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• Our study explores relationships between
aquatic pesticide pollution and explana-
tory variables.

• Extrapolating data from monitoring sites
to the entire river network is highly uncer-
tain, even with detailed datasets.

• Improving the data on pesticide applica-
tions will be essential to progress in
modelling pesticide transport.
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Aquatic pesticide pollution is an important issue worldwide. Countries rely on monitoring programs to observe water
bodies quality and onmodels to evaluate pesticide risks for entire stream networks. Measurements are typically sparse
and discontinuous which lead to issues in quantifying pesticide transport at the catchment scale. Therefore, it is essen-
tial to assess the performance of extrapolation approaches and provide guidance on how to extend monitoring pro-
grams to improve predictions. Here we present a feasibility study to predict pesticide levels in a spatially explicit
manner in the Swiss stream network based on the national monitoring program quantifying organic micropollutants
at 33 sites and spatially distributed explanatory variables. Firstly, we focused on a limited set of herbicides used on
corn crops. We observed a significant relationship between herbicide concentrations and the areal fraction of hydro-
logically connected cornfields. Neglecting connectivity revealed no influence of areal corn coverage on the herbicide
levels. Considering chemical properties of the compounds slightly improved the correlation. Secondly, we analysed a
set of 18 pesticides widely used on different crops andmonitored across the country. In this case, the areal fractions of
arable or crop lands showed significant correlations with average pesticide concentrations. Similar results were found
with average annual discharge or precipitation if two outlier sites were neglected. The correlations found in this paper
explained only about 30 % of the observed variance leaving most of the variability unexplained. Accordingly, extrap-
olating the results from the existing monitoring sites to the Swiss river network comes with substantial uncertainty.
Our study highlights possible reasons for weak matches, such as missing pesticide application data, limited set of com-
pounds in the monitoring program, or a limited understanding of factors differentiating the loss rates from different
catchments. Improving the data on pesticide applications will be essential to progress in this regard.
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1. Introduction
Pesticides are commonly used in agriculture to improve crop production
and secure global food supplies (Hedlund et al., 2020). However, pesticides
can enter non-target environments such as surface water, threatening
aquatic ecosystems and human health (Beketov et al., 2013; Brühl and
Zaller, 2019; Chetty-Mhlanga et al., 2021). Monitoring in-stream pesticide
concentrations is essential to evaluating exposure risk and preventing pollu-
tion in aquatic ecosystems (Federal Office for the Environment (FOEN),
2022). Monitoring is often the basis for demonstrating the need for imple-
menting mitigation measures to reduce in-stream pesticide levels and
improve water quality in the river network (Reichenberger et al., 2007).

A prerequisite to assessing the impacts of mitigation measures at the re-
gional scale is characterising the spatial distribution of pesticide concentra-
tions throughout the stream network (Ryberg and Gilliom, 2015; Boye
et al., 2019). As data is generally sparse and discontinuous, modelling
tools are needed to extrapolate this data to the required extent. Many
models were applied from field to catchment scale to assess water pollution
by pesticides (Ippolito and Fait, 2019; Ammann et al., 2020). The processes
that govern pesticide fate and transport in the environment have been an
area of research for many years and have been integrated into current
modelling tools (Ippolito and Fait, 2019). However, the main issues in
modelling pesticide dynamics at the watershed scale are the difficulties in
accounting for the multiple sources of pesticide pollution. Sources of pesti-
cide pollution can be diffuse or non-point, e.g., spray drift, surface runoff,
hydraulic shortcuts, and drainage (Ippolito and Fait, 2019; Schönenberger
and Stamm, 2021). Agricultural point sources, e.g., accidental spills during
tank filling, can also significantly contribute to water contamination
(Müller et al., 2002). Unpredictable misuses, such as inappropriate han-
dling, spillage during tank filling, or cleaning of equipment (Vasiljević
et al., 2012), can be challenging to represent in large-scale models
(Wenneker et al., 2010).

The first models to estimate pesticide transport and fate in stream net-
works were empirical or semi-empirical, linking in-stream pesticide con-
centrations with pesticide use and precipitation or discharge (Brown and
Hollis, 1996). This method is still used for large-scale studies (Guo et al.,
2004; Leu et al., 2010; Ryberg and Gilliom, 2015; Stackpoole et al.,
2021), but uncertainties remain high (Brown et al., 2002; Stackpoole
et al., 2021).

Physically based models can represent pesticide dynamics at an hourly
or daily time step (Holvoet et al., 2007; Gevaert et al., 2008; Boithias et al.,
2014; Ammann et al., 2020). Current models can represent various pro-
cesses influencing pesticide transport and fate in soils and surface waters
(Holvoet et al., 2007; Ippolito and Fait, 2019;Wang et al., 2019). However,
these models need continuous input and detailed landscape data and are
time-consuming to set up. Moreover, they are usually applied at the scale
of headwater catchments, and they are challenging to up-scale to larger
areas (Gassmann et al., 2014).

Another method to predict pesticide risks relies on using indicators,
combining multiple large-scale datasets related to pesticide application
and transport, such as slope, land use, soil types, or distance to the stream.
This approach has been applied at the watershed, regional, and global
scales (Macary et al., 2014; Strokal et al., 2019; Koch and Prasuhn, 2021).
Nevertheless, this approach only provides a pollution risk but does not
quantify loads or concentrations of pesticides in the streams.

Arguably, the most common approach in large-scale studies is based on
the spatial extrapolation of pesticide concentration summary statistics. This
approach is based on regression equations using various landscape andme-
teorological indicators and results in a static picture of pesticide pollution in
a stream network (Ippolito and Fait, 2019). Parametric regression models
(e.g., SEAWAVE-Q) have also been developed to assess variability and
trends of pesticide concentration time series (Ryberg and Vecchia, 2013).

Switzerland issued a national action plan (NAP) to reduce the risk from
plant protection products. One objective of the Swiss NAP is to halve the
stream length exceeding legal threshold values for pesticides by 2027
(Conseil Fédéral, 2017). To assess whether this objective will be achieved,
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an existing monitoring program for micropollutants was used with a selec-
tion of watersheds representing multiple conditions (e.g., size, crop type,
hydrology), which is essential to highlight regional effects of the NAP
(e.g., Boye et al., 2019; Stackpoole et al., 2021). This monitoring program
implemented in 2017 provides detailed pesticide concentrations with a fre-
quency of 14 days (composite samples) in multiple sites across Switzerland
(Doppler et al., 2020).

This study aims to test the feasibility of predicting the spatial variability
of pesticide concentrations in the Swiss stream network based on the avail-
able monitoring data. It includes a focus on predicting stream network
length without Environmental Quality Standard (EQS) exceedances to
align directly with the NAP objectives. In particular, we aim to construct
meaningful summary statistics of pesticide concentrations in streams and
to relate them with simple relationships to explanatory variables available
at the national scale, including climatic and landscape indices, to build a re-
liable model that can extrapolate to the national scale. Moreover, we want
to identify the main factors that influence this extrapolation process to pro-
vide guidance on achieving better predictive performance.

One the one hand, we focus on herbicides applied to corn because
i) corn is a major crop across the entire country and ii) the respective herbi-
cides are generally used only once per year during a well-defined period.
Moreover, the number of pesticides applied to corn is limited. Therefore,
we expect results to be easier to interpret than other crop types, which
generally have more complex pesticide application patterns. On the other
hand, we look at groups of pesticides monitored in the Swiss monitoring
program. In both cases (i.e., corn herbicides and pesticide groups), we
aim to quantify the average concentrations of pesticides and empirically
model them with spatially distributed explanatory variables. Finally, we
evaluate to which degree it is possible to predict the stream length without
EQS exceedances.
2. Methods

The evaluation of the Swiss NAPwill be partly based on the monitoring
data obtained from the Swiss National Surface Water Quality Monitoring
Program (NAWA TREND), jointly run by the cantonal authorities and the
Federal Office for the Environment (FOEN). Accordingly, this study used
2019 NAWA TREND data to evaluate methods to extrapolate in-stream
pesticide concentrations to the Swiss stream network.
2.1. Database of monitoring sites

The NAWA TREND program consists of multiple monitoring sites
draining watersheds of different sizes and various anthropogenic pressures.
We excluded large watersheds with stream orders (the number represent-
ing the branching level in a river system) greater than five for most analy-
ses, as they make up only a small part of the Swiss river network
(Appendix 1). In this study, we used the Strahler stream order attributing
the first order to each headwater reach (Strahler, 1957, 1964).

We also excluded sites not operational before May 2019. The final set
contains 21 independent, non-nested stations across the Swiss Plateau
and the Rhône valley (Fig. 1). These sites represent various hydrological
and agricultural characteristics with an average elevation ranging from
415 to 683 m.a.s.l. and sizes ranging from 2.0 km2 to 78.4 km2 (Appendix
2).
2.2. Explanatory variables

Table 1 shows several explanatory variables that represent either source
of pesticides or potential factors influencing pesticide transport to streams.
These variables were used to model the spatial variability of pesticide con-
centrations in the Swiss river network and extrapolate the results to the un-
monitored streams. Further details about selected variables are provided as
supporting information.



Fig. 1. Distribution of the watersheds within the Swiss NAWA TRENDmonitoring program selected for this study. The 21 watersheds are mostly distributed along the Swiss
Plateau in the North and the West of the country. Appendix 2 contains detailed information regarding each watershed.
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2.3. Modelling approaches

2.3.1. Approach 1: Corn cultivation and average concentrations of corn
herbicides

2.3.1.1. Evaluation of average herbicide concentrations. In Approach 1, we
chose to study herbicides frequently used on corn. We assume that the cu-
mulative pesticide concentrations Ci,k during the entire application period
is the relevant metric to be used (Spycher et al., 2018). We focused on the
concentrations between March and October 2019. We assumed that pesti-
cide peaks during that period of the year are mostly attributed to agricul-
tural use. The rationale for using the cumulative concentrations is that it
is less sensitive to the actual timing of applications and rainfall events
than the maximum concentration (Spycher et al., 2018). Accordingly,
we calculated cumulative concentrations during the growing season
(March to October) in 2019 for each selected substance and monitoring
site. The direct link between explanatory variables such as land use and her-
bicide concentrations is non-trivial because some corn herbicides are also
applied to other crops, and catchment-specific application data are absent.
As not all catchments have the same sampling frequency, we normalised
the concentration values by the number of samples to obtain the average
concentration:

Ci;k;av ¼ Ci;k

ni;k

where Ci,k is the cumulative herbicide concentrations for compound i in
catchment k and ni,k is the number of samples for compound i in catchment
3

k during the application period. From these concentrations, we need to
focus on the part that is coming from corn fields. Indeed, corn herbicides
can be applied to corn and other crops in various amounts (Appendix 3).
Therefore, we calculated the total use Min,i,k in kg of a single herbicide i
in any given catchment k as:

Min;i;k ¼
X

j

f j;k min;i; j ¼
X

j

A j;k

Atotal crops;k
min;i; j

where f j,k is the areal fraction of crop j among cropswhere the herbicide i is
used in catchment k, A j,k the area of crop j in catchment k (Appendix 4),
Atotal crops,k is the total area of crops where the herbicide i is used in catch-
ment k, and min,i,j is the average application rate across the entire country
of compound i on crop j (kg.ha−1; Appendix 3; Spycher and Daniel, 2013).

Then, we assume that Ci,k,av is proportional to the herbicide mass ap-
plied in the catchment irrespective of the crop, as the signal received at
the watershed outlet is related to the mass applied in the catchment
(Doppler et al., 2014):

Ci,k,av � Min,i,k

Based on the application rates on each crop (Appendix 3) and the spatial
fraction of each crop per catchment (Appendix 4), we can attribute a

Image of Fig. 1


Table 1
Explanatory variables considered for the spatial analysis and extrapolation.

Category Sub-category Variable Data source

PPP source Pesticide Risk map Point sources map (farmyards) Risk Maps for Plant-Protection Product Input into Surface Waters
(Koch and Prasuhn, 2021; Federal Office for Agriculture)

General land use (areal fraction) Arable land Land use dataset (details below)
Orchards
Vineyards

Major crops (areal fraction) Cereals
Corn
Sugar beet
Rape seed
Vegetables
Potatoes
Legume

Urban influence Urban areas swissTLMRegio (Federal Office of Topography)
Wastewater Number Wastewater Treatment Plant Wastewater treatment plants map (Federal Office for the Environment)

Fraction of Wastewater
Risk of transport Pesticide Risk map Connectivity map Risk Maps for Plant-Protection Product Input into Surface Waters

(Koch and Prasuhn, 2021; Federal Office for Agriculture)Drainage map
Pesticide risk index

Catchment and river characteristics Size Topographical catchment areas of Swiss water bodies 2 km2

(Federal Office for the Environment)
Compactness coefficient (KG)
Mean elevation Digital Elevation Model 25 m (Federal Office of Topography)
Topography: mean slope Digital Elevation Model 25 m (Federal Office of Topography)
Precipitation amount (mm/year) Monthly and Yearly Precipitation (MeteoSwiss)
Annual mean flow (mm yr−1) Mean runoff and flow regime types for the river network of Switzerland

(Federal Office for the Environment FOEN)
Soil properties Soil organic carbon content (%) Topsoil Organic Carbon Content for Europe (Jones et al., 2005)

Depth index Digital soil suitability map of Switzerland (Federal Office for Agriculture FOAG)
Stone index
Water storage index
Nutrient storage index
Permeability index
Waterlogging index
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specific fraction (f load,corn,i,k) of the measured cumulative concentration to
corn (Appendix 5):

f load;corn;i;k ¼
f corn;k min;i;corn

∑ j f j;k min;i; j

For example, S-Metolachlor has average national application rates of
0.15 kg ha−1 for corn, 0.32 kg ha−1 for beets, and 0.25 kg ha−1 for other
uses (Appendix 3). At monitoring site 4, we have 1816 ha of corn,
2017 ha of beets, and 1067 ha of other uses resulting in masses of S-
Metolachlor of 272 kg, 323 kg, and 267 kg applied to the fields, respec-
tively. Thus, 23 % of the total mass is applied to corn, giving
f load,corn,S � Metolachlor,4 = 0.24. For monitoring site 10, there are no beets
or other uses, resulting in f load,corn,S � Metolachlor,10 = 1, as the total S-
Metolachlor found in-stream should come exclusively from corn fields.

Relation with corn fields.
We used land use data and information about average application rates

to estimate the average concentration from application to corn:

Ci,corn,k,av ¼ f load,corn,i,k :Ci,k,av

Assuming spatially uniform application rates for any given herbicide i
on a given crop across catchments, wemay also expect the cumulative con-
centration to be proportional to the areal fraction of corn:

Ci,corn,k,av � f corn,k

As for single compounds, we tested the hypothesis that the sum of the
normalised, corn-specific cumulative herbicide concentrations varied line-
arly with the fraction of corn. As an alternative hypothesis, we combined
f corn,k with the connectivity map (see Table 1) to obtain the fraction of
corn connected to the stream in each catchment (f corn connected,k), which
has been compared to ∑

i
Ci,corn,k,av. Nevertheless, this comparison was
4

performed in 18 sites instead of 21 as the high-resolution land use data
was not available for sites 7, 8, and 9 (Appendix 2):

∑
i
Ci,corn,k,norm � f corn,k or f corn connected,k

2.3.1.2. Herbicides selection. To calculate average concentrations, we had to
consider which corn herbicides were included in the NAWA TREND pro-
gram. Corn herbicides were characterised by three factors: i) the fraction

of corn fields treated with these herbicides (area of corn fields receiving the herbicide
total area of corn fields ;

x-axis in Fig. 2), ii) the fraction of the total use being applied on corn
( fraction applied on corn
total amount applied on all crops; y-axis in Fig. 2), and iii) whether they are being

monitored in the NAWA TREND program. Fig. 2 shows the substances
(grey and black font) measured within the NAWA TREND program.

We decided to keep substances where >40 % of the total herbicide
use goes to corn and where at least 10 % of the entire Swiss corn fields
receive this herbicide, as their detection in the streams should be due to
the presence of corn fields in the corresponding catchment (Fig. 2).
Therefore, we included the following six herbicides in the analysis:
Dimethenamid-P, Flufenacet, Foramsulfuron, Nicosulfuron, S-Metolachlor,
and Terbuthylazine. Their average application rates were assessed based on
surveys conducted by the Zentrale Auswertung der Agrarumweltindikatoren
(ZA-AUI; Spycher and Daniel, 2013; Appendix 3).

2.3.2. Approach 2: Concentrations of multiple pesticides from multiple crops
The NAWA TREND program monitors 48 mandatory pesticides

and ten optional ones. As of 2021, the Waters Protection Ordinance
(Gewässerschutzverordnung; GSchV) defines Environmental Quality
Standards (EQS; Appendix 6) for 17 of the mandatory analytes, selected
to cover a significant part of the ecotoxicological risk, which we selected
in our study (Appendix 6). We excluded two substances (Diazinon and
Terbutryn) from the analysis because they are no longer registered as



Fig. 2. Selection of compounds used in Approach 1 analysis. Estimated fractions of corn treated with herbicides (x-axis) and their specific use on corn (y-axis). These data are
based on surveys conducted by the Zentrale Auswertung der Agrarumweltindikatoren (ZA-AUI; Spycher and Daniel, 2013).
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Plant Protection Products (PPP) in Switzerland. The final list comprises
three fungicides, eight herbicides, and six insecticides. We computed
average expected concentrations at the NAWA TREND sites for the pes-
ticides listed in Appendix 6.

We calculated an average concentration Ck for each NAWA TREND site
during the growing season, i.e., between March and October 2019, by nor-
malising the concentration by the number of samples, which was not the
same for every compound and each catchment:

Ck ¼ ∑
i
Ci,k,av

where Ck is the average concentration for watershed k, Ci,k,av represents the
average concentration between March and October 2019 for compound i
and watershed k.

Next, we compared these average concentrations with the set of explan-
atory variables in Table 1. First, we tested the relationship between the con-
centrations and the pesticide risk map (Koch and Prasuhn, 2021). We
hypothesise that a watershed with a high pesticide pollution risk should
have a high concentration at its outlet. This test is also essential to evaluate
the link between pesticide risk maps and water quality in observed data.
Second, we assessed the relationship between average concentrations and
several agricultural and hydrological characteristics, such as crop coverage,
arable land coverage, crop intensity, river andwatershed features (Table 1).
We tested each crop separately. Finally, we looked at multiple variable re-
gressions to refine our predictions.

2.3.2.1. Chemical properties consideration. It was shown that half-life in soils
(DT50) or OC-water partition coefficient (KOC) may help predict the con-
centrations in water (Ryberg and Gilliom, 2015). In this paper, we also
tried to consider this effect by changing the calculation of normalised con-
centrations in both approaches as follows:

Ck ¼ ∑
i

Ci,k , av
DT50 or Ck ¼ ∑

i

Ci,k,av
KOC

or Ck ¼ ∑
i

Ci,k,av
DT50 KOC:

DT50 and KOC values for each substance can be found in Appendix 6.
5

3. Results

3.1. Modelling corn herbicides

When aggregating across all six corn herbicides, the data suggest that
the larger the fraction of corn in catchment the higher the average concen-
trations. This correlation however, (p=0.02 for all data) explaining about
30% of the variance (52% if leaving out an outlier, see Fig. 3, right bottom
panel), only holds when considering the fraction of corn field hydrologi-
cally connected to the stream network. Relationships were also absent
when analysing the data from individual compounds irrespective of
whether or not the hydrologic connectivity was considered (S-metolachlor
was the single exception with a weak correlation, see Fig. 3). Because some
of these compounds can also be applied to other crops, we attributed only a
fraction to corn according to land use and crop-specific application data
(see above) and used only this fraction for the analysis.

These findings demonstrate that the resulting herbicide patterns in the
streams vary substantially, even for a crop with a simple herbicide applica-
tion pattern (one application per year). Based on the available data and
information, predicting the respective herbicide concentrations seems
challenging. There are many possible reasons for this high uncertainty.
Firstly, only a fraction of all corn herbicides is measured within the
NAWA TREND program (Fig. 2). If the application of corn herbicides
was spatially uniform, this fact would not be problematic. However,
comparing corn herbicides across themonitoring sites (Appendix 7) sug-
gests a very heterogeneous application pattern in space, especially for
Foramsulfuron and Dimethenamid-P. Hence, one major limitation for
the successful prediction of corn herbicides is the poor knowledge of
the actual input in each catchment. Secondly, we also lack information
about potentially relevant factors driving the transport of the applied
compounds. For example, the analysis does not consider the timing
between application and rainfall, which can affect sensibly the concen-
tration dynamics (Doppler et al., 2014; Chow et al., 2020). These limita-
tions originate from the lack of application data and the sampling
strategy, which can only provide temporally averaged concentrations
for 14 days.

Image of Fig. 2


Fig. 3. Correlations between the cumulative concentrations of each corn herbicide with the percentage corn coverage in the catchment (left andmiddle panels). Right panel:
correlation between the sum of the cumulative concentrations with the percentage corn in the catchments. The top row depicts the results for the entire corn area per
catchment, the lower one shows the results when only considering the corn field connected to the stream network. Each dot represents a catchment of the NAWA TREND
program. Red lines, dots and coefficients refer to the regressions without outliers.
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Given these results for corn herbicides, it seems unlikely that better pre-
dictionswould be possible for other crops and pesticides. For all these cases,
the same limitations apply but may be more severe due to more complex
application patterns (more diverse sets of compounds, several applications
during the vegetation period). For these reasons, we decided to concentrate
on aggregated endpoints, such as the total concentrations for a group of pes-
ticides. The reason why such a coarser approach might work despite the
failure with a single crop is that by adding data from many crops, patterns
may emerge that also existed for single crops but were not detectable for a
single crop due to the variance being too significant for the number of avail-
able data (as suggested by the Central Limit Theorem).

3.2. Modelling pesticide concentrations for multiple crops

The sums of the average concentrations per sample vary widely be-
tween the catchments for all monitored pesticides (Appendix 8). Thisfigure
demonstrates no regional difference in the concentrations between the
Western and the Eastern parts of Switzerland. In the same way, there is
no clear link between the average concentrations and the size of the water-
shed (with the exclusion of large watersheds; see Section 2) and no clear
groups in terms of the sum of concentrations.

3.2.1. Relationships with explanatory variables
To predict concentrations across the stream network, we need to find

statistical relationships between concentrations and independent explana-
tory variables available at the national level. Potential explanatory vari-
ables are crop coverage, the presence of additional pesticide sources
(e.g., effluent from wastewater treatment plants) and catchment character-
istics (e.g., soil properties). We first describe the relationships with single
factors (crop coverage, catchment properties) and then move to multivari-
ate approaches such as the Risk Index (Koch and Prasuhn, 2021) and
multi-linear regression models.
6

First, we found a positive correlation between the fraction of crop cov-
erage and the average concentrations (p = 0.045, Fig. 4). The explained
variance, though, is limited (19 %). A similar trend was observed with
arable land only, i.e., without orchards and vineyards, although the re-
lationship was non-significant (p = 0.07; Fig. 4).

Moreover, we evaluated the relationship between the average con-
centrations and the pesticide risk map provided by Koch and Prasuhn
(2021). There is only a weak positive correlation between the average
concentrations and the pesticide risk index (Fig. 4). We also analysed re-
lationships with the individual components used to calculate the pesti-
cide risk index (connectivity, drainage, and point sources influences).
No relationship with any of these components were observed (see Ap-
pendix 9 for details).

We also tested the correlations between the average concentration and
various watershed characteristics. Fig. 4 shows that the less annual rainfall,
the larger the range of observed concentrations and the larger the mean per
site, possibly due to a dilution effect from rainfall in non-critical source
areas. The same conclusion is observed with annual flows in each catch-
ment. Similarly, Masiá et al. (2013) found that lower streamflows were
associated with higher in-stream pesticide concentrations in Spain. Fi-
nally, we also tested the relationships with soil characteristics detailed
in Table 1. Only for soil organic carbon (SOC), a certain pattern was ob-
served in that all three sites with SOC > 10 % had low pesticide concen-
trations. This might indicate that high SOC levels caused stronger
pesticide sorption decreasing concentrations, but the data is too sparse
to draw solid conclusions.

We used Multiple Linear Regressions (MLR) to test whether combi-
nations of explanatory variables (Appendix 10) would result in better
predictions.

All models indicate that a low concentration can only be expected with-
out the relevant potential pesticide sources. This fact can be nicely illus-
trated with the best model according to the Akaike Information Criterion

Image of Fig. 3


Fig. 4. Correlations between average pesticide concentrations and various explanatory variables. Crop coverage includes arable land plus orchards and vineyards. Each dot
represents a catchment of the NAWA TREND program. Red lines, dots and coefficients refer to the regressions without outliers.
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(Appendix 10; Akaike, 1974). The model, including the percentage of ara-
ble land and the precipitation amount, was selected as it performed better
and was significant (AIC=260.5; R2= 0.30; p-value=0.04). It explained
about 30 % of the variance (Appendix 11):

Ccalc ¼ 3:68∙Arable � 0:29∙Precipitationþ 257:5

By removing the outlier as suggested in Fig. 4, the performance is
slightly increased (AIC=246.5; R2= 0.40; p-value=0.01; Appendix 10).
Fig. 5. Cumulative concentrations of corn herbicides normalised by the h

7

3.3. Prediction of the number of exceedances for multiple crops

By comparing the concentrations with Environmental Quality Stan-
dards (EQS) defined by the Water Protection Ordinance (Appendix 1),
we could calculate an average number of EQS exceedances for each
watershed on the list of compounds from the Water Protection Ordi-
nance. Subsequently, we tested regressions between the number of
exceedances (Ncalc) and the explanatory variables. The best results
came from the same variables and the percentage of wastewater in
alf-life in soils (DT50) and the OC-water partition coefficient (KOC).

Image of Fig. 4
Image of Fig. 5
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the total water discharged (Fraction WW ; Appendix 12 & Appendix
13):

Ncalc ¼ 0:023:Arableþ 3:69:Fraction WW � 0:0016:Precipitationþ 1:22

This time, the statistical performance is slightly better, with an R2 of
0.50 (p-value = 7e-3).

3.4. Chemical properties influence

In Approach 1, normalising the concentrations by DT50 and KOC in-
crease the correlation with the corn crops connected to the stream network
(R2 = 0.4 against R2 = 0.29; Fig. 5). Without considering the connectivity
of corn crops, the normalization does not improve the relationship.

Concerning Approach 2, normalising the cumulative concentrations by
the chemical properties of each substance can improve the relationships de-
pending on the considered explanatory variable (Table 2). As an example,
the coefficients of correlations increase for arable lands but decrease for
the precipitation amount or the annual mean flow.

4. Discussion

4.1. Model validity

4.1.1. Methodology
This paper explores relationships to predict in-stream pesticide concen-

trations with explanatory variables. We tried various approaches with a
large dataset concerning pesticide concentrations, i.e., high frequency and
numerous stations, and detailed explanatory variables (e.g., detailed land
use data at the parcel scale). Our analyses indicate that moderate relation-
ships between aquatic pesticide pollution levels and land use data only ap-
pear with a combination of high-resolution land use and connectivity data
sets for specific crops, e.g., corn fields, in this study. The high uncertainty
Table 2
Coefficients of correlation between the cumulative concentrations of pesticides considere
the OC-water partition coefficient (KOC) and the respective explanatory variables. The v
spond to the coefficients of correlation without the outliers (see Fig. 4).

Category Sub-Category Variable

PPP source Pesticide Risk map Point sources map (farmyard
General land use (areal fraction) Arable land

Crops
Orchards
Vineyards

Major crops (areal fraction) Cereals
Corn
Sugar beet
Rape seed
Vegetables
Potatoes
Legume

Urban influence Urban areas
Wastewater Number Wastewater Treatm

Fraction of Wastewater
Risk of transport Pesticide Risk map Connectivity map

Drainage map
Pesticide risk index

Catchment and river characteristics Size
Compactness coefficient (KG

Mean elevation
Topography: mean slope
Precipitation amount (mm)
Annual mean flow (mm.yr−

Soil properties Soil organic carbon content
Depth index
Stone index
Water storage index
Nutrient storage index
Permeability index
Waterlogging index
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shown by our spatial extrapolation models can be attributed to many
sources, where the limited knowledge about the pesticides inputs plays a
major role.

Although differentmodels showed high uncertaintywhen extrapolating
in space, interannual variability showed a more consistent pattern. In par-
ticular, based on preliminary data in 2020, we compared to which extent
the cumulative concentrations per sample remained stable between 2019
and 2020 (Appendix 14). Such high temporal correlation suggests that
the limited knowledge of factors that might affect interannual variability,
such as time of application, or interval between application and precipita-
tion events, are of less importance than factors that might affect spatial
variability, such as application rates, which can be assumed to bemore uni-
form in time than in space. However, more data are required to make a
more robust evaluation in this regard.

Concerning Approach 1, we tried to extract from the cumulative con-
centrations the signal from corn fields based on the areal fraction of corn
and its connected part in the respective watersheds and the average appli-
cation rates at the national scale. This approach shows weak correlations
with the connected fraction of corn, not appearing only with the fraction
of corn. Collecting actual application rates in each catchment and using
them to extract the signal may reduce the uncertainties in this approach.
Moreover, high-resolution data sets of land use and connectivity seem
needed to obtain significant relationships and may be encouraged. In this
approach, some herbicides are not detected in a few catchments. These her-
bicides may be stored or degraded before reaching the outlet, may not be
used in these catchments, or may be used in low amounts leading to a con-
centration in each sample below the limit of quantification.

The approaches in this paper try to relate the full signal from one crop or
a list of substances to explanatory variables by summing the cumulative
concentrations. Thismethod assumes that the pesticides considered behave
approximately in the same way. It does not consider the physical-chemical
and environmental fate properties of the substances that could influence
their transport, storage, or degradation in soil and water.
d inApproach 2, or the normalised concentrations by the half-life in soils (DT50) and
alues in parenthesis for the precipitation amount and the annual mean flow corre-

Base D50 Koc D50 & Koc

s) 4.73E-03 0.01 0.03 0.02
0.16 0.24 0.26 0.29
0.19 0.31 0.17 0.19
0.01 0.04 0.02 0.02
0.01 0.04 0.04 0.04
0.16 0.16 0.19 0.16
0.01 0.01 4.56E-03 0.02
0.42 0.40 0.37 0.34
0.12 0.06 0.11 0.08
0.02 0.01 0.01 0.01
0.1 0.31 0.28 0.43
0.03 2.26E-03 0.01 3.95E-03
0.14 0.17 0.11 0.11

ent Plant 1.69E-03 2.47E-03 3.33E-05 4.57E-04
0.01 2.93E-04 1.95E-03 4.96E-04
0.17 0.08 0.05 0.03
0.11 0.22 0.20 0.24
0.09 0.14 0.02 0.14
0.01 0.01 1.37E-04 0.03

) 0.17 0.12 0.18 0.01
2.07E-03 0.01 1.92E-03 1.15E-04
1.89E-03 0.01 0.01 0.01
0.15 (0.39) 0.07 (0.34) 0.08 (0.31) 0.05 (0.39)

1) 0.04 (0.37) 1.23E-03 (0.4) 1.38E-03 (0.17) 0.02 (0.22)
(%) 0.12 0.05 0.07 0.03

0.11 0.14 0.10 0.09
0.05 0.06 0.10 0.10
9.39E-04 0.01 8.86E-04 3.56E-05
0.02 0.05 0.04 0.05
0.04 0.01 0.02 0.01
0.15 0.08 0.08 0.06
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Nevertheless, we tried to incorporate the chemical properties of the se-
lected substances to incorporate their different behaviour in the calculation
of the cumulative concentrations. In Approach 1, we found better correla-
tions in all scenarios. Concerning Approach 2, interesting correlations
were found only by normalising by DT50. The issues with the normaliza-
tion by KOC might be linked to the variability of SOC in the watersheds. In-
deed, the variability of the soil quality is not considered in our calculations.
More research should be conducted to understand better the impact of the
chemical properties of pesticides on the signal received at the outlet of each
catchment.

4.1.2. Missing samples, substances, and catchments
The number of samples in each catchment is not always the same due to

differences in sampling protocols. As was done in this paper, normalising
the number of samples may attenuate the problem. However, lacking sam-
ples may induce missing parts of the signal important to reflect the total
amount of pesticides exported to the outlet, as concentration patterns are
highly dynamic. Therefore, missing samples will impact the average con-
centrations we calculated for 2019 and may influence all the correlations
with the explanatory variableswe tried to highlight in this paper. This state-
ment is evenmore true if missing samples occur during the growing season,
which typically have higher concentrations than in the non-growing sea-
son. To avoid this issue, future research may focus on multiyear datasets
in order to attenuate the impact of missing samples on the final signal.

This study focused on two lists of compounds. The first list considers the
herbicides used on corn crops. We selected herbicides applied to corn fields
as the application frequencies should be the easiest to understand. We
found a weak relationship between the concentrations calculated with
this selection and the percentage of corn fields connected to the stream.
Nevertheless, the relationship with connected corn was performed only
with 18 catchments instead of 21 as the fraction of connected corn was
unavailable in sites where we do not have high-resolution land use data,
i.e., sites 7, 8, and 9 (see Appendix 2). Then, the improvement could be
linked to the reduction of the heterogeneity in the catchments than the se-
lected explanatory variable.

Moreover, the underestimations of cumulative concentrations in Fig. 3
could be due to the selection of pesticides performed in Approach 1
(Fig. 2). This study is limited by the number of substances measured at all
selected sites within the NAWA TREND program. Appendix 15 shows the
status of each pesticide applied to corn fields in Switzerland. Even if we se-
lected the pesticides that may play a major role in the corn signal expected
in surface waters, some of the excluded substances may be used in large
amounts in specific parts of the country to replace widely used pesticides.
This statement may distort the comparison of cumulative concentrations
between catchments. Considering these spatial differences in the applica-
tion of herbicidesmay decrease the uncertainties observed. The same issues
may be found with other crops, as they present more complex pesticide ap-
plication frequencies.

In Approach 2, we explore multiple compounds from the Water Protec-
tion Ordinance of Switzerland, selected to cover a significant part of the
ecotoxicological risk. In this paper, we selected substances based on their
impact on freshwater ecosystems but also depending on the sampling fre-
quencies in the NAWA TREND program. It was important to choose com-
pounds measured at all the sites selected in our study to cover
Switzerland and keep as many watersheds of the NAWA TREND program
as possible. However, these selections imply that we miss signals from un-
selected compounds, as in Approach 1 with the unselected corn herbicides
in Fig. 2. These missing substances may be applied in substantial amounts
in somewatersheds and not others, whichmay influence the total signal re-
ceived at the outlet. Therefore, the correlations could be improved by
analysingmore compounds and representing a broader picture of the pesti-
cides used on the national scale.

4.1.3. Explanatory variables
Multiple correlations between pesticide concentrations and explanatory

variables were tested in this study. In approach 1, we related corn
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herbicides with the fraction of corn in each catchment, whether it is con-
nected to the stream or not. Single herbicide analysis returned weak rela-
tionships except for S-Metolachlor with the fraction of corn connected to
the stream (R2 = 0.43; p-value = 3.1 e−3; Fig. 3). As this molecule is
used only on corn and beets (if we neglect other uses; Appendix 3), we
could assume that the extraction of the corn signal from the total concentra-
tion works better with a combination of beets and corn fields than with
other crops. It is supported by the results obtained in Approach 2, with a
substantial correlation between the pesticide concentrations and the frac-
tion of beets (R2 = 0.42; p-value = 0.001; Appendix 9).

Increasing water fluxes could lead to higher erosion resulting in greater
pesticide loads to surface waters. On the contrary, we found in most catch-
ments that pesticide concentrations show a significant decreasing trend
with increasing precipitation or discharge (Fig. 4). This is consistent with
findings from an aquatic pesticide study in Spain, which showed that
lower streamflows were associated with higher concentrations (Masiá
et al., 2013). We could explain this tendency by a dilution effect. In this
plot, the outlier with a low water flux and a low precipitation amount is
an artificial waterway, which could explain its different behaviour. Site 8
is also an outlier presenting a high pesticide concentration facing high dis-
charge or precipitation. It is due to high detections of Metribuzin in late
spring. This pesticide is mainly used on potatoes (Appendix 6), which
could explain the outlier as the fraction of potatoes in site 8 is much higher
than in other sites (12 % against 1 % on average).

The models provided in this paper depend on the pesticide concentra-
tion and the quality of the explanatory datasets. As mentioned in
Section 2, land use data are available at a high-resolution in many cantons
but only at the municipality scale in others. This difference may impact the
spatial extrapolation depending on the land use datasets. For example, the
unavailability of high-resolution land use data in watersheds 7, 8, and 9 did
not allow calculating a fraction of connected corn fields in these areas. In
the sameway, soil characteristics are qualitative indices that limit the statis-
tical analysis. There is a need for a detailed soil map at the national scale to
better highlight the links between soil quality and pesticide fate.

4.2. Number of exceedances

The relationship between Ncalc and the explanatory variables reveals
that for catchments with precipitation below 1000 mm y−1, exceedances
may be expected. This model gives no exceedances detected if the drained
catchment has no arable lands, no wastewater effluent, and precipitation
>1000 mm y−1. The arable lands and the wastewater factors are related
to pesticide contributions to surface waters. Higher precipitation in non-
critical source areas may dilute in-stream pesticides, leading to the absence
of exceedances.

4.3. Spatial extrapolation

We used the model with the lowest AIC to extrapolate concentrations to
the entire stream network in the Swiss Plateau (Section 3.2.1). We decided
to exclude subwatersheds with an elevation >1000 m.a.s.l., because they
typically have low to null crop coverage. Fig. 6 shows the distribution of
average concentration within the subwatersheds. We found that the com-
pounds studied in this paper might not be detected in about 45 % of the
Swiss stream network. As expected, the Swiss plateau and the Rhône valley
contain the subwatersheds with the highest predicted concentrations and
the most significant numbers of exceedances, as these areas concentrate
the highest anthropogenic pressures in the country.

4.4. Perspectives

This study provides a feasibility study on whether cumulative pesticide
concentrations in Swiss streams can be spatially extrapolated. High uncer-
tainties remain in our model regarding the statistical performances. Our
model is based on data between March and October 2019. The fate of the
pesticide concentrations at the outlet of the different watersheds is



Fig. 6. Spatial representation of the average concentration (ng L−1) and the number of exceedances in the various subwatersheds in Switzerland. The values are calculated
based on the multiple regression model described in Section 3.2.1. Subwatersheds with an average elevation >1000 m.a.s.l. were excluded as they present a low crop cov-
erage and are less subjected to pesticide exceedances.
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uncertain due to many issues, e.g., assumptions in the model, limited data
on pesticide input, and limitations from monitoring (i.e., missing samples,
restricted number of pesticides tested). Governmental decisions on the
future use of some compounds may impact the total concentrations. Simi-
larly, modifications in the hydrological cycle due to climate change or
land use distribution may affect our conclusions.

5. Conclusion

This study explores relationships between aquatic pesticide pollution
levels and explanatory variables to extrapolate pesticide levels to other
parts of the stream network with little to no monitoring. We performed
two approaches. Firstly, we focused on corn fields and corn herbicides. Sec-
ondly, we studied a list of pesticides used on various crops. For the corn ap-
proach, we saw a weak relationship between the amount of corn cultivated
and connected to the stream and the concentrations of corn herbicides in
the river. For multiple pesticides coming from various crops, a moderate re-
lationship was found between in-stream pesticide concentrations, crop cov-
erage in the watershed, and the annual precipitation rate. Our analysis
10
suggests that the primary source of uncertainty comes from the lack of
knowledge on inputs of pesticides. This paper provides support towards de-
veloping a simple method that can lead to more sustainable agricultural
practices that keep freshwater ecosystems healthy and safe. However,
predicting pesticide concentrations in an unobserved stream is challenging
based on readily available catchment information, even with an existing
monitoring program established to quantify pollution levels in impacted
streams.
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