
1. Introduction
It has been known that variations in the micro-scale flow velocities affect the macro-scale transport properties and 
give rise to the phenomenon of hydrodynamic dispersion (Bear, 1988). However, the upscaling of non-Fickian 
transport on complex geometries remains a matter of intense investigation. Dissolved substances are transported 
in porous media at the pore-scale due to advection and molecular diffusion. Molecular diffusion is dominant at 
the small scale and at regions with very low fluid flow velocities. It is the key mechanism for solute trapping in 
stagnant regions. At the same time, the advective transport is strongly influenced by spatial medium heteroge-
neity (Berkowitz et al., 2016; de Anna et al., 2014; Dentz et al., 2011; Valocchi et al., 2019) and complex phases 
(e.g., water and air) distribution (De Gennes, 1983; Perez et al., 2021). Moreover, the interaction between struc-
tural heterogeneity (originating from both intrinsic heterogeneity and the phases distribution) and small-scale 
flow dynamics induce complex flow patterns with an impact on solute transport (Bunsri et  al.,  2008; Hasan 
et al., 2020; Toride et al., 2003), controlling key aspects of transport of dissolved substances. Emerging transport 
behaviors such as long tails in solute breakthrough curves (BTC) and the non-linear evolution of dispersion, 
together with its dependence on the phase saturation degree (i.e., fraction of the pore volume [PV] occupied by 
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as well as chemical reactions. A continuous-time random walk (CTRW) framework that integrates the processes 
of advection, diffusion, and trapping in immobile zones is used to upscale and evaluate the transport of diluted 
solutes. Results of this model were compared to direct numerical simulations solving the advection-diffusion 
equation in experimental saturation patterns. The comparison between simulations results, with different 
Péclet numbers (Pe), and the physics-based upscaled CTRW approach allows for a quantitative analysis of the 
governing factors of transport in partially saturated porous media. This analysis shows that the fluid phase 
saturation decreases the advective tortuosity, the media's characteristic length, the fraction of the immobile 
region, and the mean trapping time. At the same time, for a given saturation degree, the normalized mean 
trapping time is proportional to the Pe. This suggests that the characteristic trapping length is proportional to 
the media's characteristic (correlation) length. Moreover, the trapping frequency decreases with increasing Pe.

Plain Language Summary Trapped air in the pore space of a porous medium (e.g., soil) causes a 
complex spatial water flow field. In turn, this spatial distribution of flow velocities, at the pore scale, induces 
irregular (termed non-Fickian) transport of dissolved substances (e.g., contaminants), causing an earlier arrival 
and longer tailing, which may have grave consequences in underestimating risk assessments and prolonged 
cleanup times of contaminated sites. Here, we suggest an integrated continuous time random walk (CTRW) 
modeling framework, which accounts for also the entrapping of particles in zones of low flow velocities, to 
estimate the resident times of solutes in the media. Furthermore, comparing the results of the CTRW model to 
a well-established numerical simulation method allows a phenomenological evaluation of the model's physical 
parameters for different conditions (i.e., volume of entrapped air, mean water flow rate, or solute molecular 
diffusion coefficient).
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the phase) and distribution, cannot be explained by the traditional advection-dispersion theory (Jiménez-Martínez 
et al., 2017; Raoof & Hassanizadeh, 2013).

Recent numerical simulations showed that the simultaneous occurrence of preferential flow paths (of high fluid 
flow velocities) and stagnation zones (of low fluid flow velocities or immobile) give rise to broader probability 
distributions of fluid flow velocities than in more homogeneous cases (Triadis et  al.,  2019; Velásquez-Parra 
et  al.,  2022), which, in turn, enhance solute dispersion and increase or decrease chemical reactivity 
(Jiménez-Martínez et al., 2020; Nissan & Berkowitz, 2019; Sole-Mari & Fernàndez-Garcia, 2018). From a point 
of view of the applications, this may impact on soil and groundwater remediation actions (De Marsily, 1986; 
Moreno & Paster, 2017).

In this work, we analyze isothermal non-reactive transport of dissolved substances during horizontal steady water 
flow in variably saturated porous media using the continuous-time random walk (CTRW) framework. Under 
these conditions, water and air can be regarded as immiscible and incompressible. Steady water flow through 
partially saturated media occurs naturally when air bodies are entrapped within the media by capillary forces or 
in the case of constant low flow rates driven by gravity or suction (e.g., transpiration or evaporation), or at large 
enough distances from a periodical source (Ben-Noah & Friedman, 2019). In this case, the water and air distri-
bution is stagnant, that is, the media properties vary spatially but are constant in time.

Travel time based approaches such as the CTRW framework account for the fact that the residence time of parti-
cles in low-velocity regions is longer than in the high-velocity regions and that the velocity varies in space on a 
characteristic length scale but not in time (De Josselin de Jong, 1958; Saffman, 1959; Scher & Lax, 1973). The 
CTRW approach models transport through spatio-temporal particle transition whose transition time distribution 
reflects the (broad) distribution of mass transfer times. This approach has been extensively used in different 
implementations for transport modeling in saturated media (Berkowitz et al., 2006; Delay et al., 2005; Noetinger 
et al., 2016). For transport in unsaturated media, CTRW models have been used as fitting approaches to adjust 
solute BTC (Bromly & Hinz, 2004; Bücker-Gittel et al., 2003; Cortis & Berkowitz, 2004; Zoia et al., 2010). 
Recently, the CTRW framework has been used for the interpretation and modeling of purely advective solute trans-
port in partially saturated media (Aquino & Velásquez-Parra, 2022; Cortis & Berkowitz, 2004; Velásquez-Parra 
et al., 2022) following the approach of Dentz et al. (2016) for the quantification of the evolution of Lagrangian 
flow and transport properties in spatial random flows. Dentz et al. (2018) suggested a predictive CTRW frame-
work integrating advection, diffusion, and trapping (in very low velocity and immobile regions) mechanisms 
for pore-scale transport in a saturated porous medium. Here, we adopt and adapt this framework to analyze and 
upscale solute transport in variably saturated porous media.

The paper is organized as follows. First, we introduce the experimental data and numerical models that are set as 
the basis for this work. Second, we present a step-by-step evolution of the integrated CTRW framework to predict 
macro-scale transport problems. Finally, we discuss on the relation between the physical model parameters for 
different saturation degrees and Péclet numbers (Pe).

2. Materials and Methods
In this section, we first describe the extraction of the saturation distributions corresponding to the experimental 
images from Jiménez-Martínez et al. (2017). Then, we pose the equations and boundary conditions governing 
pore-scale flow and transport. Finally, we describe the integrated CTRW framework for the interpretation of 
solute transport in partially saturated media.

2.1. Experimental Saturation Distribution and Image Processing

Media and phase distributions for different saturation degrees are obtained from the experimental work of 
Jiménez-Martínez et al. (2017). These authors conducted a set of multi-phase experiments of steady liquid (water 
and glycerol mixture) flow and solute transport in a hydrophilic millifluidic device also containing a stagnant gas 
(air) phase. Flow in the millifluidic device was controlled so that the phase distributions were not altered during 
the flow and transport experiments, that is, steady-state imbibing conditions were attained. The flow rates in the 
experimental setups correspond to a capillary number of about 3 ⋅ 10 −5, which is considered a capillary domi-
nated flow. Experimental images are processed using MATLAB R2021b to identify the grains, gas and liquid 
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regions and determine the effective flow domain and the effective saturation degree Se used for the numerical 
simulations and for the analysis below. The effective saturation degree Se is defined as the fraction of the porosity 
filled with the continuous and percolated liquid phase. The domain porosity in this study is fixed (ϕ = 0.72).

In this work we compare four effective saturation degrees, of Se = 1.00, 0.80, 0.73, and 0.65. Images of the 
medium at the different saturation degrees are presented in Figures 1a–1d in accordance. The connected liquid 
phase is in white, the unconnected liquid phase in red color. The gas phase and solid cylinders are in black. Here 
we treat the gas (air), solid and unconnected liquid phases similarly, as stagnant and inert media. The actual satu-
ration degrees corresponding to the images in Figure 1 are Sw = 1.00, 0.83, 0.77, and 0.71.

The image resolution is processed with a square pixel of 0.032 mm side length. The images do not include the 
entire original flow device and depict a flow domain of L = 105 mm (3,292 pixels) along the main flowing axis 
(x-axis) and width W = 70 mm (2,182 pixels).

2.2. Pore-Scale Flow and Solute Transport

Pore-scale flow and transport in the geometry within the phase distributions reported in the previous section are 
solved numerically using COMSOL Multiphysics (COMSO®, 2018). In the following, we describe the govern-
ing equations of pore-scale flow and transport and the corresponding boundary conditions.

2.2.1. Stokes Flow

The two-dimensional flow field is determined by solving the steady-state Stokes equation assuming incompress-
ible laminar flow

𝜇𝜇∇2
𝐮𝐮 − 12𝜇𝜇𝐮𝐮∕𝑏𝑏2 = ∇𝑝𝑝 (1)

∇ ⋅ 𝐮𝐮 = 0 

where u [L/T] is the flow velocity, μ [M/(L·T)] the liquid viscosity, b [L] the device height. The term −12μu/b 2 
in Equation  1 accounts for the viscous forces induced by the millifluidic device's top and bottom plates 
(Homsy, 1987). Constant inflow volumetric flux (qm) was imposed on the left boundary, constant pressure at 

Figure 1. Images of the porous medium at saturation (Sw) and effective saturation (Se) degrees of (a) Sw = Se = 1.00, (b) 
Sw = 0.83, Se = 0.80, (c) Sw = 0.77, Se = 0.73, and (d) Sw = 0.71, Se = 0.65. In black is the solid and gas phases, in white the 
connected liquid phase, and in red is the unconnected liquid phase that set the difference between Sw and Se.

 19447973, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033613 by Paul Scherrer Institut PSI, W

iley O
nline L

ibrary on [09/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

BEN-NOAH ET AL.

10.1029/2022WR033613

4 of 15

the outlet and no-slip boundary conditions at the liquid-solid and liquid-
gas interfaces. The value of the parameters for the numerical simulations 
are from Jiménez-Martínez et  al.  (2017) and summarized in Table  1. The 
linearity of the flow Equation 1 implies that viscosity has no impact on the 
flow velocities and transport but affects only the magnitude of fluid pres-
sure. Also, both pressure and velocity (normalized by their mean values) are 
independent of the fluid properties. However, these parameters, and also the 
wettability (surface tension and contact angle), would affect the phase distri-
bution in the experimental setup (Avraam & Payatakes, 1995), which is why 
they are reported here.

We determine the probability distribution of Eulerian flow speeds ue = |u|, 
denoted by pe(u), through areal sampling from the direct numerical flow 
simulations as

𝑝𝑝𝑒𝑒(𝑢𝑢𝑘𝑘) =

∑

𝑖𝑖
𝕀𝕀(𝑢𝑢𝑖𝑖, 𝑢𝑢𝑘𝑘)𝐴𝐴𝑖𝑖

Δ𝑢𝑢𝑘𝑘
∑

𝑖𝑖
𝐴𝐴𝑖𝑖

 (2)

where Ai is the area of the ith mesh element, and ui is the flow speed at the Gaussian point of the ith mesh element. 
The indicator function 𝐴𝐴 𝕀𝕀  is one if the velocity ui is within the uk ≤ ui < uk + Δuk interval or zero otherwise.

𝕀𝕀(𝑢𝑢𝑖𝑖, 𝑢𝑢𝑘𝑘) =

⎧

⎪

⎨

⎪

⎩

1, |𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑘𝑘| < Δ𝑢𝑢𝑘𝑘

0, |𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑘𝑘| > Δ𝑢𝑢𝑘𝑘

⎫

⎪

⎬

⎪

⎭

 (3)

where Δuk id the kth velocity bin.

The distributions 𝐴𝐴 𝐴𝐴𝑢𝑢𝑥𝑥 (𝑢𝑢) and 𝐴𝐴 𝐴𝐴𝑢𝑢𝑦𝑦 (𝑢𝑢) are defined accordingly. Furthermore, we consider the advective tortuosity χ, which 
measures the ratio of averaged trajectory length to the linear distance. χ accounts to the divergence of the streamline 
from the macroscopic flow direction. Thus, It can be calculated by the ratio of the mean flow speed 𝐴𝐴 𝑢𝑢𝑒𝑒 [L/T] and mean 
flow velocity (in the flow direction) 𝐴𝐴 𝑢𝑢 = 𝑞𝑞𝑚𝑚∕𝑆𝑆𝑒𝑒𝜙𝜙 (Koponen et al., 1996), where ϕ is the media's porosity

𝜒𝜒 =
𝑢𝑢𝑒𝑒

𝑢𝑢
. (4)

Note that in this work, we treat the effect of the stagnant gas (air) phase on the liquid phase as equivalent to the 
solid phase. However, some theoretical works (Avraam & Payatakes, 1995; Kalaydjian, 1990; Whitaker, 1985) 
suggested that the gas-liquid interface may have a different effect than the solid-liquid, namely due to signifi-
cant slip conditions at the gas-liquid interface. To analyze this effect, we compare two simulations with full-slip 
and no-slip conditions on the gas-liquid interface for the case Se = 0.65 and compute the respective probability 
density functions (pdfs) of velocity (shown in Figure S1a in Supporting Information S1) and BTC (shown in 
Figure S1b in Supporting Information S1). Both pdfs and BTCs are very similar, which is in accordance with 
results from others for example, (Guédon et al., 2019; Jiménez-Martínez et al., 2020; Markale et al., 2022; Triadis 
et al., 2019). This can be explained by the fact that the gas-liquid interface is restricted mainly to the junctions and 
dead-ends, where the velocities are very low. Therefore, and in the following, stagnant air will be treated in the 
same manner as the solid matrix (i.e., no-slip condition). It should be noted that for a more viscous non-wetting 
invading fluid (not the case of our evaluation), the assumption of no-slip condition may not hold (Lasseux & 
Valdés-Parada, 2022).

2.2.2. Solute Transport

The transient transport of a dissolved substance is simulated using the advection-diffusion equation

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ⋅ ∇𝜕𝜕 −𝐷𝐷∇2𝜕𝜕 = 0, (5)

where c [M/L 3] is the solute concentration, t [T] is time, and D [L 2/T] is the molecular diffusion coefficient (in 
a free phase). Constant concentration c0 is prescribed at the inlet, and D∇c ⋅ n = 0 at the outlet, where n is the 
unit vector normal to the outflow boundary. Zero flux boundaries are specified at the liquid-solid and liquid-gas 

Table 1 
Domain Dimensions and Parameters Used in the Experiments 
(Jiménez-Martínez et al., 2017) and the Numerical Simulations

L Domain length 0.105 m

W Domain width 0.07 m

b Millifluidic device thickness 5 ⋅ 10 −4 m

ϕ Domain porosity 0.72 m 3/m 3

ρ Liquid density 1,099 kg/m 3

μ Liquid viscosity 3.7 ⋅ 10 −3 Pa⋅s

qm Prescribe flux 7.9 ⋅ 10 −6 m/s

σ Surface tension 6.9 ⋅ 10 −6 N/m

θ Contact angle 30°
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interfaces. The initial concentration in the domain is equal to zero. Next, we define two characteristic transport 
time scales. The advection time τu [T] measures the mean advection time over the characteristic length scale λ [L]

𝜏𝜏𝑢𝑢 =
𝜆𝜆

𝑢𝑢𝑒𝑒
, (6)

where 𝐴𝐴 𝑢𝑢𝑒𝑒 [L/T] is the mean Eulerian speed. The length scale λ is discussed below (in Section 2.3.1). Furthermore, 
we define the characteristic diffusion time τD [T] over the distance λ as,

𝜏𝜏𝐷𝐷 =
𝜆𝜆2

2𝐷𝐷
. (7)

The ratio between τD and τu defines the Péclet number

𝑃𝑃𝑃𝑃 =
𝑢𝑢𝑃𝑃𝜆𝜆

𝐷𝐷
. (8)

Transport scenarios are uniquely defined in terms of Pe, that is, increasing D has the same effect on transport 
as decreasing flow rate. In the numerical simulations, we use three values for D: 1.5 ⋅ 10 −11, 1.5 ⋅ 10 −10, and 
1.5 ⋅ 10 −9 m 2/s; which are 0.1, 1, and 10 times the value used in Jiménez-Martínez et al. (2017).

Transport was analyzed in terms of the concentration BTCs at different control planes (x-direction). They were 
evaluated at each time step as the complementary normalized mean mass flux at the control plane

𝐵𝐵𝐵𝐵𝐵𝐵 = 1 −
∫

𝑊𝑊

0
𝑑𝑑𝑑𝑑 𝑑𝑑(𝑥𝑥𝑥 𝑑𝑑𝑥 𝑥𝑥)𝐮𝐮(𝑥𝑥𝑥 𝑑𝑑) ⋅ 𝐧𝐧

𝑑𝑑0 ∫
𝑊𝑊

0
𝑑𝑑𝑑𝑑 𝐮𝐮(𝑥𝑥𝑥 𝑑𝑑) ⋅ 𝐧𝐧

. (9)

In order to analyze the breakthrough behavior, we also consider the classical advection-dispersion approach. In 
this framework, the evolution of the average concentration 𝐴𝐴 𝑐𝑐  follows

𝜃𝜃𝑒𝑒
𝜕𝜕𝑐𝑐

𝜕𝜕𝜕𝜕
+ 𝑢𝑢𝜃𝜃𝑒𝑒

𝜕𝜕𝑐𝑐

𝜕𝜕𝜕𝜕
−𝐷𝐷ℎ

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
= 0, (10)

where 𝐴𝐴 𝑢𝑢 is the mean flow velocity, which is aligned with the x–direction of the coordinate system, Dh [L 2/T] is the 
hydrodynamic dispersion coefficient, θe = Seϕ is the effective water content. For a constant solute injection over 
the full width of the medium 𝐴𝐴

(

𝑐𝑐(0, 𝑦𝑦, 𝑦𝑦) = 𝑐𝑐0
)

 the complementary cumulative BTC at a distance x from the source 
is given by (Lapidus & Amundson, 1952; Van Genuchten, 1982)

𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴 = 1 −
1

2

[

erfc

(

𝑥𝑥 − 𝑢𝑢𝑢𝑢
√

4𝐴𝐴ℎ𝑢𝑢∕𝜃𝜃𝑒𝑒

)

+ exp

(

𝑢𝑢𝑥𝑥

𝐴𝐴ℎ∕𝜃𝜃𝑒𝑒

)

erfc

(

𝑥𝑥 + 𝑢𝑢𝑢𝑢
√

4𝐴𝐴ℎ𝑢𝑢∕𝜃𝜃𝑒𝑒

)]

. (11)

2.3. Integrated Lagrangian CTRW Framework

In this paper, we adopt the integrated CTRW framework of Dentz et al. (2018) to interpret and quantify solute 
BTC in partially saturated media. The integrated 1D Lagrangian CTRW framework models the transport of solute 
particles that move along a streamline with a random transition time (duration, τ [T]) over a characteristic length 
λ [L]. In this framework the position xn and time tn of a solute particle (or parcel) along the mean flow direction 
after n + 1 steps are

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝜉𝜉𝑛𝑛, 𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 + 𝜏𝜏𝑛𝑛 (12)

The spatial step ξn [L] may be positive or negative, that is, down- or up-stream, depending on the advection and 
diffusion conditions. While particles transitions along their trajectories are made on a characteristic length (λ), 
the transition length |ξn| = λ/χ accounts for the streamline (advective) tortuosity (χ). The transition time τn depends 
on the pore-scale advection and diffusion mechanisms and is defined below. For example, for purely advective 
transport, it is given by the correlation length and the particle speed.

The breakthrough time τL at a control plane located at a streamwise position x = L is given by
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𝜏𝜏𝐿𝐿 =

𝑁𝑁𝐿𝐿
∑

𝑗𝑗=1

𝜏𝜏𝑗𝑗 , (13)

where NL is the number of random walk steps to reach the control plane. The BTC is given by

𝐵𝐵𝐵𝐵𝐵𝐵 = ⟨𝐻𝐻(𝜏𝜏𝐿𝐿 − 𝑡𝑡)⟩, (14)

where the angular brackets denote the average over all particles, and H(t) is the Heaviside step function. Details 
on the model derivation are given in Dentz et al. (2018). The model was implemented here in MATLAB. In the 
following, we summarize the key elements of the model.

2.3.1. Purely Advective Transport–CTRW a

We first consider the representation of purely advective transport in this framework. In this case, the transition 
time τn is equal to the advection time over the distance λ,

𝜏𝜏𝑛𝑛 ≡ 𝜏𝜏𝑢𝑢𝑛𝑛 =
𝜆𝜆

𝑢𝑢𝑛𝑛
, (15)

where un is the particle speed at the nth random walk step. The particle speeds are modeled as independent iden-
tically distributed random variables whose distribution is denoted by ps(u). The transition length λ denotes the 
length scale at which subsequent speeds decorrelate, or in other words, the speed correlation length. The distri-
bution ps(u) is related to the probability distribution pe(u) of Eulerian flow speeds through the speed-weighting 
relationship (Dentz et al., 2016)

𝑝𝑝𝑠𝑠(𝑢𝑢) =
𝑢𝑢𝑝𝑝𝑒𝑒(𝑢𝑢)

𝑢𝑢𝑒𝑒
. (16)

This relation can be rigorously derived based on volume conservation using the Reynolds theorem. It can be qual-
itatively understood as follows. The Eulerian speed pdf is obtained by volumetric sampling of the Eulerian speed, 
that is, it gives more weight to low than to high speeds because low speeds have a wider streamtube. The equidistant 
sampling of the Lagrangian speed weights all velocities equally, which is compensated for by the flux-weighting 
relationship. Note that at the extreme case of a zero velocity the weighted probability is also zero, which can be 
explained by the fact that a particle can not advectively enter an area where there is no velocity. Relation 16 has 
been confirmed numerically for pore and Darcy scale flows (Hakoun et al., 2019; Puyguiraud et al., 2019).

The transition length λ is related to the medium geometry, that is, the non-flowing matrix and the flow organ-
ization, and is related to the scale of heterogeneity. For example, for saturated homogeneous media, λ is of the 
order of the average pore size (Puyguiraud et al., 2019). For unsaturated media, λ is expected to increase with the 
reduction of the effective phase saturation (Se) because of the emergence of irregular air clusters and preferential 
flow.

The arrival time due to advection only is given by

𝜏𝜏𝑎𝑎
𝐿𝐿
=

𝑁𝑁𝑎𝑎
𝐿𝐿

∑

𝑛𝑛=1

𝜏𝜏𝑢𝑢𝑛𝑛 + 𝜏𝜏𝑢𝑢𝑅𝑅 . (17)

where the superscript a denotes advective. The number of steps 𝐴𝐴 𝐴𝐴𝑎𝑎

𝐿𝐿
 is determined by the requirement that 

𝐴𝐴 ⟨𝜏𝜏𝐿𝐿⟩ ≡ 𝜏𝜏𝑚𝑚 = 𝐿𝐿𝐿𝐿∕𝑢𝑢𝑒𝑒 . Here 𝐴𝐴 𝐴𝐴𝑎𝑎

𝐿𝐿
= ⌊𝐿𝐿𝐿𝐿∕𝜆𝜆⌋ , where the notation ⌊⋅⌋ stands for the floor function, and 𝐴𝐴 𝐴𝐴𝑢𝑢𝑅𝑅 is the tran-

sition time over the residual increment 𝐴𝐴
(

𝐿𝐿𝐿𝐿 − 𝜆𝜆𝜆𝜆𝑎𝑎

𝐿𝐿

)

 .

2.3.2. Advective-Diffusive Transport–CTRW m

For advective-diffusive transport, the transition time τn at step n is defined as the harmonic sum of the advective 
𝐴𝐴

(

𝜏𝜏𝑢𝑢𝑛𝑛

)

 and diffusive (λ 2/2D) transition times (Dentz et al., 2018)

𝜏𝜏𝑛𝑛 =
1

1∕𝜏𝜏𝑢𝑢𝑛𝑛 + 2𝐷𝐷∕𝜆𝜆2
. (18)

If un is much larger than D/λ, the transition time is approximately equal to the advective transition time. If 
un ≪ D/λ it is approximately equal to the diffusion time τD. Note that as an extension of the purely advective 
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CTRW, this approach quantifies the impact of diffusion on transport along a streamline. It does not account for 
diffusion into stagnant regions perpendicular to the streamlines. This effect is quantified in the next section.

The arrival time due to advective-diffusive transport is given by

𝜏𝜏𝑚𝑚
𝐿𝐿
=

𝑁𝑁𝑚𝑚
𝐿𝐿

∑

𝑗𝑗=1

1

1∕𝜏𝜏𝑢𝑢𝑛𝑛 + 2𝐷𝐷∕𝜆𝜆2
, (19)

where the superscript m denotes mobile, in contrast to trapped, which we consider in the next section. Also for 
advective-diffusive transport, the mean transition time 𝐴𝐴 ⟨𝜏𝜏𝑚𝑚

𝐿𝐿
⟩ = 𝐿𝐿𝐿𝐿∕𝑢𝑢𝑒𝑒 because in average, diffusive transitions 

cancel out. However, the number of steps to reach the control plane 𝐴𝐴 𝐴𝐴𝑚𝑚

𝐿𝐿
 increases with upstream steps due to 

diffusion. Using Equations 18 and 19, we obtain

⟨𝜏𝜏𝑚𝑚
𝐿𝐿
⟩ = 𝑁𝑁𝑚𝑚

𝐿𝐿

𝜆𝜆

𝑢𝑢𝑒𝑒

∞

∫
0

𝑑𝑑𝑢𝑢′
𝑢𝑢′�̂�𝑝𝑒𝑒(𝑢𝑢′)

𝑢𝑢′ + 2∕𝑃𝑃𝑒𝑒
, (20)

where 𝐴𝐴 𝐴𝐴𝐴𝑒𝑒(𝑢𝑢′) is the pdf of 𝐴𝐴 𝐴𝐴′ = 𝐴𝐴∕𝐴𝐴𝑒𝑒 . For the flow and transport scenarios under consideration here, Pe ≥ 10 2, the 
relative error of using 𝐴𝐴 𝐴𝐴𝑚𝑚

𝐿𝐿
= 𝐴𝐴𝑎𝑎

𝐿𝐿
 approximation is less than 4%. If one considers a soil with water content of 0.3 

and a characteristic length of 1 cm, than a Pe of 100, for Chloride (D = 10 −9 m 2/s), means a flux of about 1 cm/hr 
which is not very uncommon in terms of rain intensity, infiltration in recharge basins, or even during irrigation, 
locally close enough to the source.

2.3.3. Advective-Diffusive Transport and Trapping–CTRW i

In partially saturated media, the flow domain is characterized by relatively wide regions of low velocity such 
as dead-ends or narrow water films near the grains of an air invaded pore. During transport in complex media, 
particles may get entrapped in these regions, causing long tailed BTC characteristic of non-Fickian transport 
(Gjetvaj et al., 2015; Liu & Kitanidis, 2012). Following Dentz et al. (2018), the trapping events are assumed to 
occur at a constant frequency γ [1/T]. This implies that the number nt of trapping events that occur during a time 
t is Poisson distributed

𝑝𝑝𝑛𝑛(𝑛𝑛|𝑡𝑡) =
(𝛾𝛾𝑡𝑡)𝑛𝑛

𝑛𝑛!
exp(−𝛾𝛾𝑡𝑡). (21)

The average number of trapping events during the mobile arrival time 𝐴𝐴 𝐴𝐴𝑚𝑚
𝐿𝐿

 is then given by 𝐴𝐴 ⟨𝑁𝑁𝜏𝜏𝑚𝑚
𝐿𝐿
⟩ = 𝛾𝛾𝜏𝜏𝑚𝑚

𝐿𝐿
 . The trap-

ping time τf, that is, the amount of time a particle gets entrapped in the immobile regions can be determined as 
the escape time distribution of a diffusing particle. It is approximated here by the exponential distribution (Dentz 
et al., 2018)

𝑝𝑝𝑓𝑓 (𝑡𝑡) =
exp(−𝑡𝑡∕⟨𝜏𝜏𝑓𝑓 ⟩)

⟨𝜏𝜏𝑓𝑓 ⟩
. (22)

The ratio β of the immobile and mobile volume fractions is given by (Dentz et al., 2018)

𝛽𝛽 = 𝛾𝛾⟨𝜏𝜏𝑓𝑓 ⟩. (23)

The volume fraction of immobile regions is expected to decrease with the saturation degree (Sw and Se).

With these preparations, we can now write the arrival time τL due to advective-diffusive transport and diffusion 
into dead-end zones can be written as

𝜏𝜏𝐿𝐿 = 𝜏𝜏𝑚𝑚
𝐿𝐿
+

𝑛𝑛𝜏𝜏𝑚𝑚
𝐿𝐿

∑

𝑖𝑖=1

𝜏𝜏𝑓𝑓𝑖𝑖 . (24)

The BTC is then given by expression 14. The long-time behavior of the BTC is given by the exponential (Dentz 
et al., 2018)

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜏𝜏𝑚𝑚𝛾𝛾exp(−𝑡𝑡∕⟨𝜏𝜏𝑓𝑓 ⟩). (25)
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This relation allows to estimate the trapping rate γ and the mean trapping time 〈τf〉 from the long-time tails of the 
BTC. The dependence of γ and 〈τf〉 on Se and D are discussed in the next section.

3. Results and Discussion
As discussed in the previous section, we use the micro-scale flow characteristics to construct a predictive 
macro-scale transport model. In addition to the velocity pdfs, the media are described by the characteristic length 
λ, the trapping frequency γ and the mean trapping time 〈τf〉. Notice that γ and 〈τf〉 are functions of both Se and D 
while λ is a function of Se only. In the following, we first study the impact of the saturation degree on the velocity 
distribution and advective tortuosity. Then, we discuss the solute BTC at different saturation degrees in the light 
of the upscaled integrate CTRW i model for different Péclet numbers. The length scale λ is determined by adjust-
ing the purely advective CTRW a model to the intermediate time behaviors of the BTCs at high Pe. The trapping 
rate and trapping time are determined from the tail behavior using relation 25. Finally, we discuss the dependence 
of the model parameters on saturation and Péclet number.

3.1. Velocity Statistics

In this section, we discuss the results of steady liquid flow for different saturation degrees. The effect of the 
stagnant gas (air) phase on the spatial distribution of liquid flow velocity is not trivial. In fully saturated gran-
ular media the liquid phase flows in most of porous domain and preferential pathways prevails mainly in cases 
of correlated large pores (e.g., cracks). However, in partially saturated media, there are several counteracting 
mechanisms. On the one hand, capillary forces drive the water into the smaller pores, and in turn, air is driven to 
the larger pores, which forces water to flow in narrower paths (of greater resistance). This effect is expected to 
increase χ and to decrease water flow velocity variability. On the other hand, stagnant air generates dead-ends, 
which are areas of very low water velocity, thus significantly reducing the effective cross-section for the liquid 
flow, causing high velocity in the remaining paths, thus decreasing χ and increasing water velocities variability.

3.1.1. Velocity Distribution

The different variability of liquid flow velocities for two saturation degrees is illustrated in Figure 2. Results 
showing the relatively uniform water flow velocity distribution in saturated (Figure 2a), and the velocities varia-
bility and preferential pathways of the partially saturated (Figure 2b) media, suggest that the formation of dead-
ends has a much more significant effect than the closing of preferential pathways, even for low Ca (3 ⋅ 10 −5). In 
this context, it should be mentioned that the average Ca may not be a good quantifier of the micro-scale interplay 
between the viscous and capillary forces, that is, that viscous forces may locally dominate in the pore-scale pref-
erential pathways (Tang et al., 2019). The fact that the pore-scale velocities are distributed implies that the local 
capillary number is distributed itself. Its distribution is in fact similar to the water velocity distribution. The flow 
pattern and therefore the water velocity distribution is a result of the interaction between viscous and capillary 
forces, and therefore depends on the driving force. These effects will be studied elsewhere.

A noticeable velocity variability can be observed at the intra-pore scale (zoomed insets in Figure 2) for both the 
fully and partially saturated cases. This flow velocity variability for different saturation degrees are manifested 

Figure 2. Flow velocity field for (a) fully saturated and (b) effective saturation degree of 0.73. The velocities were calculated 
using COMSOL Multiphysics with the parameters described in the numerical simulation section and Table 1.
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in the velocity probability density functions shown in Figure 3. The veloc-
ity distributions p(u) in Figure  3a are similar to those obtained by Perez 
et al. (2021) and Velásquez-Parra et al. (2022), for these same images. They 
separately demonstrate the fundamental effect of the trapped air on the flow 
behaviors. Both the fraction of small velocities and the magnitude of the 
maximum velocity increase with the reduction of Se (Figure 3a). For the satu-
rated case, the pdf of ux has a clear bias toward positive values (Figure 3b). 
In contrast, the fraction of the counter direction flow is much larger in the 
partially saturated media.

Interestingly, the magnitude of the maximum velocity in x–direction is of 
the same order of magnitude as in y–direction (Figure 3c). The symmetry 
of the flow in the perpendicular (y-axis) velocity increases with the increase 
in saturation degree, that is, the absolute value of the sum of the velocities 
trajectories on the y-axis (|Σuy|) decreases with increasing Se (not presented). 
In these cases, the sum of uy is very small (two order of magnitude smaller) 
compared to 𝐴𝐴 𝑢𝑢 . However, this effect may suggests that a larger device (repre-
sentative elementary volume [REV]) may be needed to account for lower 
saturation degrees. This statement is also supported by the effect of Se on λ as 
discussed in the next subsection.

3.1.2. Tortuosity

The dependence of the advective tortuosity χ, given by Equation 4, on the 
effective saturation degree Se is depicted in Figure  4. We observe that χ 
decreases with increasing Se. This dependence can be approximated by the 
power-law 𝐴𝐴 𝐴𝐴 = 1.1𝑆𝑆−0.6

𝑒𝑒  . As mentioned above, the effect of entrapped air on 
χ is dichotomous, on one hand the stagnant air phase decreases the effective 
cross-section, while on the other hand it increases the structural tortuosity. 
The latter, also termed diffusive tortuosity (χD) (Ghanbarian et al., 2013), is 
defined as the ratio between the product of the molecular diffusion D and 
effective water content θe and the effective molecular diffusion coefficient De 
(i.e., by χD = θeD/De). De can be evaluated by Fick's law as the steady diffu-
sive flux obtained under a unit concentration gradient (for no flow condi-
tions in Equation 5, where Dh reduces to De). The effect of Se on the struc-
tural tortuosity, is commonly described with a power-law (i.e., Archie's law 
(Archie, 1942)). However, the decrease of χD with increase of Se is usually 
much steeper than the 𝐴𝐴 ∼ 𝑆𝑆−0.6

𝑒𝑒  -dependence found here for the advective tortu-
osity χ (Friedman,  2005), especially in two-dimensional flow domain, in 
which the phase connectivity is more sensitive to the reduction in the satura-
tion degree. Here, the effective diffusion coefficient De is calculated from the 
steady diffusive flux using the numerical simulations with um = 0. We find 
that 𝐴𝐴 𝐴𝐴𝐷𝐷 ∼ 𝑆𝑆−2.8

𝑒𝑒  (R 2 = 0.973, see Figure S2 in Supporting Information S1), 
that is, it decreases much faster with increasing Se than χ. This stronger dependence of χD on Se compared to χ 
can be explained by the smoothness of advective particle trajectories, which align with streamlines of the flow 
field, in contrast to the irregular trajectories of a particle that diffuses through the pore space. The large structural 
tortuosity compared to χ and the relatively moderate effect of Se on χ compared to its effect on χD (see Figure S3 
in Supporting Information S1) are indicators of the significance of preferential flow paths for advective tortuosity.

3.2. Concentration Distribution and Breakthrough Curves

The effect of the saturation degree on the concentration distribution is depicted in Figure 5. The transport through 
the saturated medium demonstrates a piston type flow with a sharp concentration gradient in the main flow direc-
tion. The partially saturated cases, on the other hand, show sharp concentration gradients perpendicular to the 
flow path and organization of the displacement front into a lamellar pattern (Jiménez-Martínez et al., 2015). The 
relatively uniform intrapore concentrations in contrast to the strong velocity gradients (zoomed insets in Figure 2), 
suggest strong mixing induced by diffusion.

Figure 3. (a) Probability density function of flow velocity p(u), (b) in the 
main flow direction p(ux), and (c) in the transverse direction p(uy), for different 
effective saturation degrees Se: fully saturated (blue), 0.80 (red), 0.73 (orange), 
and 0.65 (purple).
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For the saturated case (Figure 5a), the concentration near the device vertical 
walls (y = 0 and y = W) are significantly lower. This effect is because of the 
correlation of low velocities along and in close proximity to the walls. The 
wall effect is significant only for the saturated case (Figure 5a) due to its rela-
tively uniform velocities (Figure 2a) so that the correlation of low velocities 
along the walls has a noticeable effect. The effect of the walls reduces with 
increasing saturation degree. This is because of the less uniform flow in the 
entire domain and also because the air clusters near the walls force the water 
to bypass through the inner sections of the device. The impact of the walls 
on the BTC can be eliminated by calculating solute transport on a frame with 
a distance Δy [L] from the walls. The value of Δy can be determined for 
example, from the distribution of the longitudinally averaged speed, denoted 
by 〈u〉x, across the domain width. Figure S5a in Supporting Information S1 
shows 〈u〉x for the different Se, while Figure S5b in Supporting Informa-
tion S1 depicts the BTC of the saturated case with different Δy. These results 
suggests that for the Se = 1, using a Δy = 6 mm is sufficient to avoid tailing 
caused by the walls, and that for the unsaturated cases there is no need of 
using a frame.

After these preliminary remarks, we now analyze the solute BTCs and their representation by the CTRW models 
discussed in Section 2.3. Figure 6 presents a comparison of the results for the Se = 0.73, D = 1.5 ⋅ 10 −10 m 2/s 
case to the fitted analytical advection-dispersion solution (Equation 11), the purely advective CTRW a framework 
(Equation 13) and the advection-diffusion (mobile) CTRW m (Equation 18). The value of Dh/θe (1.5 ⋅ 10 −7 m 2/s) 
in the analytical solution of the advection-dispersion equation was fitted to a least square difference. The 
advection-dispersion model (Figure 6 dash-dotted line) cannot correctly describe the BTC. It underestimates the 
long-time breakthrough and overestimates concentration at intermediate times.

The purely advective CTRW a accurately estimates the early and intermediate times breakthrough. However, it 
displays a heavier tailing than the data from the direct numerical simulations. This is expected because in the 
purely advective CTRW a, particles on very low velocity streamlines can experience transition times much larger 

Figure 4. Effect of the effective saturation degree (Se) on the advective 
tortuosity (χ).

Figure 5. Concentration distribution after one pore volume for different saturation degrees: (a) fully saturated, (b) Se = 0.80 
(Sw = 0.83), (c) Se = 0.73 (Sw = 0.77), and (d) Se = 0.65 (Sw = 0.71). The molecular diffusion coefficient in these images is 
D = 1.5·10 −10 m 2/s. The flow rate and fluid properties are indicated in Table 1. Simulations were conducted as detailed in 
Section 2.2.2.
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than the limit imposed by diffusive motion (Dentz et al., 2004). As outlined 
above, the correlation length λ is estimated by comparing the CTRW a BTCs 
to the numerical data of the advection-dominated scenario with the largesst 
Pe (Pe = 395, 1.17 ⋅ 10 4, 1.60 ⋅ 10 4, and 7.16 ⋅ 10 4, for the Se = 1.00, 0.80, 
0.73, and 0.65, in accordance, corresponding to D = 1.5 ⋅ 10 −11 m 2/s in the 
different scenarios).

On the other hand, the advection-diffusion CTRW m (Figure 6 dashed line) 
underestimates the tailing. This is because the CTRW m accounts for diffu-
sion along trajectories but not for the trapping of particles in dead-ends and 
immobile zones. The fact that the actual BTC tailing is bounded between the 
CTRW a and the CTRW m predictions may have practical implications on risk 
assessment, providing a relatively narrow range of expected residual times 
even without evaluating the immobile parameters.

The integrated CTRW i framework can be used for accurately modeling the 
arrival times. This framework is able to model the solute arrival times across 
different effective saturation degrees Se and diffusion coefficients D over 
more than six orders of magnitude as shown in Figure 7. The trapping rates 
and times are adjusted from the exponential tails of the BTCs from the direct 
numerical simulations as detailed in Section 2.3.3. In addition to the effect 
on the tailing, trapping in immobile zones, slows down transport in the mean 
flow direction. For times larger than the mean trapping time, this effect can 
be quantified by a retardation factor.

Interestingly, the solute tailing and early arrival of the case with saturation 
degree Se  =  0.65 (Figure  7c) is much more pronounced than that of the 
Se = 0.80 (Figure 7a) or Se = 0.73 (Figure 7b) cases, which are only slightly 
different. This point may reflect on the significant effect of the stagnant 
air-phase connectivity on the formation and extent of dead-ends regions in 
the flowing phase.

3.3. Scalability of the CTRW

Figure 8 presents a comparison between the direct numerical simulations and 
the CTRW i models BTC, at different flow domain cross-sections (location 
of the control plane). The different CTRW i accounts for the slightly different 
velocity pdfs and χ of the different cross-sections but uses the same model 
parameters. The excellent fit, even at half the device length (Figure  8a), 
which stands for about 4.3λ, indicates that even the complex unsaturated 
flow domain decorrelates on a characteristic length. Using shorter domains, 
for example, 0.25 L (2.2λ), showed deviation between the numerical and the 
CTRW i models BTCs (not presented), suggesting that at this short lengths, 
the domain characteristics varies significantly from the full device and cannot 
stand as a REV. These results also reflects on the robustness of the CTRW i 
framework and the physical nature of the model parameters, not being a fully 
case sensitive, strictly empirical values. The parameters values as a function 
of saturation and diffusion coefficients are discussed in the next section.

3.4. Correlation Length and Trapping Parameters

In this section, we discuss the physical meaning of the parameters of the 
upscaled CTRW i model and their dependence on the system parameters in 
terms of saturation and Pe.

Figure 6. Breakthrough curves of the different models for Se = 0.73. 
The direct numerical simulation is indicated in circles. For the analytical 
solution (line-dot), the hydrodynamic dispersion coefficient (Dh/θe = 1.5 
10 −7 m 2/s) was fitted (least squares). The purely advective CTRW a (dotted 
line) is presented in Equation 13. For the continuous-time random walk 
(CTRW) frameworks, the characteristic length value (λ = 0.014 m) was 
fitted against simulations with lower molecular diffusion coefficient (0.1 D). 
For the advection-diffusion CTRW (broken line, Equation 18), the value 
of the molecular diffusion coefficient (D = 1.5·10 −10 m 2/s) was taken from 
Jiménez-Martínez et al. (2017). We used 10 8 number of particles (Np) for the 
CTRW models.

Figure 7. Breakthrough curves from numerical simulation (colored symbols) 
and the integrated continuous-time random walk framework (black lines) for 
different molecular diffusion coefficients: D = 1.5·10 −10 m 2/s (circles and solid 
lines), D = 1.5·10 −9 m 2/s (squares and dash-dot lines), and D = 1.5·10 −11 m 2/s 
(triangular and dashed lines). And for different effective saturation degrees: (a) 
Se = 0.80, (b) Se = 0.73, and (c) Se = 0.65.
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3.4.1. Correlation Length

The transition length λ of the system was estimated by fitting the BTC from the numerical simulations with the 
highest Pe (lowest D) to the results of the purely advective CTRW a model Equation 13 using the pdfs of flow 
speed and χ values reported in Section 3.1. Figure 9 shows that λ decreases as saturation increases. The results 
can be approximated by the exponential relation λ = 259 exp(−13Se). This strong dependence can be partially 
explained by the shape and size of the stagnant air clusters which are mostly in form of large ganglia with a very 
few number of small bubbles. This suggests that correlations are case sensitive, and that for different conditions, 
for example, different fluid properties (e.g., wettability), different flow dynamics, a vertical orientation, or in a 
3D flow domain, the relation would be significantly different. However, the general perception of strongly nega-
tive correlation will remain. Moreover, the strong increase in λ with the decrease in Se, along with the increasing 
asymmetry in the velocities on the y-axis (discussed above), suggests that the minimal REV increases with the 
decrease in Se.

3.4.2. Trapping Parameters

The Pe is by definition (Equation 8) inversely proportional to D and proportional to the mean flow velocity. In 
turn, the latter (for a given discharge rate, qm) is related to τ and u, which depends on Se. Moreover, the Pe is 
proportional to λ, which is exponentially related to Se (Figure 9). We evaluate flow and transport, for different Pe 
values in the range of 10 2–10 5 corresponding to different D and Se.

The effect of Pe on the immobile characteristics is depicted in Figure 10. The trapping frequency γ decreases 
with increasing Pe (Figure 10a). This is expected, because the probability per time for a particle to diffuse into 
an immobile zone at low Pe (diffusion dominated) is larger than for large Pe (advection-dominated). The single 
effect of D on γ is best fitted with a power-law exponent of 0.87 (see Figure S4 in Supporting Information S1). 

However, the theoretical linear relation (exponent of 1), inferred from the 
explanation above, can also provide a close approximation (see Figure S4 in 
Supporting Information S1). Speculatively, this slight decrease from linear-
ity may be explained by the effect of diffusion on the transition time in low 
velocity increments.

The normalized mean trapping time (〈τf〉/τm) increases approximately line-
arly with Pe (Figure 10b). If we assume that the trapping time is related to D 
with some characteristic trapping length (l0), that is, that 𝐴𝐴 ⟨𝜏𝜏𝑓𝑓 ⟩ = 𝑙𝑙2

0
∕𝐷𝐷 (Dentz 

et al., 2018) then, the ratio 〈τf〉/τD is related to 𝐴𝐴 (𝑙𝑙0∕𝜆𝜆)
2 , that is, independent 

of D. The fact that 〈τf〉/τm is proportional to Pe (Figure 10b), implies that l0 
is proportional to (and about 5.5 times larger than) λ. This correlation may 
be explained by the fact that both the transition length and the fraction of 
stagnant areas are governed by the phase saturation degree and by its config-
uration, or in other words, the characteristic length scale of fluid clusters 
dominates both the velocity correlation and size of immobile regions. This 

Figure 8. Breakthrough curves from numerical simulation (triangles) and the integrated continuous-time random walk framework (solid lines) at different control planes: 
(a) 0.5, (b) 0.75 L, and (c) L. In this figure we modeled for the Se = 0.80, D = 1.5·10 −11 m 2/s, Pe = 1.17 ⋅ 10 4 case, with the CTRW i model parameters λ = 0.012 m, 
〈τf〉 = 1.92 ⋅ 10 6 s, and γ = 2.6 ⋅ 10 −9 1/s, resulting in β = 0.002. The pore volume (PV) of the different plots is the same, and accounts for the entire device PV.

Figure 9. Effect of the effective saturation degree (Se) on the correlation 
length (λ).
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merit suggests that knowledge about l0 can be used to evaluate both λ and 
〈τf〉/τm. Thus relation between l0 and the air clusters shape and topology may 
prove to be a valuable future research path.

Figure 10c depicts the effect of Pe on β. As expected, the volume fraction β of 
immobile regions is strictly a parameter of the medium, that is, independent of 
D and increasing with Se. Interestingly, the β trends of the different D (black 
lines, Figure  10c) demonstrate a logarithmic relation with a similar slope. 
This is in accordance with other works (Markale et  al.,  2022) that found a 
non-linear variation in the stagnant volume fraction with the saturation degree. 
The single factor effect of D on τf/τm is well approximated with a power-law 
with a slope between −0.91 and −0.83 (for the different Se, not presented).

4. Conclusions
Water flow and solute transport in variably saturated media is of major concern 
in agricultural application (e.g., “fertigation”) and environmental risk assess-
ments from contaminants in the critical zone. In this paper, we propose a new 
framework to quantify and upscale anomalous transport in partially saturated 
media based on the approach of Dentz et al. (2018). Entrapped air significantly 
affects the water flow velocities. It dramatically increases the fraction of very 
low velocities in dead-end areas. Moreover, the trapped air enhances the veloc-
ity in directions perpendicular to and opposite to the main flow. Air clusters 
increase both velocities variability and advective tortuosity. As a result, the pres-
ence of trapped air clusters leads to non-Fickian solute transport that the classi-
cal advection-dispersion equation cannot explain. CTRW is a powerful tool to 
upscale heterogeneous micro-scale flow and transport features to macro-scale, 
accurately predicting the arrival times of contaminants and at trace amounts. 
Comparing the physics-based CTRW approach to direct numerical simulations 
and experimental results is used to derive up-scaling rules and correlations. 
Trapped air clusters increase the characteristic velocity correlation length (λ), 
the advective tortuosity, and the fraction of immobile area (both l0 and β). The 
Pe was found to be strongly correlated to the trapping frequency (γ) and to the 
normalized mean trapping time (〈τf〉/τm). These findings provide new insights 
into the understanding of non-Fickian transport in partially saturated media, 
and its relation to medium geometry, saturation degree, and flow conditions.

The present analysis presents a scalable framework that is based on the 
pore-scale physics of particle motion and trapping. The model parameters 
are physics-based, and depend on the distribution and shape of the mobile 
and immobile regions which in turn depend on the flow dynamics, fluid 
properties (e.g., surface tension and viscosity ratio), and pore geometry and 
topology. Regarding the correlations and effects of Se and Pe on the transport 
and trapping mechanisms, we expect them to show qualitatively the same 
behavior in two- and three-dimensional flow domains.

In conclusion, we have shown that solute transport under different saturation degrees can be upscaled by the 
proposed integrated CTRW model, which connects Eulerian flow properties and medium geometry to large 
scale dispersion. A future challenge is how relate fluid properties, flow conditions and medium structure to the 
Eulerian flow properties and distribution of low flow regions.

Abbreviations
BTC Breakthrough curves
CTRW continuous time random walk
pdf probability density function
REV representative elementary volume

Figure 10. Effect of the Péclet number (Pe, Equation 8) on: (a) the trapping 
frequency (γ), (b) the mean trapping time (〈τf〉), (c) the ratio between the mean 
trapping time and the diffusive characteristic time (〈τf〉/τD), and (d) the ratio 
between the immobile and mobile volume fraction (β). The different Pe values 
are obtain for different Se (0.80 in red, 0.73 in orange, and 0.65 in purple) 
with different λ and 𝐴𝐴 𝑢𝑢  , and for different molecular diffusion coefficients: 
D = 1.5·10 −10 (circles), D = 1.5·10 −9 (squares), D = 1.5·10 −11 m 2/s 
(triangular). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article).
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Data Availability Statement
Data is provided as supplementary material and is available in a data repository (Ben-Noah et al., 2022).
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