Limnology and Oceanography Letters 8, 2023, 359-367 © 2023 The Authors. *Limnology and Oceanography Letters* published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lol2.10311 # **LETTER** # Alkalinity contributes at least a third of annual gross primary production in a deep stratified hardwater lake Pascal Perolo , 1* Nicolas Escoffier , 1 Hannah E. Chmiel , 2 Gaël Many , 1 Damien Bouffard , 1 Marie-Elodie Perga , 1 ¹Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland; ²Physics of Aquatic Systems Laboratory, Margareth Kamprad Chair, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland: ³Department of Surface Waters—Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland # Scientific Significance Statement If CO₂ is the main carbon-substrate for photosynthesis, how can gross primary production (GPP) carry on when surface CO₂ is depleted? In Lake Geneva, GPP can reach its highest rates when the surface CO₂ concentrations are the lowest. This suggests that photosynthetic organisms could heavily use an alternate carbon source, abundant in hardwater lakes, that is, bicarbonates. We demonstrated for the first time that bicarbonates support the GPP for two-thirds of the year. In the littoral and pelagic environments, we estimated that more than one-third of the annual primary production was ultimately provided by bicarbonate fixation. We showed that, far from being anecdotal, bicarbonate fixation by primary producers can be the most frequent model for hardwater lakes. ### **Abstract** In alkaline freshwater systems, the apparent absence of carbon limitation to gross primary production (GPP) at low CO₂ concentrations suggests that bicarbonates can support GPP. However, the contribution of bicarbonates to GPP has never been quantified in lakes along the seasons. To detect the origin of the inorganic carbon maintaining GPP, we analyze the daily stoichiometric ratios of CO₂-O₂ and alkalinity-O₂ in a deep hardwater lake. Results show that aquatic primary production withdraws bicarbonate from the alkalinity pool for twothirds of the year. Alkalinity rather than CO₂ is the dominant inorganic carbon source for GPP throughout the stratified period in both the littoral and pelagic environments. This study sheds light on the neglected role of alkalinity in the freshwater carbon cycle throughout an annual cycle. In aquatic ecosystems, gross primary production (GPP) converts dissolved inorganic carbon $(DIC = CO_2 + HCO_3^- + CO_3^{2-})$ into organic matter. Nutrients (nitrogen and phosphorus) and light are the main limiting factors of GPP (Schindler et al. 1973; Dillon and Rigler 1974; Krause-Jensen and Sand-Jensen 1998; Karlsson et al. 2009). Because additions of DIC to lakes were not sufficient to increase GPP levels (Schindler 1971, 1974), DIC *Correspondence: pascal.perolo@gmail.com Associate editor: Janne Karlsson Author Contribution Statement: PP, MEP, and DB conceived the study design. PP, NE, and HEC collected and preprocessed data field. PP and MEP performed data analysis and modeling. PP, MEP, and DB drafted the manuscript with inputs from all authors. Data Availability Statement: Data and metadata are available in the Zenodo repository at https://doi.org/10.5281/zenodo.7442327. Additional Supporting Information may be found in the online version of this article. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. limitation of GPP has been regarded as unlikely, especially since most inland waters are supersaturated with CO_2 (Cole et al. 1994). This statement has been questioned in cases of near-surface CO_2 undersaturation when GPP demand surpasses inward atmospheric CO_2 fluxes (Schindler et al. 1972; Finlay et al. 1999; Zhang et al. 2017; Zagarese et al. 2021). Under such conditions, the GPP in low-alkaline soft water lakes has been proven to be carbon-limited (Kragh and Sand-Jensen 2018). In the same study, Kragh and Sand-Jensen (2018) did not detect any carbon limitation of GPP at such low near-surface CO₂ in high-alkaline hardwater lakes. The absence of carbon limitation was therein attributed to the high DIC stocks. However, at pH values typical for moderate hardwater lakes (7.8-9), the DIC pool is mainly composed of bicarbonates $(HCO_3^- > 95\%; Stumm and Morgan 1981)$ that cannot be readily fixed by most primary producers. At high HCO₃⁻ concentrations and high pH, atmospheric CO2 invasion is greatly enhanced by chemical enhancement (Wanninkhof and Knox 1996). Yet, the carbonate buffering effect leads to fast hydration and deprotonation of incoming atmospheric CO₂ into HCO₃⁻ with limited effect on pH and dissolved CO₂ concentrations (Bade and Cole 2006). Thus, the chemical enhancement of atmospheric inward fluxes in alkaline lakes cannot directly supply CO2 to primary producers. The apparent lack of carbon limitation of GPP in alkaline hardwater lakes despite low CO₂ concentrations suggests that alkalinity can deliver DIC to primary producers (Li et al. 2018). Primary producers, inhabiting environments with low CO₂, high HCO₃⁻, and high light levels (Maberly and Gontero 2017) have evolved complex strategies to use HCO₃⁻ for maintaining GPP (e.g., Steemann Nielsen 1946; Thomas and Tregunna 1968; Price et al. 2008; Maberly and Gontero 2017; Iversen et al. 2019). At low CO2 concentrations, certain microalgae and cyanobacteria can mobilize active HCO₃⁻ uptake systems. Bicarbonate is transported to cell compartments where specific enzymes concentrate and convert HCO₃⁻ into CO₂ (CO₂-concentrating mechanism [CCM]; e.g., carbon anhydrase; Colman et al. 2002; Li et al. 2018). For active HCO₃⁻ uptake, 1 mol of alkalinity is lost as 1 mol of inorganic carbon is fixed within photosynthesis. Another mechanism to ensure carbon supply to GPP involves the capture of the CO2 released during calcite precipitation (CP: $2HCO_3^- + Ca^{2+} \rightleftharpoons CaCO_3 + CO_2 + H_2O$) that can occur close to the membranes of many algae and macrophytes (Kelts and Hsü 1978; Larsson and Axelsson 1999; Pełechaty et al. 2013; Müller et al. 2016). For indirect HCO₃ use through CP, 2 mol of alkalinity are lost for 1 mol of inorganic carbon fixed within photosynthesis, the remaining mole being precipitated as calcite. Alkalinity (Alk) was shown to be the main DIC source to macrophytes in a downstream reach of a river in the South of France (Maberly et al. 2015). A recent study of GPP in five US rivers (Aho et al. 2021) estimated that HCO₃⁻ could support up to 30% of the annual GPP in one large and sunny reach of the Connecticut River. The contribution of HCO_3^- in supporting GPP in lakes remains to be quantified, and its implications for the carbon cycle of hardwater lakes are to be understood. Lake Geneva is a moderately hardwater lake with surface CO_2 concentrations below saturation for the stratified period. Herein, we aim at detecting the origin of the dominant DIC supporting GPP in both the pelagic and littoral environments of Lake Geneva on a daily scale. By combining hourly CO_2 , O_2 , and alkalinity measurements over a complete annual cycle, we categorize the dominant daily source of DIC to GPP based on the stoichiometric changes of CO_2 – O_2 and Alk– O_2 . We relate the DIC source to the environmental conditions to estimate the importance of HCO_3^- use for the littoral and pelagic GPP at an annual scale. # Methods #### Study sites Lake Geneva is a large, deep, alkaline hardwater lake with surface alkalinity ranging from 1200 to 1700 μ eq L⁻¹, a surface calcium concentration (Ca²⁺) ranging from 38 to 46 mg L⁻¹, and a salinity of \sim 0.2‰. The lake is stratified from April to September with a thermocline deepening from 3 to 30 m. Calcite precipitation occurs throughout during the stratification period (Müller et al. 2016; Escoffier et al. 2023). Two study sites (Fig. S1a–c), the LéXPLORE platform (110-m depth; Wüest et al. 2021) and the Buchillon mast (4-m depth), representative of the pelagic and littoral environments, were investigated over the years 2019 and 2020. #### Field methods Dissolved oxygen was measured by miniDOT sensors (PME). Dissolved $p\text{CO}_2$ was measured by miniCO₂ sensors (Pro-Oceanus System Inc.). Alkalinity is strongly correlated to the specific conductance over the whole year in Lake Geneva ($R^2=0.95$; Supporting Information Methods). The subdaily dynamics of alkalinity are thereby estimated using a conductivity logger (HOBO U24-001; Onset). Local weather conditions were continuously recorded by a Campbell Scientific automatic weather station at each site. Water temperatures were measured from 0.7 to 30 m with 2.5 m of interval depth using Minilog II-T (VEMCO) in the pelagic area. These temperatures were used to compute the Schmidt stability (Idso 1973) and the mixed layer depth (Imberger 1985). Finally, all variables were gridded at an hourly time step (Perolo et al. 2022; more details about sensors and calibration in Supporting Information Methods). # Data analysis and modeling The CO_2 and O_2 concentrations at the lake surface were expressed in terms of departure from atmospheric equilibrium in μ mol L^{-1} as in Vachon et al. (2020). At the pH of Lake Geneva's surface waters (pH 7.8–9; see Fig. S2), HCO $_3$ ⁻ represents > 89% of the total alkalinity (Alk = HCO $_3$ ⁻ + 2CO $_3$ ²⁻; Perolo et al. Estimating alkalinity contribution to GPP Stumm and Morgan 1981). Besides, carbonate (CO_3^{2-}) cannot be used by primary producers. We thereby assumed the Alk variations to be equal to the HCO_3^- variations (Groleau et al. 2000). The origin of the dominant DIC supporting GPP was detected from the analysis of paired CO_2 – O_2 and Alk– O_2 dynamics (Stets et al. 2017; Aho et al. 2021), following an approach inspired but expanded from Vachon et al. (2020) (Fig. S3). Briefly, the slopes of the daily point clouds of CO_2 – O_2 (α) and Alk-O₂ (β; 95% confidence interval) were used to categorize the dominant source of DIC (i.e., >50% of CO₂ or HCO₃⁻) supporting GPP based on the following stoichiometric ratios. The photosynthesis from CO₂ uptake leads to daily molar ratios for CO2-O2 between 1:1 and 1:1.4 (Lefèvre and Merlivat 2012). Daily point clouds of CO_2 - O_2 with α slopes equivalent to -1 and -1.4 were categorized as days of dominant CO₂ uptake. $\alpha < -1.4$ indicates O₂ production for limited changes of CO₂ but does not necessarily evidence bicarbonate use (see explanation and illustration in Supporting Information Method and Fig. S5). Unambiguous demonstration of HCO₃⁻ use requires evidence of alkalinity consumption. For case with $\alpha < -1.4$, coupled Alk–O₂ changes were scrutinized to check whether daily alkalinity consumption matched O2 production (Fig. S9). Direct HCO₃⁻ use for CCM generates a molar Alk-O2 ratio of 1:1 to 1:1.4, while for DIC uptake from calcite precipitation, the molar Alk-O2 ratio is expected to be lower (1:0.5 to 1:1). Daily point clouds of Alk-O₂ with β slopes between -0.5 and -1.4 were thus categorized as days of dominant HCO₃⁻ use. Only days with significant linear correlations between CO2-O2 and Alk-O2 were retained for the analysis (i.e., p < 0.05 and $R^2 > 0.66$). The remaining days, not attributed to any category, are, in most cases, either days where the daily significant slopes were too weak or days with a noisy daily signal. Noisy signals can be caused by short-lived events such as internal waves or upwelling (Fernández Castro et al. 2021) produced by wind events (>5 m s⁻¹; Fig. S4). Daily rates of GPP (μ mol O₂ L⁻¹ d⁻¹) were computed using a Bayesian Lake Metabolism model provided in the LakeMetabolizer R package (Winslow et al. 2016; Read et al. 2011; Supporting Information Method). We tested whether the dominant origins of DIC supporting GPP could be predicted from the four (littoral) and five (pelagic) daily averaged selected environmental variables (GPP rate, CO₂ departure, wind speed, solar radiation, and Schmidt stability) using classification trees (Supporting Information Method). The best models were used to reconstruct the dominant daily DIC sources of GPP for the not-classified days for which GPP could be computed. # Results # Spatiotemporal variability The annual CO₂–O₂ dynamics of the littoral and pelagic environments are illustrated at an hourly resolution in Fig. 1 (time series in Fig. S6). Two distinct periods are observed in the littoral and pelagic environments (Fig. 1a,b): a cold period (September–March) corresponding to the first windy event in fall until the end of the winter mixing and a warm period (April–August) corresponding to the highest levels of solar radiation and stratification strength. During the cold period, the conditions are mainly undersaturated in O_2 and oversaturated in CO_2 . The slope of the CO_2 – O_2 dynamics remains close to -1, reflecting the classical stoichiometry of photosynthesis (i.e., use of CO_2). The range of CO_2 departures is similar for the littoral and pelagic sites, while the O_2 departures are, on average, $\sim 30~\mu \text{mol L}^{-1}$ lower in the littoral as compared to the pelagic site. These conditions shift to an O_2 oversaturation and a CO_2 undersaturation during the stratified period. Over these months, the slope of the CO_2 – O_2 dynamic strongly deviates from -1 and becomes much steeper. This high production of O_2 and low consumption of CO_2 sheds light on the potential CO_2 limitation in this system. The data distribution within the CO_2 – O_2 diagram is more scattered for the shoulder seasons (March–April and September–October; Fig. S7), especially for the littoral site. For those shoulder months, the CO_2 – O_2 variability within a single day can be almost as wide as the monthly and annual CO_2 – O_2 variability (Fig. S8). Figure 1c,d shows the results of the two processes including CO_2 uptake or HCO_3^- use for GPP. More examples are provided in Fig. S9. The distribution of DIC sources is broadly partitioned depending on O_2 – CO_2 departures, with most days of CO_2 uptake at CO_2 supersaturated and O_2 undersaturated daily conditions and HCO_3^- use at CO_2 undersaturated and O_2 oversaturated conditions. However, GPP could rely on HCO_3^- use even on days with supersaturated daily averaged CO_2 values, especially in the pelagic site. # Influence of chemical and physical conditions Figure 2 presents the relationships between the CO₂ uptake and HCO₃⁻ use of GPP and the daily chemical and physical conditions. Figure 2a shows a clear partition of DIC source according to GPP and average daily CO2 departures in the littoral site with HCO_3^- use for CO_2 departures $< -4.4 \mu \text{mol L}^{-1}$ and GPP $> 16 \mu \text{mol O}_2 \text{ L}^{-1} \text{ d}^{-1}$ (classification tree for the littoral in Table S1). The physical conditions, such as wind speed, have a limited impact on DIC use (Fig. S10). In the pelagic site, the water column stability is the main driver of DIC use, followed by the GPP level, with HCO₃⁻ use for a Schmidt stability >116 J m⁻² and a GPP $>5 \mu mol O_2 L^{-1} d^{-1}$ (Fig. 2b and classification tree for the pelagic in Table S2). Moreover, for the highest GPP level $> 50 \mu \text{mol O}_2 \text{ L}^{-1} \text{ d}^{-1}$, the slopes of the CO₂-O₂ ratio tend to infinity, while the slopes of Alk-O2 ratio align to the 1: -1 involving an assimilation >95% of HCO₃⁻ to maintain these GPP levels (Fig. S9). **Fig. 1.** Panels (\bf{a} , \bf{b}) show the annual dynamic of CO₂ departure vs. O₂ departure (μ mol L⁻¹) in littoral and pelagic environments colored according to the months of the year. The two annual cycles present more than 65% of the days of the year distributed over all months (*see* also Fig. S4). Panels (\bf{c} , \bf{d}) highlight the two categorisations of CO₂ uptake (α slopes from -1 to -1.4: red points) and HCO₃⁻¹ use (α slopes from -0.5 to -1.4: green points) as well as the not attributed days (gray points). The dashed line represents the -1 slope. # DIC pool contribution to GPP along the year The predictions accuracies for the classification trees are > 80% and reveal the strong predictive power of some specific drivers (i.e., CO_2 departure and GPP for the littoral environment, stability, and GPP for the pelagic environment; Tables S1, S2). Trained classification models are thereafter used to reconstruct the dominant DIC use for days that could not be categorized from their stoichiometric relationships (approximately two-thirds of the datasets). The distributions of GPP within DIC use categories are very similar between the training dataset and the predictions (see violin plots Before|After in Fig. 3). In the littoral site, GPP is exclusively supported by CO_2 uptake in winter and late fall, while HCO_3^- use is the dominant source for GPP in summer (June–August), when the highest GPP rates are recorded. From March to May, GPP is alternatively supported by HCO_3^- and CO_2 because of strong daily fluctuations in CO_2 (Fig. 3a). Overall, we estimate that 75% of the total annual littoral GPP (sum of GPP with a dominant HCO_3^- source divided by sum of total GPP; from data in **Fig. 2.** Panels (\bf{a} , \bf{b}) show daily GPP level (size of symbol, μ mol O₂ L⁻¹ d⁻¹) matching categorized days for dominant CO₂ uptake (diamond) or dominant HCO₃⁻ use (circle). Panel (\bf{a}) is colored according to the daily average of CO₂ departure (μ mol L⁻¹) in the littoral environment. Panel (\bf{b}) is colored according to the daily Schmidt stability (J m⁻²) in the pelagic environment. The dashed line represents the -1 slope. Dash rectangles are the specific zooms created in the small frames in the upper right corners. Fig. 3) occurs under dominant HCO_3^- fixation. In summer, when GPP rates are the greatest, the littoral GPP is exclusively under dominant HCO_3^- fixation. DIC use is more seasonally partitioned for the pelagic site (Fig. 3b), with exclusive CO_2 uptake limited to winter (December–March). The dominance of HCO_3^- use starts in March and remains the main source supporting GPP over the 8 months of the thermal stratification (until October). The dominant DIC source for GPP alternated in early fall, as the water column stability fluctuated around 2000 J m $^{-2}$. Because HCO_3^- use dominates during the most productive season, we estimate that almost all of GPP during the stratification period occurs under dominant HCO_3^- fixation while 82% of the total annual pelagic GPP is supported by dominant HCO_3^- fixation. ### Discussion The high-frequency data coupling of CO_2 , O_2 , and alkalinity provides meaningful ecosystem function information (e.g., Stets et al. 2017; Vachon et al. 2020). The analyses of stoichiometric slopes allow to detect the origin of the dominant DIC supporting GPP and, complemented by the classification tree, offer an interesting and easily reproducible approach for estimating alkalinity contribution for GPP over a full year. Because the relationship between CO₂ and O₂ departures (α slope) in alkaline and hardwater lakes such Lake Geneva is nonlinear (Fig. S5c), the daily Alk-O₂ analyze (β slope) is essential to assess the dominant DIC source for daily GPP. Our method, based on stoichiometric slopes, yet provides semi-quantitative estimates. First, the GPP's substrate can shift from CO₂ to HCO₃ within the same day (Fig. S7, S9), which limits the accuracy of our estimates. Second, the two mechanisms by which GPP can fix alkalinity differ in their stoichiometric ratios (1:2 for CP and 1:1 for CCM), affecting the expected values for the β slope. Future studied should focus on the intraday dynamics to improve the analysis of precise CO₂-HCO₃⁻ cofixation. Besides, microbiology and C isotopic analysis could also help disentangle CCM from **Fig. 3.** Panels (**a**, **b**) show the temporal evolution of estimated GPP levels (μ mol O₂ L⁻¹ d⁻¹) along the year (left side) colored according to categorisations of the dominant daily DIC source: CO₂ uptake (red) and HCO₃⁻ use (green) and observed days (triangle) and reconstructed days (point). Circles show uncertain reconstructed days due to high wind speed > 5 m s⁻¹ producing weak biological patterns. Panel (**a**) adds the temporal evolution of the CO₂ departure (μ mol L⁻¹) as the best predictor of the littoral environment as well as the atmospheric equilibrium (black line). Panel (**b**) adds the temporal evolution of the Schmidt stability (J m⁻²) as the best predictor of the pelagic environment. The distributions and the boxplots (violin plots) of GPP levels are shown on the right side of panels (**a**, **b**) for both DIC categories and the whole GPP levels before and after the reconstruction by the classification tree. CP. Beyond their stochiometric differences, CCM, which is an active mechanism, and the supposed passive CP should differ in the induced energetic costs for primary producers (e.g., Maberly and Gontero 2017; Li et al. 2018). Whether alkalinity fixation occurred from CP or CCM might therefore have implications for GPP itself. This study provides a semi-quantification of DIC pool contribution to GPP along an annual cycle in both the littoral and pelagic environments of a moderate alkaline and hardwater lake. The results show that GPP is not limited by carbon availability throughout the year, even during CO₂ depletion, as demonstrated in other freshwater systems (Maberly et al. 2015; Kragh and Sand-Jensen 2018; Li et al. 2018; Aho et al. 2021). To support the high rate of O₂ production, GPP relies on HCO₃⁻ withdrawal from the water to subsidize the missing CO₂ (Fig. S9), resulting in a depleted alkalinity pool (Fig. S6). Both lake environments are auspicious for CCM with specific conditions such as CO₂ depletion, high HCO₃⁻ availability and high levels of solar radiation (Maberly and Gontero 2017). Most of phytoplankton species are known to use CCM (e.g., Maberly and Gontero 2017; Mishra et al. 2018), among which picocyanobacterial that have been documented in relatively high abundances in Lake Geneva from spring to fall, when they can contribute up to 76% of the pelagic biomass of primary producers (Parvathi et al. 2014). In addition, authigenic CP, produced inorganically in the water column (Schrag et al. 2013) has previously been reported in the pelagic area (Escoffier et al. 2022; Escoffier et al. 2023; Fig. S1g). CP is also directly observed on the leaves of macrophytes from the littoral site (*Characea* and *Potamogeton perfoliatus*; Fig. S1d–f). Exploring the temporal and spatial variabilities also offers interesting insights into macro- and micropatterns at different resolutions. At the seasonal scale, an evident temporal variability is observed between the cold (CO2 uptake) and warm periods (HCO₃⁻ use), with heterogeneity in DIC sources during the shoulder periods (Figs. 1-3). At the annual scale, the proportion of total GPP produced under dominant HCO₃ fixation is relatively similar in the two environments (i.e., 75% for the littoral environment and 82% for the pelagic environment). These results amount to a minimum conservative estimate of HCO₃⁻ used for GPP over the year of 37% and 41% close to the results given by Aho et al. (2021) in the Connecticut River ($\sim 30\%$). However, this dominant consumption of HCO₃⁻ in the littoral environment only occurred for 3-4 months (middle June to middle September) while in the pelagic environment it was spread over 8 months (March-October). This annual similarity comes from the fact that summer littoral GPP rates are almost twice as high as in the pelagic environment. The faster CO2 depletion in the pelagic domain can be explained by the thermal stratification isolating the epilimnion from CO2 fluxes coming from the hypolimnion and bottom sediments. In contrast, the shallower depth in the littoral area allows for greater proximity with sediment-derived CO2 fluxes all year round and explains that CO₂ depletion appears later when GPP levels become higher. The daily observations support such dynamics in the littoral domain with changes in slopes between morning (lower) and afternoon (steeper), illustrating the cycling of different DIC sources. In contrast, the pelagic slopes stay linear and steeper all day (Figs. S7, S9). These daily patterns also highlight a greater dynamic from the littoral environment during the shoulder period with a constant return to early morning conditions (Fig. S7). In contrast, the pelagic environment has greater inertia, as observed in March, where the daily cycle of the littoral is the same as the monthly cycle in the pelagic (Fig. S8), linked to an increase in the Schmidt stability (Fig. 3). To conclude, this study, as several recent studies (Maberly et al. 2015; Stets et al. 2017; Kragh and Sand-Jensen 2018; Khan et al. 2020; Aho et al. 2021), sheds light on the overlooked role of alkalinity in the freshwater carbon cycle and how it contributes to GPP. Half of the world's lakes are considered alkaline (> 1 meq L⁻¹; Marcé et al. 2015), so we can expect alkalinity consumption by primary producers to be a widespread phenomenon. Moreover, alkalinity consumption by GPP might get more frequent with climate warming. Longer and stronger stratification and shallower mixing depths (Schwefel et al. 2016; Gaudard et al. 2017) would both fasten surface CO₂ depletion during stratification and limit winter replenishment of surface CO₂. Therefore, less CO₂ at the surface could lead to a potential increase in HCO₃⁻ use and a shift in species communities capable of such an assimilation. #### References Aho, K. S., J. D. Hosen, L. A. Logozzo, W. R. McGillis, and P. A. Raymond. 2021. Highest rates of gross primary productivity maintained despite CO₂ depletion in a temperate - river network. Limnol. Oceanogr.: Lett. **6**: 200–206. doi:10. 1002/lol2.10195 - Bade, D. L., and J. J. Cole. 2006. Impact of chemically enhanced diffusion on dissolved inorganic carbon stable isotopes in a fertilised lake. J. Geophys. Res.: Oceans **111**: C01014. doi:10.1029/2004JC002684 - Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science **265**: 1568–1570. doi:10.1126/science.265. 5178.1568 - Colman, B., I. E. Huertas, S. Bhatti, and J. S. Dason. 2002. The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct. Plant Biol. **29**: 261. doi:10. 1071/PP01184 - Dillon, P. J., and F. H. Rigler. 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. **19**: 767–773. doi:10.4319/lo.1974.19.5.0767 - Fernández Castro, B., H. E. Chmiel, C. Minaudo, S. Krishna, P. Perolo, S. Rasconi, and A. Wüest. 2021. Primary and net ecosystem production in a large lake diagnosed from high-resolution oxygen measurements. Water Resour. Res. **57**. doi:10.1029/2020WR029283 - Escoffier, N., P. Perolo, T. Lambert, J. Rüegg, D. Odermatt, T. Adatte, T. Vennemann, and M.-E. Perga. 2022. Whiting events in a large peri-alpine lake: Evidence of a catchment-scale process. J. Geophys. Res.: Biogeosciences **127**: e2022JG006823. doi:10.1029/2022JG006823 - Escoffier, N., P. Perolo, G. Many, N. Pasche, and M.-E. Perga. 2023. Unveiling the fine scale dynamics of calcite precipitation in a large hardwater lake. Sci. Total Environ. **864**: 160699. doi:10.1016/j.scitotenv.2022.160699 - Finlay, K., M. E. Power, and G. Cabana. 1999. Effect of water velocity on algal carbon isotope ratios: Implications for river food web studies. Limnol. Oceanogr. **44**: 1198–1203. doi:10.4319/lo.1999.44.5.1198 - Gaudard, A., R. Schwefel, L. R. Vinnå, M. Schmid, A. Wüest, and D. Bouffard. 2017. Optimising the parameterisation of deep mixing and internal seiches in one-dimensional hydrodynamic models: A case study with Simstrat v1.3. Geosci. Model Dev. 10: 3411–3423. doi:10.5194/gmd-10-3411-2017 - Groleau, A., G. Sarazin, B. Vinçon-Leite, B. Tassin, and C. Quiblier-Llobéras. 2000. Tracing calcite precipitation with specific conductance in a hard water alpine lake (Lake Bourget). Water Res. **34**: 4151–4160. doi:10.1016/S0043-1354(00)00191-3 - Idso, S. B. 1973. On the concept of lake stability. Limnol. Oceanogr. **18**: 681–683. doi:10.4319/lo.1973.18.4.0681 - Imberger, J. 1985. The diurnal mixed layer. Limnol. Oceanogr. **30**: 737–770. doi:10.4319/lo.1985.30.4.0737 - Iversen, L. L., and others. 2019. Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science 366: 878–881. doi:10.1126/science.aay5945 onditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensses - Karlsson, J., P. Byström, J. Ask, P. Ask, L. Persson, and M. Jansson. 2009. Light limitation of nutrient-poor lake ecosystems. Nature **460**: 506–509. doi:10.1038/nature08179 - Kelts, K., and K. J. Hsü. 1978. Freshwater carbonate sedimentation, p. 295–323. *In* A. Lerman [ed.], *Lakes*. Springer. doi: 10.1007/978-1-4757-1152-3 9 - Khan, H., A. Laas, R. Marcé, and B. Obrador. 2020. Major effects of alkalinity on the relationship between metabolism and dissolved inorganic carbon dynamics in lakes. Ecosystems 23: 1566–1580. doi:10.1007/s10021-020-00488-6 - Kragh, T., and K. Sand-Jensen. 2018. Carbon limitation of lake productivity. Proc. R. Soc., Ser. B **285**: 20181415. doi:10. 1098/rspb.2018.1415 - Krause-Jensen, D., and K. Sand-Jensen. 1998. Light attenuation and photosynthesis of aquatic plant communities. Limnol. Oceanogr. **43**: 396–407. doi:10.4319/lo.1998.43.3. 0396 - Larsson, C., and L. Axelsson. 1999. Bicarbonate uptake and utilization in marine macroalgae. Eur. J. Phycol. **34**: 79–86. doi:10.1080/09670269910001736112 - Lefèvre, N., and L. Merlivat. 2012. Carbon and oxygen net community production in THE eastern tropical Atlantic estimated from a moored buoy. Glob. Biogeochem. Cycles **26**: GB1009. doi:10.1029/2010GB004018 - Li, H., Y. Wu, and L. Zhao. 2018. Effects of carbon anhydrase on utilisation of bicarbonate in microalgae: A case study in Lake Hongfeng. Acta Geochim. **37**: 519–525. doi:10.1007/s11631-018-0277-4 - Maberly, S. C., and B. Gontero. 2017. Ecological imperatives for aquatic CO₂-concentrating mechanisms. J. Exp. Bot. **68**: 3797–3814. doi:10.1093/jxb/erx201 - Maberly, S. C., S. A. Berthelot, A. W. Stott, and B. Gontero. 2015. Adaptation by macrophytes to inorganic carbon down a river with naturally variable concentrations of CO₂. J. Plant Physiol. **172**: 120–127. doi:10.1016/j.jplph. 2014.07.025 - Marcé, R., B. Obrador, J.-A. Morguí, J. Lluís Riera, P. López, P, and J. Armengol 2015. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geoscience 8: 107–111. doi:10.1038/ngeo2341 - Mishra, S., B. Joshi, P. Dey, H. Pathak, and A. Kohra. 2018. CCM in photosynthetic bacteria and marine alga. J. Pharmacogn. Phytochem. **7**: 928–937. doi:10.22271/phyto/2018.7692 - Müller, B., J. S. Meyer, and R. Gächter. 2016. Alkalinity regulation in calcium carbonate-buffered lakes. Limnol. Oceanogr. **61**: 341–352. doi:10.1002/lno.10213 - Parvathi, A., X. Zhong, A. S. Pradeep Ram, and S. Jacquet. 2014. Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva. Hydrol. Earth Syst. Sci. **18**: 1073–1087. doi:10.5194/hess-18-1073-2014 - Pelechaty, M., A. Pukacz, K. Apolinarska, A. Pelechata, and M. Siepak. 2013. The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60: 1017–1035. doi:10.1111/sed.12020 - Perolo, P., N. Escoffier, and H. E. Chmiel. 2022. CO₂, O₂, and alkalinity in Lake Geneva. Zenodo. doi:10.5281/zenodo. 7442327 - Price, G. D., M. R. Badger, F. J. Woodger, and B. M. Long. 2008. Advances in understanding the cyanobacterial CO₂-concentrating-mechanism (CCM): Functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. **59**: 1441–1461. doi:10.1093/jxb/erm112 - Read, J. S., D. P. Hamilton, I. D. Jones, K. Muraoka, L. A. Winslow, R. Kroiss, C. H. Wu, and E. Gaiser. 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. **26**: 1325–1336. doi:10.1016/j.envsoft.2011.05.006 - Schindler, D. W. 1971. Carbon, nitrogen, and phosphorus and the eutrophication of freshwater lakes. J. Phycol. **7**: 321–329. doi:10.1111/j.1529-8817.1971.tb01527.x - Schindler, D. W. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science **184**: 897–899. doi:10.1126/science.184.4139.897 - Schindler, D. W., G. Brunskill, S. Emerson, W. Broecker, and T.-H. Peng. 1972. Atmospheric carbon dioxide: Its role in maintaining phytoplankton standing crops. Science **177**: 1192–1194. doi:10.1126/science.177.4055.1192 - Schindler, D. W., H. Kling, R. V. Schmidt, J. Prokopowich, V. E. Frost, R. A. Reid, and M. Capel. 1973. Eutrophication of Lake 227 by addition of phosphate and nitrate: The second, third, and fourth years of enrichment, 1970, 1971, and 1972. J. Fish. Res. Board Can. **30**: 1415–1440. doi:10.1139/f73-233 - Schrag, D. P., J. A. Higgins, F. A. MacDonald, and D. T. Johnston. 2013. Authigenic carbonate and the history of the global carbon cycle. Science **339**: 540–543. doi:10. 1126/science.1229578 - Schwefel, R., A. Gaudard, A. Wüest, and D. Bouffard. 2016. Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): Comparing observational findings and modeling. Water Resour. Res. **52**: 8811–8826. doi:10.1002/2016WR019194 - Steemann Nielsen, E. 1946. Carbon sources in the photosynthesis of aquatic plants. Nature **158**: 594–596. doi:10.1038/158594a0 - Stets, E. G., D. Butman, C. P. McDonald, S. M. Stackpoole, M. D. DeGrandpre, and R. G. Striegl. 2017. Carbonate buffering and metabolic controls on carbon dioxide in rivers: Controls on CO₂ in rivers. Glob. Biogeochem. Cycles **31**: 663–677. doi:10.1002/2016GB005578 - Stumm, W., and J. J. Morgan. 1981, Aquatic chemistry: An introduction emphasising chemical equilibria in natural waters, 2nd Edition. Wiley. - Thomas, E. A., and E. B. Tregunna. 1968. Bicarbonate ion assimilation in photosynthesis by *Sargassum muticum*. Can. J. Bot. **46**: 411–415. doi:10.1139/b68-063 - Vachon, D., and others. 2020. Paired O₂–CO₂ measurements provide emergent insights into aquatic ecosystem function. Limnol. Oceanogr.: Lett. **5**: 287–294. doi:10.1002/lol2. 10135 - Wanninkhof, R., and M. Knox. 1996. Chemical enhancement of CO_2 exchange in natural waters. Limnol. Oceanogr. **41**: 689–697. doi:10.4319/lo.1996.41.4.0689 - Winslow, L. A., J. A. Zwart, R. D. Batt, H. A. Dugan, R. I. Woolway, J. R. Corman, P. C. Hanson, and J. S. Read. 2016. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters **6**: 622–636. doi:10.1080/IW-6.4.883 - Wüest, A., D. Bouffard, J. Guillard, B. W. Ibelings, S. Lavanchy, M.-E. Perga, and N. Pasche. 2021. LéXPLORE: A floating laboratory on Lake Geneva offering unique lake research opportunities. WIREs Water 8: e1544. doi:10. 1002/wat2.1544 - Zagarese, H. E., and others. 2021. Patterns of CO₂ concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes. Water Res. **190**: 116715. doi:10.1016/j.watres.2020.116715 Zhang, T., and others. 2017. River sequesters atmospheric carbon and limits the CO_2 degassing in karst area, Southwest China. Sci. Total Environ. **609**: 92–101. doi:10.1016/j. scitotenv.2017.07.143 ### Acknowledgment We would like to thank the entire team of the LéXPLORE platform for their administrative and technical support and the LéXPLORE core dataset. We also acknowledge the five partner institutions involved with LéXPLORE: Eawag, EPFL, the University of Geneva, the University of Lausanne, and CARRTEL (INRAE-USMB). This study was supported by the CARBOGEN project (SNF 200021_175530), which is linked to the LéXPLORE project (SNF R'Equip, P157779) and the Primary Production Under Oligotrophication in Lakes project (SNF 200021_179123). The authors thank Sébastien Lavanchy, the chief technical officer (APHYS-EPFL), and Aurélien Ballu, a member of the technical pool (IDYST-UNIL) of LéXPLORE platform, for their technical and field support. In addition, we thank Prof Yves Prairie (University of Québec à Montréal) and Prof Anne Ojala (University of Helsinki) for their reading of the manuscript and their constructive comment. Submitted 06 April 2022 Revised 11 January 2023 Accepted 16 January 2023