturation concentration. Markers indicate whether the organisms can grow as an autotroph (square) or only as a heterotroph (circle); colors indicate
whether the isolate is prokaryotic (green) or eukaryotic (orange). Dashed lines mark reference doubling times. (B) Covariation of maximum growth rate gmax

and half-saturation concentration K across the entire set of isolates from panel A. Here colors indicate the limiting resource, with the number of measurements
n given in parentheses. Marker shapes (squares are autotrophs; circles are heterotrophs) are the same as in panel A. We compute the Spearman rank
correlation � and P-value across the pooled set of isolates. (C) Subset of measurements from panel B for phosphate (only autotroph isolates shown). (D) Subset
of measurements from panel B for nitrate. (E) Subset of measurements from panel B for silicate. (F ) Covariation between maximum growth rate gmax and
half-saturation concentration K on glucose for measurements of E. coli (green) and S. cerevisiae (orange), with Spearman rank correlations � and P-values by
species.

traits for nitrate, but we see no correlation in growth traits for
nitrate (Spearman ρ ≈ 0.03,P ≈ 0.84; Fig. 3D and SI Appendix,
Fig. S11C). Altogether, the absence of evidence for a systematic
correlation between K and gmax suggests that selection for gmax

does not explain the evolved variation in K .

Models of Population Dynamics with Mutations to Half-Satu-
ration Concentration. To test how the environmental resource
concentration shapes the evolution of the half-saturation con-
centration K , we turn to a model of population dynamics with
mutations altering traits of the Monod growth rate response
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(Methods, SI Appendix, sections S3–S5, and Table S2). We
consider a microbial population consisting of a wild-type and a
mutant, with biomasses Nwt(t) and Nmut(t) that vary over time
t. They grow at rates depending on the resource concentration
R according to the Monod model (Eq. 1), but with potentially
different values of the traits gmax and K depending on the effect
of the mutation (25, 28). The rate at which the mutant increases
or decreases in frequency compared to the wild-type is given by
the selection coefficient s (SI Appendix, section S6) (50, 51). We
show that s decomposes into two additive terms:

s ≈ shigh + slow, [2]

where shigh measures selection on growth at high resource
concentrations and is therefore proportional to variation in
the maximum growth rate gmax, while slow measures selection
on growth at low resource concentrations and is therefore
proportional to variation in the half-saturation concentration
K (SI Appendix, Figs. S13–S16 and sections S7–S9).

We consider selection in three prototypical regimes of pop-
ulation dynamics. In the first case, the population grows as a
batch culture with serial transfers (SI Appendix, section S3). That
is, there is an initial concentration R0 of the resource, and the
population grows until the resource is exhausted. Fig. 4A shows
these dynamics for the hypothetical wild-type and mutant strains
of Fig. 1. Although the mutant has the same maximum growth
rate gmax as the wild-type, its lower value ofK allows it to continue
growing fast at lower concentrations of the resource, decelerating
more abruptly at the end of growth (see Inset of Fig. 4A for
more dramatic examples). Then, a fixed amount of biomassN0—
sampled from the whole culture, so that the relative frequencies of
the mutant and wild-type are preserved on average—is transferred
to a new environment with the same initial concentration R0 of
the resource as before, and the cycle repeats (Fig. 4 B, Top). This
dilution step represents a form of mortality for the population.
We refer to this regime as fixed-bottleneck batch dynamics since
the bottleneck of biomass between transfers is held fixed. Boom-
bust dynamics such as these are believed to be common in

some natural environments (52, 53), with a fixed bottleneck
size being plausible for populations that serially colonize new
environments (54) or are reset to a fixed density by culling (4)
between cycles of growth.

The second regime is the same as the first, except instead
of transferring a fixed amount of biomass to the next cycle,
we transfer a fixed fraction 1/D, where D is the dilution
factor (Fig. 4 B, Bottom); we therefore refer to this regime as
fixed-dilution batch dynamics. Note that the dilution factor D
and the bottleneck biomass N0 are related according to D =
R0Y /N0 + 1, where Y is the yield (biomass produced per unit
resource; SI Appendix, section S3). These dynamics are plausible
for populations that experience a constant death rate between
growth cycles or are regularly purged by the environment, as
believed to occur in the human gut microbiome (55). This
case is also the most common protocol in laboratory evolution
experiments owing to its simplicity (56). While the differences
between these two regimes of batch dynamics may appear to be
subtle (comparing the two panels of Fig. 4B), we will show later
that these two dilution protocols have different dependences on
the resource concentration, which lead to different evolutionary
outcomes.

Finally, we also consider the regime of chemostat dynamics,
where the population grows as a continuous culture with a
constant supply of the resource and a constant dilution rate
d (SI Appendix, section S5). Chemostats are used as devices for
experimental evolution (12, 22), and the same dynamics are often
applied to describe natural populations in the ocean (13, 57).

Selection Quantifies Variation in Growth Traits Between Iso-
lates at Different Resource Concentrations. We previously
observed wide variation in half-saturation concentrations K
(Fig. 2A) and maximum growth rates gmax (Fig. 3A) across
isolates, but the significance of this variation is difficult to assess by
itself. For example, glucose K for E. coli varied across four orders
of magnitude, but how significant is this variation for evolution?
Our model of selection under different population dynamics
gives us precisely the metric to quantify this variation. We

A B C

Fig. 4. Selection on variation in half-saturation concentrations over batch population dynamics. (A) Simulated growth of wild-type (green) and mutant (orange)
strains competing under batch dynamics, with the transient resource concentration (gray) on the right vertical axis (SI Appendix, section S3). The strain pair is
the same as in Fig. 1; the initial resource concentration is R0 = 25, with strains at equal initial frequencies and equal yields. (B) The same strain competition
from panel A continued over multiple growth cycles under fixed-bottleneck batch dynamics (Top, N0 = 0.1) and fixed-dilution batch dynamics (Bottom, D = 100).
(C) Each point represents the predicted selection coefficients |shigh| and |slow| (Eq. 2 and SI Appendix, section S8) for pairs of E. coli isolates with measured
growth traits on glucose (from Fig. 2D). The three colors represent different glucose concentrations. We assume the isolates in each pair start competing at
equal initial frequencies, set the initial cell density to N0 = 4.6 × 105 cells/mL, and use a biomass yield of Y = 3.3 × 108 cells/µmol glucose measured by a
previous study (23).
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demonstrate this in Fig. 4C by calculating the two components
of selection (Eq. 2) for hypothetical competitions between all
pairs of E. coli isolates measured on glucose. We do this for batch
dynamics starting at different initial concentrationsR0 of glucose.
While selection on variation in gmax (shigh) always increases
with higher R0, selection on variation in K (slow) depends
nonmonotonically on the concentration R0, such that selection
is maximized at some intermediate concentration (SI Appendix,
Fig. S17 and section S10). Intuitively, this optimal concentration
approximately equals the half-saturation concentration K itself
(SI Appendix, Fig. S17C). On the other hand, if the resource
concentration R0 also increases the initial population size N0
(i.e., transfer from a pregrowth cycle with fixed dilution factor),
selection on variation in K depends monotonically on R0 and is
maximized at the lowest concentration (SI Appendix, Fig. S18).

We calculate selection between E. coli isolates at 10 µM
glucose, which is in the middle of the range of observed
half-saturation concentrations K , as well as at two higher
concentrations corresponding to the conditions of the E. coli
LTEE (139 µM) (58) and a common laboratory concentration
(11,000 µM≈ 0.2% w/v). Fig. 4C indeed shows that variation in
the value ofK is highly significant for evolution at concentrations
around the half-saturation concentration, whereas at the highest
concentration, selection on the variation in K is small compared
to the selection in gmax.

The Half-Saturation Concentration Evolves Downward Over
Successive Mutations. With our model of population dynamics,
we can predict how the traits of the Monod growth rate response
(Eq. 1) will evolve over long times. For simplicity, we focus
on the “strong-selection weak-mutation” (SSWM) regime of
evolutionary dynamics, where each new mutation either fixes
or goes extinct before the next mutation arises (SI Appendix,
Fig. S19 and section S11) (59).

We first simulate a population growing under fixed-bottleneck
batch dynamics, with an initial half-saturation concentration
K that is higher than the external resource concentration R0;
the population therefore decelerates gradually into starvation
over each growth cycle (Fig. 5 A, Left Inset). Mutations then
regularly arise and alter the value of K with a random effect

size (SI Appendix, Fig. S19 and section S11). Each mutation
stochastically fixes or goes extinct according to a fixation prob-
ability, which depends on the mutation’s selection coefficient.
Over time, these beneficial mutations accumulate, and the half-
saturation concentration K systematically decreases. By the end
of the simulation, the half-saturation concentration K is 1,000
times smaller than the resource concentration R0, leading to
growth curves that grow much faster and abruptly decelerate
into starvation (Fig. 5 A, Right Inset).

Such an abrupt arrest is, for example, realized by E. coli
in glucose-limited batch culture through a dynamic surge in
gene expression late in the growth cycle (60), often involving
the use of separate transporters with lower Michaelis–Menten
constants (61). The presence of these transporter systems has
been raised as evidence for evolutionary adaptation of the species
at micromolar glucose concentrations (8, 61, 62). But our
model shows that a feast-and-famine environment dominated
by concentrations orders of magnitude higher would still allow
E. coli to evolve the low half-saturation concentrations K
observed in existing strains.

Adaptation in the Half-Saturation Concentration Stalls When
It Reaches Selection–Drift Balance. The value of K does not
evolve downward forever; in Fig. 5A, adaptation slows down,
and the half-saturation concentration levels off after a few tens
of thousands of mutations, even though there is no change in
the supply of beneficial mutations. This occurs because selection
on beneficial mutations is inhibited by random demographic
fluctuations in the population, known as genetic drift (63). The
strength of genetic drift is measured by 1/Ne, where Ne is the
effective population size (for the variance in mutant frequency
change per unit time) (64, 65); smaller populations experience
greater fluctuations. In the simplest cases, Ne is proportional to
the actual (“census”) population size but in more complex systems
Ne may depend on other aspects of demography (such as spatial
dynamics (66) or age structure (67)) as well as additional sources
of noise in the population dynamics (68).

Beneficial mutations will therefore no longer fix with high
probability if their selection equals genetic drift, a condition
known as selection–drift balance (69–71):

A B C

Fig. 5. Evolution of the half-saturation concentration. (A) Half-saturation concentration K evolving under fixed-bottleneck batch dynamics. Each gray line
is one of 10 independent stochastic simulations using an effective population size Ne = 1,000 and mutation effects � drawn from a uniform distribution
(SI Appendix, section S11). The Insets show the growth curve in a single batch cycle before adaptation (Left Inset) and at the final state (Right Inset). The green
dashed line marks our prediction Kevo at selection–drift balance. (B) Evolved half-saturation concentration Kevo as a function of the effective population size
Ne. In the gray region, the effective population size is too small, and all evolution is neutral. If Ne is sufficiently large (white region), the evolved half-saturation
Kevo is at selection–drift balance along the green line. Parameters are |�max| = 0.0001, gmax = 1, N0 = 0.01, and Y = 1 for both panels. (C) The evolved glucose
half-saturation Kevo as a function of initial glucose concentration R0 for two regimes of batch dynamics: fixed-bottleneck dynamics (blue line) and fixed-dilution
dynamics (orange line). We use parameters based on the LTEE: N0 = 4.6× 105 cells/mL (for fixed-bottleneck case), D = 100 (for fixed-dilution case), Ne = VN0,
where V = 10 mL, gmax = 0.888/h, and Y = 3.3× 108 cells/µmol (23). We also set �max = −6× 10−6 (SI Appendix, Fig. S27). On the right axis is a histogram of
glucose half-saturation K data for E. coli isolates (from Fig. 2B).
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s =
1
Ne
. [3]

Selection–drift balance occurs in our model under batch dynam-
ics because the growth deceleration phase becomes shorter as K
decreases over evolution (Insets of Figs. 4 A and 5 A), which
means that there is weaker selection to reduce it further. Once
the half-saturation concentration K becomes sufficiently small,
selection is no longer strong enough to overcome genetic drift
(SI Appendix, section S12 and Fig. S20).

By combining Eqs. 2 and 3, we can calculate the value of
the evolved half-saturation concentration at which selection–
drift balance occurs (SI Appendix, Fig. S21). For typical regimes
of the parameters, the evolved concentration is approximately
(SI Appendix, section S13).

Kevo ≈
R0

Ne|κmax| log(Ne|κmax|R0Y /N0)
, [4]

where κmax is the maximum effect size of a beneficial mutation
reducing K . We calculate an example of Kevo in Fig. 5A (dashed
green line), which corresponds well with the simulations. This
result is robust to a wide range of effective population sizes
and frequency-dependent effects (SI Appendix, Fig. S22 and
section S11). We also observe an equivalent result for the
adaptation of the specific affinity gmax/K (SI Appendix, Fig. S23
and section S14) instead of the half-saturation concentration K
alone.

One salient feature of Eq. 4 is that the evolved half-saturation
concentration Kevo scales inversely with the effective population
size Ne, as shown in Fig. 5B. That is, larger populations or
those with lower genetic drift can evolve proportionally lower
half-saturation concentrations Kevo that are orders of magnitude
lower than the environmental resource concentration R0. This
potentially explains why we observe such low values ofK for many
organisms and resources (Fig. 2); this also explains why these half-
saturation concentrations are difficult to measure from time-series
data since low half-saturation concentrations produce extremely
abrupt deceleration at the end of growth (Insets of Figs. 4 A
and 5 A and SI Appendix, Fig. S24 and section S15). Hints
of the influence of Ne are found in ammonia-oxidizing archaea
and bacteria from marine environments, which tend to have
lower half-saturation concentrations than isolates from soil (18).
Our scaling relationship Eq. 4 suggests that this ordering can
arise from the smaller effective population size Ne for spatially
structured environments like soil.

The other important feature of Eq. 4 is the dependence of
the evolved half-saturation concentration Kevo on the resource
concentration R0. For a fixed effective population sizeNe, there is
an optimal value of R0 that minimizes the evolved concentration
Kevo (Left Insets of SI Appendix, Fig. S21 A and B), just as we
observed for selection on individual mutations (SI Appendix,
Fig. S17). We note that for sufficiently low values of the effective
population size Ne, genetic drift is stronger than selection on any
mutation κ (SI Appendix, Fig. S20A), and so the half-saturation
concentration K evolves neutrally (gray region in Fig. 5B).

In contrast to batch dynamics, selection under chemostat
dynamics does not depend on the half-saturation concentration
K itself (SI Appendix, section S9). Intuitively, this is because
reductions in K cause the environmental resource concentration
to decrease proportionally (SI Appendix, section S5) such that
the growth rate remains constant. Not only does this keep a
constant strength of selection on new mutations, but the effective
population size will actually increase as K evolves lower, making

beneficial mutations even easier to fix. Therefore, selection–drift
balance never occurs for K under chemostat dynamics; the half-
saturation concentration K will continue to evolve downward
until adaptation is limited by the supply of mutations or other
factors (Discussion). Note that selection–drift balance also does
not occur for mutations to the maximum growth rate gmax under
either batch or chemostat dynamics since selection does not
depend on the absolute magnitude of growth rate (SI Appendix,
sections S8 and S9).

Population Dynamics Can Decouple the Evolved Half-Satu-
ration Concentration from the Resource Concentration. In
general, the effective population size Ne that controls genetic
drift may be shaped by a variety of demographic factors besides
the census population size (65). However, in well-mixed batch
cultures, Ne is primarily determined by the number of cells at
the bottleneck of each transfer (69); we assume that other sources
of stochasticity (such as individual cell division events) are much
weaker than the sampling noise of these transfers. Therefore,
the effective population size Ne is proportional to the bottleneck
biomass N0 (assuming constant biomass per cell).

Under fixed-bottleneck batch dynamics, the effective popula-
tion size Ne is thus an independent parameter of the population,
so that the strength of genetic drift does not depend on the
resource concentration (SI Appendix, Fig. S25A). In this case,
the evolved trait Kevo is in approximately linear proportion to
the resource concentration R0 (Eq. 4, Fig. 5C , and SI Appendix,
Fig. S26A), making the evolved half-saturation concentration a
biomarker of the resource’s environmental concentration. This
is consistent with our original speculation about the systematic
differences in glucoseK between E. coli and S. cerevisiae, owing to
the different glucose availability in their different environments.

However, for fixed-dilution batch dynamics, the bottleneck
biomass N0, and therefore the effective population size Ne, are
coupled to the resource concentration R0 because the dilution
factor D is fixed: Ne ∝ N0 = R0Y /(D − 1) (SI Appendix,
section S3). This coupling occurs because increasing the resource
concentration increases the biomass at the end of each growth
cycle, but then, the fixed dilution factor means that this must
also increase the biomass at the bottleneck. The scaling of Ne
with R0, though, cancels out the scaling of Kevo with R0 in Eq. 4,
leading to an evolved half-saturation concentration Kevo that is
approximately independent of the environmental concentration
R0 (Fig. 5C and SI Appendix, Fig. S26B). Conceptually, fixed-
dilution batch dynamics do not allow the strength of selection
to be tuned independently from genetic drift: The decrease in
selection magnitude on K with higher resource concentration R0
is compensated by weaker genetic drift, due to a higher effective
population size Ne (SI Appendix, Fig. S25B). Thus, the popula-
tion dynamics decouple the evolved half-saturation concentration
of the organism from the environmental concentration.

This has major consequences for interpreting empirical varia-
tion. We predict the evolved half-saturation concentration Kevo
for E. coli on glucose as a function of glucose concentration
R0 in Fig. 5C , using parameters estimated from the LTEE
(SI Appendix, Fig. S27). On the same plot, we show a histogram
of all measured glucose K values for E. coli (from Fig. 2B) on
the right vertical axis. We see that, under fixed-bottleneck batch
dynamics, we would expect E. coli to have evolved in glucose
concentrations above 100 µM to account for the observed half-
saturation concentrations. However, under fixed-dilution batch
dynamics, the evolved half-saturation concentration depends so
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weakly on the environmental concentration that almost any
concentration of glucose is possible to explain the data.

Discussion

Modeling Insights to Interpret Half-Saturation Data. Since it is
often difficult to measure resource concentrations and population
dynamics in natural environments, can we use the evolved half-
saturation concentration K as a biomarker to infer them? This
logic is often implicit in environmental studies, which attempt
to draw conclusions about the environmental conditions of
an isolate based on its abilities to grow at different resource
concentrations (16–19). However, our model shows that it is not
as simple as assuming the half-saturation concentration K for a
resource is proportional to its concentration in the environment
since that proportionality is altered by the population dynamics,
at least through the effective population size Ne (Eq. 4). In
particular, this proportionality is confounded in the case of fixed-
dilution batch dynamics, where the evolved half-saturation con-
centration K is largely independent of the resource concentration
R0 (Fig. 5C ).

Under fixed-bottleneck batch dynamics, though, the linear
scaling of K with R0 does approximately hold. In this case,
one can compare two populations with unknown but identical
effective population sizes Ne and mutation effects κ ; for example,
two isogenic populations located at different points along a
resource gradient. In this case, one can calculate the ratio
of evolved half-saturation concentrations Kevo for the two
populations to estimate the ratio of resource concentrations.
But in many scenarios, one might not even know the type
of bottlenecks the population is experiencing. To classify the
population dynamics as fixed-bottleneck or fixed-dilution, one
could correlate a set of evolved concentrations Kevo with their
different resource concentrations R0; a strong linear correlation
would support fixed-bottleneck batch dynamics, while little to
no correlation would indicate chemostat or fixed-dilution batch
dynamics.

Role of the Mutation Supply in Shaping Evolved Half-Saturation
Concentrations. We have focused on the role of selection–drift
balance as a null model for the evolved variation in half-saturation
concentrations since the competition between selection and
genetic drift is a universal feature of all evolving populations.
In doing so, we have assumed that the supply of mutations
on K is constant, but real populations will at some point run
out of beneficial mutations on the trait value K , potentially
reaching this mutation–selection balance before selection–drift
balance (70). Many mutations will also be pleiotropic, affecting
both the half-saturation concentration K and the maximum
growth rate gmax (as well as possibly other traits) simultaneously.
The correlation between pleiotropic effects on both traits is
important: If pleiotropy is synergistic, so that mutations that
decrease K also tend to increase gmax, the population might
evolve lower K than otherwise expected since its selection is
enhanced by additional selection on gmax. On the other hand,
if there is a tradeoff between K and gmax, the population might
evolve higher K if its selection is outweighed by selection for
higher gmax. Indeed, this is what appears to have happened in
the LTEE, where K for glucose actually increased over the first
2,000 generations but that was offset by a stronger improvement
in the maximum growth rate gmax (23).

Such a tradeoff between K and gmax is interesting both for its
consequences on the stochiometric composition of community
biomass (49, 72) as well as from an evolutionary point of view

since the population can then diversify into stably coexisting
lineages. While there is significant theoretical work on this
hypothesis (25–28), it has limited empirical evidence. Some
of these previous studies claiming tradeoffs found them only
in parameters for the Michaelis–Menten model of resource
uptake (27, 28, 30, 49, 73), which we and others have shown
are not equivalent to parameters of the Monod model of growth
(SI Appendix, Fig. S12) (37, 39). In the larger set of data we have
collected in this work (Fig. 3F ), we find no compelling evidence
of a correlation; E. coli shows a weak but insignificant tradeoff,
while S. cerevisiae shows a slight synergy (74).

Interpretation of this tradeoff (or lack thereof) is also compli-
cated by the sample of strains and environmental conditions being
considered. For the tradeoff to affect the evolved half-saturation
concentration as we have discussed, the tradeoff must exist across
the entire spectrum of spontaneous mutations available to an
organism (i.e., there is an underlying physiological constraint).
This has also been the underlying assumption of previous models
on this topic (25–28). Testing this would require distribution
of K and gmax values over a large mutant library in a single
environment, which has not been measured to our knowledge.
An experimental study in E. coli (31) reports a tradeoff between
half-saturation concentration K for maltotriose and maximum
growth rate gmax, but this screen was restricted to mutations
in the single gene lamB, which may not be representative of
genome-wide mutations. Detecting a genome-wide trade-off is
further complicated by the fact that even in the absence of an
underlying correlation in mutation effects, such a tradeoff could
still emerge across clones within a rapidly evolving population,
at least transiently (75, 76). Further systematic measurements of
these traits within and between populations will be necessary to
resolve the issue of a tradeoff in the future.

Other Factors Shaping Evolved Half-Saturation Concentrations.
Besides mutation supply, there are other phenomena that
may lead to different evolved outcomes for the half-saturation
concentration K . One important assumption in our model is
that we consider only a single resource, whereas real populations
are dependent on several resources (77), including those from
biotic sources such as cross-feeding and predation. Some of these
resources may be rarely or never limiting, and therefore, their
half-saturation concentrations K will evolve only as byproducts
of selection on mutations for other traits. In this sense, many
observed half-saturation values may actually be spandrels, an
evolutionary term (defined in analogy with the architectural
structure) for traits that evolve for reasons other than direct
selection (78). Selection for other traits may occur simply because
competition in natural environments is likely more complex and
could include lag phases (51) and other strategies for low-resource
survival (5, 79–81). On the other hand, multiple resources
could also be simultaneously colimiting (32, 33). While we have
shown how colimitation under measurement conditions affects
estimates of gmax and K (SI Appendix, section S1), the effect of
colimitation, as well as more complex sources of nutrients such
as cross-feeding and predation, on the evolution of these traits
remains an important problem for future work.

We can predict the consequences of relaxing other assumptions
in our model as well. For example, simultaneous competition of
multiple mutations (clonal interference) generally reduces the
efficacy of selection (82, 83), which would make it more likely
to evolve higher half-saturation concentrations than what we
predict from SSWM dynamics. Another assumption in our model
is that the population under batch dynamics always grows until

PNAS 2023 Vol. 120 No. 2 e2207295120 https://doi.org/10.1073/pnas.2207295120 9 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 L
IB

4R
I:

 E
A

W
A

G
-E

M
PA

 S
E

R
IA

L
S 

D
E

PA
R

T
M

E
N

T
 o

n 
M

ar
ch

 6
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

15
2.

88
.3

1.
15

5.

https://www.pnas.org/lookup/doi/10.1073/pnas.2207295120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207295120#supplementary-materials


complete exhaustion of the resources during each cycle, but earlier
transfers could reduce the amount of growth occurring during
deceleration, which would reduce selection on the half-saturation
K . However, the population may adapt its maximum growth rate
to simply saturate earlier and restore selection on its deceleration
phase. Finally, populations may also have higher than expectedK
values if they simply have not had enough time to reach selection–
drift balance, which takes a timescale of order Ne generations
(SI Appendix, Fig. S22) (84).

Population Dynamics Are Essential for Understanding Micro-
bial Ecology. Broadly speaking, our results provide a valuable
example of how ecological traits are influenced by factors other
than abiotic environmental features. In particular, we have shown
how population dynamics can confound our naive expectations
for the evolutionary fate of such traits. While here we have
focused on the role of genetic drift, other potentially important
factors include mutation supply, pleiotropy, recombination, and
spatial structure. Altogether, our results mean that the half-
saturation concentration K may not be a reliable biomarker
of environmental resource concentrations. This does not mean
that K evolves independently of the environment, however.
Rather, it is linked to additional environmental processes like the
bottleneck between growth cycles. To understand the systematic
differences between species, we need to know not only the
resource concentrations they have evolved in but also which type
of population dynamics best reflects the time scales of growth,
death, and resource supply in their environment of origin.

Materials and Methods

Literature Survey of Measured Growth Rate Dependence on Resources.
We collected 247 measurements of Monod model parameters (K and gmax;
Eq. 1) through a targeted literature search that included prior surveys and
reviews (41, 43), the phytoplankton trait database (130 data points) by
Edwards et al. (44), as well as original research papers. In all but two
cases, we traced data from surveys and reviews back to their original papers,

which we report in Dataset S1, Sheet 1. We included only experiments that
directly measured population growth rates, rather than nutrient uptake rates
or respiration. We excluded measurements where the actual limiting resource
was unclear, such as measurements in rich medium with added glucose. Where
possible, we checked the raw data of growth rate over resource concentrations
to determine whether the focal resource concentration was measured up to
saturation and had sufficient sampling of concentrations around K. For a subset
of measurements of E. coli on glucose, we also checked for the concentration of
a nitrogen source to determine the relative impact of colimitation (Dataset S1,
Sheet 2 and SI Appendix, section S1). If the original K value was reported
as weight per volume, we converted these into units of micromolar (µM)
using the calculated molecular weight of the compound’s chemical formula.
We preserved significant digits from the original studies. See Dataset S1 for
more details.

Models of Population Dynamics. We mathematically model population
dynamics using systems of ordinary differential equations for the wild-type
and mutant biomasses as well as the extracellular resource concentration
(SI Appendix, sections S3 and S5). We numerically integrate these equations
using standard algorithms in Scipy (85) (SI Appendix, section S4).

Data, Materials, and Software Availability. Data from the literature survey
of Monod growth traits (Dataset S1) has been deposited in Dryad, https://doi.org/
10.5061/dryad.866t1g1tr. All methods and mathematical results to reproduce
the analysis are included in the SI Appendix.
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