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A B S T R A C T   

Runoff changes are critical to the sustainable water resource in the Lancang-Mekong River Basin (LMRB). 
Changes in the LMRB’s runoff over the past decades are unclear because of inadequate streamflow observations. 
The advancement of global hydrological models (GHMs) has facilitated the understanding of runoff change 
worldwide. However, it is required to evaluate the performance of GHMs in simulating historical runoff change 
in the LMRB before assessing the runoff changes. This study aims to conduct a multi-model analysis of temporal- 
spatial changes in runoff in the LMRB for 1971–2010 using ten GHMs from the Inter-Sectoral Impact Model 
Intercomparison Project (ISIMIP) and evaluate the corresponding uncertainties among models. Results show that 
the model ensemble mean has the best performance than the individuals when compared with the reference data. 
Based on the model ensemble mean, large spatial heterogeneity of runoff is found in the LMRB, with an overall 
slightly positive trend (8.03%). Besides, the models perform better in estimating the trends of high flow than low 
flow. As to the trend of runoff in the wet and dry seasons, about 32% (70%) of the basin became drier (wetter) in 
the dry (wet) season. Meanwhile, 17% of the basin has experienced a trend of drier dry seasons and wetter wet 
seasons. Overall, our results highlight the uncertainty of the runoff changes in the LMRB in the low flow 
simulation, particularly requiring more attention in future model improvement. The complex change patterns of 
the runoff suggest the importance of accurate runoff observations and projections for better water management.   

1. Introduction 

Surface runoff constitutes a significant component of the available 
water resources strongly associated with regional socio-economic 
development (Wu et al., 2017). The non-public available streamflow 
data for most land areas hampers the investigation of runoff changes 
(Asadieh et al., 2016). Global hydrological models (GHMs) development 
has advanced rapidly over the past decades, which simulates satisfactory 
land surface hydrologic dynamics of continental-scale river basins, and 
provides runoff at the grid level (Gosling and Arnell, 2011). Employing 
the hydrological models makes the investigation of spatiotemporal 
changes to runoff possible. It further improves our understanding of 
regional hydrological cycle changes, which could support water 

resource management, protection, and sustainable use (Shan et al., 
2021). 

Despite the significant advancement of GHMs, the available hydro-
logical simulation outputs are of discrepancies because they are simu-
lated by unique hydrological models, which have different 
representations of hydrological processes (Sood and Smakhtin, 2015). In 
addition, different climate-forcing inputs could also bring discrepancies 
in the simulations (Hattermann et al., 2018). Intercomparisons of the 
simulations from the GHMs are thus needed before further evaluating 
the hydrological analysis. Model inter-comparison projects like the 
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) (Wars-
zawski et al., 2014) have made it possible to evaluate the GHMs simu-
lations and apply the outputs in global impact studies, thereby providing 
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frameworks for consistent assessments of the terrestrial water cycle 
(Giuntoli et al., 2015). Some studies have investigated the runoff trends 
using multi-model approaches (Hoang et al., 2016; Thompson et al., 
2013). Milly et al. (2005) showed that an ensemble of 12 climate models 
exhibits qualitative and statistically significant skill in simulating 
observed regional patterns of twentieth-century multidecadal changes 
in streamflow. Stahl et al. (2012) tested whether the white space on 
maps of observed runoff trends in Europe could be filled using estimates 
of an ensemble of eight GHMs. They showed that the ensemble mean 
overall provided the best representation of trends in the observations. 
Najafi and Moradkhani (2015) analyzed the extreme runoff by the multi- 
model ensemble of eight regional climate models, and found that the 
merged signal generally outperforms the best individual signal. Marx 
et al. (2017) investigated how the hydrological low flows were affected 
under different levels of future global warming in rivers using a multi- 
model ensemble of 45 hydrological simulations, and they concluded 
that climate change studies focusing on river low flows should employ 
large multi-model ensembles to provide a comprehensive analysis of 
model uncertainty. 

As one of Asia’s largest transboundary river basins, the Lancang- 
Mekong River Basin (LMRB, Fig. 1) plays a vital role in economic 
development in Southeast Asia (Liu et al., 2021). The fishery, agricul-
ture, and hydropower sectors along the river are highly dependent on 
this commonly shared water resource (Yun et al., 2020). Recent studies 
have shown increased magnitudes and frequencies of floods and 
droughts in the LMRB in the past decades (Hoang et al., 2016; Lyon 
et al., 2017), which will be further intensified under future climate 
change (Eastham et al., 2008; Hoang et al., 2016; Lauri et al., 2012; 
Västilä et al., 2010). However, previous multi-model studies in the 
LMRB mainly focused on changes in future runoff (including drought 
and floods) under the projected impact of climate change (Hasson et al., 

2016; Hoang et al., 2019; Lauri et al., 2012), a multi-model analysis of 
historical changes in runoff in the LMRB has not been conducted. The 
study of historical runoff regime changes would provide useful infor-
mation regarding the temporal and spatial evolution of runoff in 
response to climate change (Bawden et al., 2015). Therefore, an 
assessment of historical changes in the runoff regime of the LMRB is 
necessary to provide valuable information on water availability for 
subsequent management. 

Although Chen et al. (2021) have evaluated the performance of 
ISIMIP models in simulating Lancang-Mekong River discharges, it has 
shown a systematic underestimation at low percentiles of discharge due 
to the models’ routing scheme. Therefore, to further explore the per-
formance and associated uncertainties of ISIMIP models in simulating 
LMRB runoff, the temporal-spatial runoff regime changes in the LMRB 
during 1971–2010 were comprehensively investigated. Our key objec-
tives include the following: (1) to assess the runoff regime changes 
concerning different hydrological indicators using multi-model simula-
tions; (2) to estimate the associated uncertainties among models in 
addition to the spatial characteristics of runoff regime changes; (3) to 
identify “hot spots” of runoff change in the LMRB. Although traditional 
uncertainty analyses have been conducted (in a rather narrow sense) by 
considering contributions based on certain metrics (such as the coeffi-
cient of variation) (Phi Hoang et al., 2016), multiple metrics have rarely 
been quantified. Thus, our study quantifies the uncertainties in runoff 
trend detection using three different metrics, and the results provide a 
better understanding of the model performances. In addition, a deeper 
understanding of the past runoff regime characteristic changes and un-
certainties relating to multi-model approaches can also assist in 
improving projections of future hydrological regime changes in the 
LMRB. 

2. Materials and methods 

2.1. Materials 

In this study, the simulated daily runoff data from ten state-of-the-art 
GHMs (CLM4, DBH, H08, LPJmL, MATSIRO, MPI-HM, PCR-GLOBWB, 
VIC, WaterGAP2, and WAYS) are used to analyze changes in the runoff 
regime within the LMRB during 1971–2010. All the selected models 
were used in the second phase of the ISIMIP (ISIMIP2a) (Warszawski 
et al., 2014). All models were driven by the same climate forcing (Global 
Soil Wetness Project Phase 3 data, hereafter abbreviated as GSWP3) 
using a spatial resolution of 0.5◦ from 1 January 1971 to 31 December 
2010 on a continuous run on the daily scale. The GSWP3 dataset was 
generated based on the 20th Century Reanalysis Project and has been 
widely used in several studies conducting hydrological simulations 
(Masaki et al., 2017; Tangdamrongsub et al., 2018; Veldkamp et al., 
2017). The WaterGAP and WAYS models were calibrated prior to the 
hydrological simulation (Alcamo et al., 2003; Mao and Liu, 2019). The 
other eight models were not calibrated specifically for the ISIMIP2a 
simulations, and their default model parameters were therefore used in 
the runoff simulations. None of the selected models have considered the 
effects of water management and other human activities on the water 
system. Though many of them shared similar structures and parame-
terizations, all models were treated as independent. For example, some 
were similar concerning their fundamental approach to simulating 
evapotranspiration, representing water exchanges in soil across the 
basin, and modeling snow melting. The primary differences in the 
models concerning simulating land-surface hydrological processes are 
presented in Table 1. Detailed descriptions of the models applied in this 
work are provided by references associated with each model cited in the 
table. 

The International Satellite Land Surface Climatology Project Initia-
tive II University of New Hampshire/Global Runoff Data Centre (ISLSCP 
II UNH/GRDC, hereafter referred to as UNH-GRDC) composite monthly 
runoff data are available at a spatial resolution of 0.5◦ for 1986–1995, Fig. 1. Terrain and the location of the Lancang-Mekong River Basin (LMRB).  
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which represents the composite runoff data based on the water balance 
model runoff estimates and assimilates of observed discharge at gauge 
stations. The spatial characteristics of the water balance are preserved 
but constrained by the records observed at stations (Fekete et al., 2011). 
The UNH-GRDC data also represents a standard dataset used in the 
ISIMIP2a for model validation (Warszawski et al., 2014). Therefore, the 
UNH-GRDC was employed as reference data to evaluate the perfor-
mances of model simulations in the study area. 

2.2. Methods 

A framework for multi-model analyses is compiled to investigate the 
runoff regime changes in the LMRB when considering both spatiotem-
poral characteristics and uncertainties, which are outlined in Fig. 2 and 
detailed in the following sections:  

1. Evaluate the model performance in replicating the temporal and 
spatial patterns of the reference runoff data using seven commonly 
used metrics.  

2. Conduct trend detection for six hydrological indicators first at the 
basin scale and then grid scale to demonstrate the temporal and 
spatial patterns of runoff regime changes in the LMRB for 
1971–2010. 

3. Quantify the uncertainties in runoff trend detection for each hydro-
logical indicator using three metrics to explore confidence in the 
trend signal for runoff at different magnitudes over the study period.  

4. Analyze runoff regime changes in the dry (November–May) and wet 
(June–October) seasons. The regions where runoff increased in the 
wet season and decreased in the dry season were highlighted. 

2.2.1. Metrics used in model performance evaluation 
Before investigating runoff regime changes, the models applied in 

this study are evaluated against the reference runoff data. Performances 
of the models are first assessed using a monthly runoff time series 
simulation, and their abilities to replicate runoff at different return pe-
riods were evaluated. Their performances are further evaluated using a 
set of transferrable benchmarks. Generally, different metrics can assess 
individual characteristics of a simulated time series (Burgan and Aksoy, 

Table 1 
Description of ten evaluated global hydrological models.  

Model Snow melt scheme Evapotranspiration scheme Number of soil 
layers 

Spatial 
schematization 

Number of 
parameters 

Reference 

CLM4 Physically based snow 
module 

Monin-Obukhov Similarity 
Theory 

15 Fully-distributed >50 (Lawrence et al., 2011) 

DBH Energy balance method Energy balance model 3 Fully-distributed 15 (Tang et al., 2006) 
H08 Energy balance method Bulk approach 1 Fully-distributed – (Hanasaki et al., 2008) 
LPJmL Degree-day method Priestley–Taylor 6 Fully-distributed – (Gerten et al., 2004) 
MATSIRO Energy balance method Monin-Obukhov Similarity 

Theory 
13 Fully-distributed 16 (Takata et al., 2003) 

MPI-HM Degree-day method Penman-Monteith 1 Fully-distributed – (Stacke and Hagemann, 
2012) 

PCR- 
GLOBWB 

Degree-day method Hamon 2 Fully-distributed 43 (van Beek et al., 2011) 

VIC Energy balance method Penman-Monteith 3 Semi-distributed 22 (Liang et al., 1994) 
WaterGAP2 Degree-day method Priestley–Taylor 1 Fully-distributed 36 (Alcamo et al., 2003) 
WAYS Degree-day method Penman-Monteith 1 Fully-distributed 13 (Mao and Liu, 2019) 

Note: “-” indicates the number of parameters in the model is not explicitly specified. 

Fig. 2. The methodological outline of this study.  
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2022). In this study, seven metrics are applied to enable a comprehen-
sive comparison. Six of these metrics (i.e., the relative bias, normalized 
root mean square difference (RMSD), correlation coefficient, normalized 
standard deviation (NSD), centered RMSD, and the Nash-Sutcliffe effi-
ciency (NSE)) are applied to assess the relative performance of indi-
vidual models in replicating the temporal patterns of reference runoff 
data. Their results are presented in three types of diagrams (the target 
diagram, the radar diagram, and the Taylor diagram). At the same time, 
the spatial efficiency metric (SPAEF) is adopted for spatial pattern 
comparison of the simulated and reference runoff data, which was 
originally proposed by Demirel et al. (2013). The expressions of each 
metric are presented in Table 2, and detailed evaluation criteria are also 
remarked in the table. 

2.2.2. Hydrological indicators for runoff change 
Seven hydrological indicators are employed to investigate the 

changes in the runoff regime within the LMRB for 1971–2010 (Table 3). 
Mean annual runoff (MAR), annual 7-day minima runoff (MIN7) and the 
annual 7-day maxima runoff (MAX7) are used to appraise the runoff 
regime changes relating to extreme events (Danneberg, 2012). The 95th 
percentile runoff (Q95) and the 5th percentile runoff (Q5) are applied to 
assess the low value and high value of runoff changes in the basin, 
respectively. Runoff in the wet season (Rwet) and runoff in the dry 
season (Rdry) are used to assess the overall runoff changes on an annual 
scale and during the wet and dry seasons, respectively. The hydrological 
indicators are calculated from the simulated daily runoff during the 
study period. Furthermore, to facilitate a comparison between the runoff 
changes identified by different models, the relative change trend in this 
study is expressed as the percentage change over the study period 

relative to the mean of the variable for each time series: 

CR =
k*n

x
*100 (4) 

where CR represents the change ratio (%), k (mm/year) is the esti-
mated slope, n is the number of years in the study period, and x is the 
mean of the analyzed variable. 

A non-parametric estimation method using Sen’s slope estimator is 
applied to each hydrological indicator to detect trends in runoff (Gilbert, 
1987; Sen, 1968). As it estimates the trend of a time series based on the 
slope of the Kendall-Theil robust line (Theil, 1992), Sen’s slope esti-
mator is robust to outliers and has been widely used in studies to 
describe trend magnitudes in climate and hydrological variables (Stahl 
et al., 2012). In addition, Mann-Kendall’s (Gilbert, 1987; Kendall, 1948; 
Mann, 1945) test at the significance level of 95% is also conducted to 
determine statistically significant trends in the long-term time series. 

2.2.3. Metrics for quantifying uncertainty among models 
Uncertainties relating to the multi-model analysis of changes in the 

runoff trend detection are quantified by using the coefficient of variation 
(CV), signal-to-noise ratio (SNR), and the number of models that agreed 
on the same trend of the model ensemble mean. CV is computed for the 
change trend in hydrological indicators estimated by the models, 
demonstrating the extent of variability in model estimates in relation to 
the mean. A higher CV indicates higher uncertainties and lower con-
sistency between model estimates of runoff trend detection and vice 
versa. SNR is computed as the ratio between the external and internal 
variance for multi-model runoff simulations, providing the signal-to- 
noise levels by relating the ensemble’s variance to that of the individ-
ual members’ (Schellekens et al., 2017). Smaller SNR values represent 
higher uncertainties and lower consistency between model simulations 
of runoff. An SNR value below 1 indicates that the inter-model vari-
ability is larger than the ensemble mean variability, implying a low 
inter-model agreement for the runoff simulation. The number of models 
agreeing on the same trend of the model ensemble mean is then deter-
mined to reveal consistencies between the trend signs of the models. 

3. Results 

3.1. Evaluation of model performance 

Performances of the ten selected models in simulating monthly 
runoff time series are evaluated against the reference data (UNH-GRDC 
runoff data) from 1986 to 1995 (Fig. 3a). Results show that all models 
could replicate the observed monthly runoff time series and the seasonal 
runoff cycles, and the multi-model ensemble mean agrees well with the 
reference data. The probability of exceedance of the model simulations 
was also investigated to assess the models’ performances in simulating 
runoff at different return periods (Fig. 3b). Model simulated runoff is 
skewed differently at different magnitudes, and the models performed 
better in estimating the high flow than the low flow. Again, the model 

Table 2 
Description of seven metrics used in model performance evaluation.  

Metrics Expression Range Remarks 

Relative Bias 
RBIAS =

∑N
n=1(Sn − On)
∑N

n=1On
× 100 

( − ∞,

∞)

RBIAS 
approaching 
0 shows better 
performance 

Correlation 
Coefficient α =

∑N
n=1(Sn − S)(On − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1(Sn − S)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
n=1(On − O)

2
√

[ − 1,
1]

α approaching 
1 shows better 
performance 

Normalized 
Standard 
Deviation 

NSD =
σs

σo 

[0,∞) NSD 
approaching 1 
shows better 
performance 

Normalized 
Root Mean 
Square 
Difference 

NRMSD =
RMSD

σs 

[0,1] NRMSD 
approaching 
0 shows better 
performance 

Centered Root 
Mean 
Square 
Difference 

CRMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1((Sn − S) − (On − O))
2

N

√

[0,∞) CRMSD 
approaching 
0 shows better 
performance 

Nash-Sutcliffe 
Efficiency NSE = 1 −

∑N
n=1(On − Sn)

2

∑N
n=1(On − O)

2 

( − ∞,

1]
NSE 
approaching 1 
shows better 
performance 

Spatial 
Efficiency 
Metric 

SPAEF =

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α − 1)2
+ (β − 1)2

+ (γ − 1)2
√

( − ∞,

1]
SPAEF 
approaching 1 
shows better 
performance 

Note: Sn is the simulated value for the nth observation, On is the observed value 
for the nth observation, the overall mean of S and O is indicated by an overbar (S 
and O), N is the sample size. σs is the standard deviation of the simulated value, 
σo is the standard deviation for the observation; α is the correlation coefficient; β 
is the ratio of the coefficient of variation; γ indicates the histogram overlap.  

Table 3 
Description of the seven hydrological indicators.  

Hydrological 
indicators 

Description 

MAR Mean annual runoff for the period 1971–2010 
MIN7 Sum of runoff during seven consecutive days where the total 

runoff is the minimum in a certain year 
MAX7 Sum of runoff during seven consecutive days where the total 

runoff is the maximum in a certain year 
Q95 Magnitude of the daily runoff that is exceeded 95% of the days 

in the time series, indicating low flow 
Q5 Magnitude of the daily runoff that is exceeded 5% of the days 

in the time series, indicating high flow 
Rwet Total runoff for each year in the wet season (June–October) 
Rdry Total runoff for each year in the dry season (November–May)  
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ensemble mean resembles the exceedance probability well and provides 
a good match with the UNH-GRDC runoff data, indicating the high 
performance of the model ensemble mean of runoff at different 
magnitudes. 

Fig. 4 displays the ten selected models’ performance simulating 
monthly runoff time series. The relative bias between the reference data 
and model simulations is less than 10%, except for three models (DHB, 
H08, and MATSIRO). The relative bias is slightly higher but still below 
the threshold of ± 35% in these three models (Fig. 4a). The model 
ensemble mean exhibits the best relative bias score (2%) and the third- 
highest score in the normalized RMSD, indicating a generally good 
runoff simulation of the basin. The PCR-GLOBWB, CLM4, and the model 
ensemble mean exhibit better runoff simulation performances with 
smaller normalized RMSD values. In comparison, the performances of 
the DBH and H08 models are less favorable due to the relatively larger 
normalized RMSD. Most tested models demonstrate NSEs larger than 
0.7, indicating good and highly accurate performances when repro-
ducing the runoff time series. However, three models (H08, DBH, and 
LPJm) demonstrate low NSEs (Fig. 4b). The model ensemble mean 
achieves the best performance with an NSE value of 0.90, followed by 
WAYS (0.88), PCR-GLOBWB (0.88), and CLM4 (0.87). 

The Taylor diagram depicts a comprehensive model-matching skill 

between simulated runoff and the reference runoff data (Fig. 4c). All 
models are found to have correlation coefficients higher than 0.8. Half of 
the models and the model ensemble mean have correlation coefficients 
greater than 0.9, exhibiting strong runoff simulation performances in 
this respect. Models with relatively high correlations typically have low 
normalized RMSD (Fig. 4c). A normalized standard deviation larger than 
one implies a somewhat higher variation in a model’s simulated time 
series than the reference data. At the same time, values lower than one 
indicate that the time series has a weaker amplitude. Although the 
model simulations of CLM4, PCR-GLOBWB, and MATSIRO demonstrate 
stronger relationships with UNH-GRDC runoff data than the model 
ensemble mean, the model ensemble mean provides a better replication 
of the variations within the runoff time series, with the normalized 
standard deviation lying nearest to the green contour marked “Ref”. 

The results of the spatial performance evaluation are shown in Fig. 5. 
Compared with the reference runoff data, the model ensemble mean 
shows the best performance of high correlation, coefficient of variation, 
and histogram overlap. Most areas present high positive values with a 
mean SPAEF value of 0.53. In addition, most tested models demonstrate 
SPAEF larger than 0.4, indicating high spatial similarity with UNH- 
GRDC runoff reference data. Among the models, LPJmL and WAYS 
have the best performance, while CLM4, MATSIRO, and WaterGAP2 

Fig. 3. Comparisons of the simulated monthly runoff time series by ISIMIP2a models with the UNH-GRDC runoff reference data during 1986–1995: (a) time series of 
the simulated runoff and (b) probability of exceedance of model simulated monthly runoff. The solid black line represents UNH-GRDC runoff reference data, the solid 
blue line represents the model ensemble mean, and the dashed lines represent ISIMIP2a model simulations. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Evaluation of the ten selected models’ performance against the UNH-GRDC runoff reference data based on the (a) target diagram, (b) radar diagram, and (c) 
Taylor diagram during 1986–1995. The target diagram shows relative bias and normalized root mean square difference; the radar diagram shows the Nash-Sutcliffe 
efficiency; and the Taylor diagram shows the correlation coefficient, normalized standard deviation of errors, and centered root mean square difference. 

Fig. 5. Spatial efficiency (SPAEF) metric of (a) the model ensemble mean and (b-k) ISIMIP2a models during 1986–1995: (b) CLM4, (c) DBH, (d) H08, (e) LPJmL, (f) 
MATSIRO, (g) MPI-HM, (h) PCR-GLOBWB, (i) VIC, (j) WaterGAP2 and (k) WAYS. The mean SPAEF of all rasters is given in the lower left corner of each map. 
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demonstrate relatively low SPAEF, primarily located at the lower basin. 
Overall, the above model evaluations reveal that the model ensemble 

mean outperforms the individual models for replicating monthly time 
series, seasonal cycles, and runoff at different return periods. Further-
more, the model ensemble mean is capable of modeling variability in the 
runoff time series, and shows the best spatial correlation with the UNH- 
GRDC runoff reference data. Therefore, the model ensemble mean is 
used to analyze runoff regime changes in the LMRB, and then the model- 
associated uncertainties are quantified based on the ten model simula-
tions in the following sections. 

3.2. Overall runoff regime changes on the basin scale 

The MAR changes from the ten GHMs for 1971–2010 are depicted in 
Fig. 6a. The spread of the MAR simulations from the ten models in-
dicates uncertainties in the model simulations. However, they show 
similar variabilities over the years. Based on the model ensemble mean, 
the annual MAR in the LMRB shows high interannual variability with an 
average annual value of 655 mm/yr. Over the study period, the 
ensemble mean MAR was of low value in 1977 (498.78 mm/yr) and 
1998 (509.86 mm/yr), while it was of high value in 1978 (792.02 mm/ 
yr) and 2000 (867.15 mm/yr). Overall, the MAR slightly increased by 
52.61 mm (8.03%, p greater than 0.05) from 1971 to 2010. 

Fig. 6b depicts the estimated changes in the seven hydrological in-
dicators from the ten GHMs for the LMRB in 1971–2010. Based on the 
multi-model simulation, all hydrological indicators demonstrate 
increasing change trends for the LMRB, except for MIN7 and Q95 in-
dicators. Models also show relatively high agreements for change trend 
detections of MAR, MAX7, Q5, and Rwet indicators. The highest model 
agreement is observed for the MAR trend detection, with the smallest 
spread range among the model estimates. In contrast, large uncertainties 
in model estimates are observed for change trend detections of low 
runoff values (MIN7 and Q95) and Rdry. The Rdry, in particular, ranged 
from 7.58% to 34.91%. 

Overall, the model ensemble mean based estimates indicate that 
runoff in the LMRB had insignificantly increased during 1971–2010 in 
terms of low flows, high flows, MAR, and runoff in both dry and wet 
seasons. The change in the high flow, including MAR (8.14%), MAX7 
(8.46%), and Q5 (8.03%), all exhibit insignificant increasing trends. The 
modeled low flow (MIN7 and Q95) has the lowest increasing ratio of the 
2.23% and 1.67%, respectively. Runoff during the dry season shows the 
most significant increase (17.74%, p > 0.05), while runoff during the 
wet season increases slightly (approximately 6.24%, p > 0.05). 

3.3. Spatial patterns in runoff changes and uncertainties 

Fig. 7 illustrates the spatial patterns of change trends based on the 

model ensemble mean of MAR, low flow (MIN7 and Q95), and high flow 
(MAX7 and Q5) during 1971–2010. The spatial distribution of trend in 
MAR (Fig. 7a) is characterized by a prominent gradient from the upper 
and lower basin to the middle basin, with a strong increasing trend in the 
upper and lower basin that contradicts a predominantly decreasing 
trend in the middle basin and within a small region of the lower basin. 
The trends in high flow (Fig. 7c,e) exhibit broadly similar patterns to the 
trends in MAR, with significant positive trends in the lower basin. The 
trends in low flow (Fig. 7b,d) have more prominent negative trends 
evident in the middle and lower basins (but with lower local variability), 
which are slightly different from those of other hydrological indicators. 
In addition, the models demonstrate a general consistent trend detection 
for MAR, MAX7, and Q5 at most of the region. All the models show 
similar trends of the model ensemble mean (both positive and negative). 
However, there are more noticeable inconsistencies between the model 
estimates of MIN7 and Q95, and the disagreement among models is 
widespread across the upper and lower basin. Overall, the model sim-
ulations of runoff show a significant difference in spatial distribution, 
with better and more consistent performance in MAR and high runoff 
(MAX7 and Q5) than the low runoff (MIN7 and Q95). 

Fig. 8 depicts the uncertainties associated with the model trend 
detection to evaluate the model consistency among the models further. 
As all models are driven by the same climate forcings, the uncertainties 
are only related to differences between the model structures and pa-
rameters. The uncertainty analysis of MAR indicates high agreements for 
estimating trend magnitudes across the basin, where the CV is lower 
than 50% for most regions (Fig. 8a). Grid cells with relatively high 
disagreement are sparsely distributed in the upper-most, middle, and 
lower-most areas. The models are strongly consistent when detecting the 
trend signal (Fig. 7a) in either positive or negative regions (Fig. 8k). For 
most areas, all models demonstrate the same change trend signal of the 
model ensemble mean, indicating the high performance of models in 
estimating the runoff. Although high consistency is observed in esti-
mating the MAR trend signal and magnitude, the SNR results also show 
that some regions (upper basin and the western part of the lower basin) 
have more significant inter-model variability than the ensemble mean, 
indicating a large spread in the runoff simulation among models 
(Fig. 8f). 

Uncertainties in high flow (Q5 and MAX7) are found to have 
generally similar patterns with the MAR in terms of CV and model 
agreements with the trend signal, even though the local variability 
differed slightly (Fig. 8c,e). There are large differences in the SNR be-
tween MAR and high flow (Fig. 8h,j). MAX7 demonstrates a high inter- 
model agreement in the runoff simulation across the entire basin, except 
for a small region in the upper and lower basin. In contrast, Q5 generally 
demonstrates a low inter-model agreement within the LMRB, and only a 
few middle and lower basin areas exhibit lower uncertainties. However, 

Fig. 6. Time series of changes in MAR and box-whiskers of changes in the seven hydrological indicators in the LMRB during 1971–2010: (a) MAR time series showing 
the change trend; (b) The box-whiskers represent the 25th, 50th, and 75th percentiles of the distribution in changes for each hydrological indicator (all the trends are 
not significant). 
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the low flow (Q95 and MIN7) clearly shows different patterns compared 
to MAR and high flow for all the agreement metrics (Fig. 8b,d,g,i,l,n). 
There were large disagreements in the runoff simulations between the 
models over the entire basin, with the CV value larger than 200% and 
the SNR value lower than 1. In addition, the number of models that are 
consistent with the trend in the model ensemble mean is less at low flow 
than at high flow (Fig. 8l,n). Overall, MAR, MAX7 and Q5 exhibit high 

consistency and low uncertainties between the models, indicating that 
the model estimates of the annual runoff and high flow changes are more 
accurate. However, MIN7 and Q95 express relatively low consistency 
and high uncertainties among the models. 

Fig. 7. Spatial distribution of change trends in five hydrological indicators based on the model ensemble mean from ten selected models in the LMRB during 
1971–2010: (a) mean annual runoff, (b) annual 7-day minima runoff, (c) annual 7-day maxima runoff, (d) 95th percentile runoff, and (e) 5th percentile runoff. 

Fig. 8. Uncertainties in multi-model runoff trend detection quantified by (a-e) the coefficient of variation (CV) and (f-j) signal-to-noise ratio (SNR), and (k-o) the 
number of models that agree with the same trend as the model ensemble mean. The hydrological indicators include the mean annual runoff (MAR, a, f, k), annual 7- 
day minima runoff (MIN7, d, g, l), annual 7-day maxima runoff (MAX7, c, h, m), 95th percentile runoff (Q95, b, i, n), and 5th percentile runoff (Q5, e, j, o). To 
facilitate a comparison between the different uncertainty indicators, brown indicates low consistency and large uncertainty and cyan indicates high consistency and 
small uncertainty. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.4. Runoff changes in dry and wet seasons 

Strongly influenced by the Indian monsoon and the East Asian 
monsoon, the LMRB has distinct dry and wet seasons (Pokhrel et al., 
2018a). Therefore, the runoff change trend is also investigated in the 
LMRB for the dry and wet seasons. The model ensemble mean shows that 
runoff has increased by 6.04% in the wet season and 16.6% in the dry 
season. The runoff change trend detection of individual models is 
depicted in Fig. 9. All models demonstrate increasing runoff trends in 
dry and wet seasons but with different magnitudes. The runoff trends 
simulated by the models ranged from 3% to 9.83% in the wet season, 
and 7.58% to 34.91% in the dry season. Among the ten models, only 
PCR-GLOBWB demonstrates a significant increasing trend in the dry 
season, which is insignificant for other models. Additionally, the esti-
mated monthly average runoff varied from 70.85 mm/month to 132.22 
mm/month in the wet season, between 13.49 mm/month and 40.22 
mm/month in the dry season. 

Spatially, the runoff changes in the wet and dry seasons demonstrate 
similar patterns throughout the basin, except for some small areas in the 
middle and lower basin (Fig. 10a,b). In the dry season (Fig. 10b), the 
areas in the middle basin that demonstrate a decreasing trend are 
considerably more prominent than in the wet season, and the magnitude 
of the trend is also relatively higher. In the center of the lower basin, 
increasing runoff trends are observed in the dry season (Fig. 10b), and 
opposite decreasing trends are observed in the wet season (Fig. 10a). 
The increasing trend in the dry season is significant in larger areas than 
in the wet season. The results also show high model consistency for the 
trend signal in both dry and wet seasons, as shown by the grid cells with 
the box. 

The LMRB has experienced droughts and floods in recent decades 
(Pokhrel et al., 2018b). The increases and decreases in runoff in the wet 
and dry seasons, respectively, enhance the wet and dry conditions in the 
region. Fig. 10c highlights the areas with different change patterns, 
identified by investigating the spatial characteristics of runoff changes in 
the dry and wet seasons. In general, 30% of the area within the basin 
becomes drier in the dry season (red and yellow pixels in Fig. 10c). On 
the other hand, about 70% of the area becomes wetter in the wet season 
(green and blue pixels in Fig. 10c). 17% of the region (yellow pixels in 
Fig. 10c) suffers from both situations and becomes drier in the dry 
seasons and wetter in the wet seasons. Furthermore, some areas 
exhibited decreased runoff in the wet season and increased runoff in the 
dry season (green pixels in Fig. 10c). 

4. Discussion 

This study examines the runoff changes in the LMRB for 1971–2010 
using ten hydrological models from the ISIMIP. Different indicators are 

applied to provide a deeper analysis of the historical runoff regime 
change and uncertainties relating to the multi-model simulations. 
Overall, model evaluations show that all models could replicate the 
temporal and spatial variability of the reference runoff well (Figs. 2-4). 
Regarding temporal variability, WAYS, PCR-GLOBWB, and CLM4 have 
the best performance among the models (Figs. 3, 4). For spatial vari-
ability, LPJmL and WAYS are the best, with high correlation, coefficient 
of variation and histogram overlap with the reference data (Fig. 5). As 
the same climate forcings drive all models, these varied performances 
can be related to the differences between the model structures and pa-
rameters, i.e., snowmelt scheme, evapotranspiration scheme, number of 
soil layers, etc. (Chen et al., 2021; Gudmundsson et al., 2012). However, 
the uncertainty in climate forcing should not be neglected, which 
introduced uncertainty in the simulation outputs (Biemans et al., 2009). 
Furthermore, the low spatial performance in the areas close to the es-
tuary may be sourced from the missing effects of interactions between 
sea and river, which could significantly influence the hydrological 
processes (Chen et al., 2021; Pokhrel et al., 2018). Generally, there is 
lower variability among the models for mean and high flow than low 
flow (Fig. 8), suggesting higher uncertainty when simulating trends 
under dry conditions. These results are consistent with Zaherpour et al. 
(Beck et al., 2017), who evaluated extreme runoff simulations by six 
hydrological models in most basins worldwide, including the LMRB. 
Such uncertainty may be attributed to low flow being more sensitive to 
model structure and parameters than other uncertainty sources (Chen 
et al., 2021; Zaherpour et al., 2018). Our results also reveal that the 
model ensemble mean outperforms the individual models for replicating 
the reference runoff data at both temporal and spatial scales (Figs. 3-5); 
similar results are found in previous model evaluations (e.g., Chen et al., 
2021; Gudmundsson et al., 2012), which may be due to the reduced 
uncertainties of the different model structures and parameterizations 
when averaging the model outputs (Reichler and Kim, 2008). 

Regarding the trend of runoff in the LMRB over the study period, the 
runoff trend is not significant on the basin scale. Still, it is significant in 
many areas, suggesting a highly spatially heterogenous runoff change 
across the LMRB. Although there is an insignificant positive trend in 
MAR of 8.03% on a basin scale (Fig. 6a), large areas in the middle basin 
have demonstrated negative trends of the mean, high and low flow 
(Fig. 7). This agrees with the study of Lu and Siew (2014), who found 
that the observed discharge in the station of Luang Prabang, located in 
the middle stream, has decreased since 1960. In addition, the center of 
the lower basin is another hotspot area with negative runoff trends. Such 
area with pronounced decreasing runoff trends was rarely reported in 
studies before Wang et al. (2020), who investigated the possible reasons 
for changes in inundation within the Tonle Sap Lake. They found that 
the significant decrease in the lake area since 2000 is mainly due to 
decreased precipitation in the middle basin. This area is consistent with 

Fig. 9. Runoff changes in (a) wet and (b) dry seasons for individual models during 1971–2010. The filled triangle shows that the trend is significant at the 0.05 
significance level. 
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the hotspot region identified in our study (Fig. 7). 
The sophisticated map of four different change situations in the basin 

(Fig. 10c) is crucial for enabling accurate water management practices 
in the LMRB. Approximately 70% of the region within the basin expe-
riences increased runoff during the wet season, mainly in the upper and 
lower basin. In the middle basin, the amount of runoff has declined in 
the dry season, thereby may push more local water stress, particularly 
for irrigation for agriculture (Lu et al., 2014). However, the basin with 
an increased runoff trend in the dry season can provide irrigation to 
crops and reduce the intrusion of Mekong Delta seawater in the basin, 
particularly in the dry season (Ziv et al., 2012). Our study also reveals 
that runoff in approximately 15% of the basin has increased in the dry 
season but declined in the wet season. In such regions, their water stress 
during dry periods and flood risk during wet periods may be alleviated. 
The Tonle Sap Lake located in this area is evident to experience reduced 
(increased) water surface in the wet (dry) season, which may have 
critical implications for the local fishery that is sensitive to the water 
level of Tonle Sap Lake (Chen et al., 2021; Wang et al., 2020). It is also 
important to note that 17% of the basin domain has become wetter in 
the wet season and drier in the dry season, which may increase local 
water management pressures, requiring attention for water crises. 

There are limitations to this study. First, the trends derived by 
models are forced by only one single dataset, implying that the un-
certainties associated with the input were not investigated. Moreover, 
this study is conducted using the period 1971–2010, and it is acknowl-
edged that any trend calculation depends strongly on the selection 
period, as highlighted in many previous studies. Thus, further work is 
required to investigate whether the relatively short period selected (40 
years in this study) is representative of variability in the long term. 
Furthermore, the current study focuses only on the change trends of 
historical runoff. A more comprehensive study that considers both 
human activities and climate change would thus be more beneficial for 
identifying the causes of changes in the runoff regime. 

5. Conclusion 

This study applies a multi-model framework to investigate historical 
temporal-spatial runoff regime changes in the LMRB during 1971–2010 
for the first time, and the spatial characteristics and uncertainties are 
also analyzed. The main conclusions can be summarized as follows:  

1. All ten models from ISIMIP2a can replicate the temporal and spatial 
patterns of the reference data but with different performances. The 

model ensemble mean outperforms the individual models for repli-
cating the reference runoff data at both temporal and spatial scales.  

2. The models better simulate the annual runoff and high flow changes 
than the low flow, with higher consistencies and lower uncertainties 
of the annual runoff and high flow between the models.  

3. The annual runoff in the LMRB shows an insignificantly positive 
trend (8.03%) during 1971–2010, with a higher increase of high flow 
(MAX7 (8.46%), and Q5 (8.03%)) than low flow (MIN7 (2.23 %), 
and Q95 (1.67%)).  

4. The runoff trend is spatially heterogeneous across the LMRB. The 
trends in high flow exhibit broadly similar spatial patterns to the 
annual runoff, with significantly increasing trends in the lower basin. 
On the other hand, the low flow shows prominent decreasing trends 
in the middle and lower basins.  

5. Considering the different runoff trends in the dry and wet seasons, 
about 32% (70%) of the basin became drier (wetter) in the dry (wet) 
season. Meanwhile, 17% of the basin experienced the dry season 
getting drier and the wet season getting wetter, which may increase 
local water management pressures. 

Overall, the novelty of this study lies in the compilation of detailed 
analysis of temporal-spatial changes in the mean, high, and low flows, 
and the identification of the corresponding uncertainties. Such a thor-
ough investigation of runoff regime changes provides crucial informa-
tion for water resource management and risk mitigation in the LMRB. 
However, uncertainty analyses further suggest that attention should be 
paid when interpreting the results when cross-model consistency is low. 
Therefore, subsequent studies focusing on runoff should also consider 
areas with relatively large uncertainties. 
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Fig. 10. Spatial distribution of runoff trends in (a) wet and (b) dry seasons based on the model ensemble mean during 1971–2010. Grid cells with diagonal lines 
indicate significant trends at the 0.05 significance level, and boxes with pixels indicate that all the models shared the same trend signal as the model ensemble mean. 
Runoff regime change in the LMRB from 1971 to 2010 based on four different change situations (c): (1) wetting in the dry and wet seasons, (2) drying in the wet 
season and wetting in the dry season, (3) wetting in the wet season and drying in the dry season, and (4) drying in the dry and wet seasons. 
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