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A B S T R A C T   

Knowledge of groundwater residence times (GRT; the time elapsed since surface water infiltration) between losing rivers and pumping wells is crucial for man
agement of water resources in alluvial aquifers. The radioactive noble gas radon-222 (222Rn) has been used for decades as a natural indicator of surface water 
infiltration, as it can provide quantitative information on GRT. However, models using 222Rn as a tracer of GRT are often based on a set of highly simplifying as
sumptions, including spatially homogenous 222Rn production and exclusively advective mass transport within the aquifer. In this paper, we use the integrated 
surface-subsurface hydrological model HydroGeoSphere (HGS) to simulate 222Rn transport, production, and decay in a bank filtration context. Spatially variable 
222Rn production, based on experimental data, is explicitly considered. We show that variable 222Rn production rates, coupled with hydrodispersive mixing of 
groundwater, may lead to large biases in GRT estimates. Under certain transient conditions however, changes in tracer-derived GRTs correlate well with changes in 
mean groundwater age. Whereas 222Rn-derived GRTs may only be reliable under a narrow range of field conditions, 222Rn may serve as a powerful tracer of changes 
in mean GRT even in complex and heterogenous environments.   

1. Introduction 

Unconsolidated alluvial aquifers are often targeted for drinking 
water production given their high productivity and the convenience of 
shallow groundwater (GW) exploitation (Hiscock and Grischek, 2002; 
Margat and van der Gun, 2013). These systems can be described as 
natural water-treatment sites, as induced bank filtration, or the pumping 
of GW near a surface water (SW) body, is known to improve water 
quality through a range of chemical, biological and physical processes 
during underground flow (Hiscock and Grischek, 2002; Sprenger et al., 
2011). Hydraulic gradients induced by pumping wells placed near 
streams coupled to high transmissivities can lead to significant infiltra
tion fluxes and GW flow velocities; therefore, a large fraction of the 
abstracted water is composed of freshly infiltrated surface water with 
residence times of days to weeks (Frei and Gilfedder, 2021; Tufenkji 
et al., 2002). Knowledge of both the origin and the residence time (i.e. 
time from infiltration) of pumped water is critical for sustainable water 
supply, and is required to definition of capture zones, assessment of GW 
resources sustainability, and susceptibility to contamination and 
pollution. 

In such contexts, environmental and/or artificial tracers provide 
observable information on sources, pathways, and travel times of GW, as 

well as groundwater-surface water (GW-SW) mixing ratios (Brunner 
et al., 2017; Cook and Herczeg, 2000). The radioactive noble gas 
radon-222 (222Rn) is one of few environmental tracers that is sensitive to 
processes of GW-SW exchange at timescales of hours to ~10–15 days, 
which are often those most relevant for water management in alluvial 
aquifer contexts. This environmental gas tracer, which is naturally 
produced in the subsurface, is a powerful indicator of GW-SW in
teractions, as concentrations in GW are usually much higher (often or
ders of magnitude) than those in SW. This tracer has been extensively 
used over the last three decades to characterize SW infiltration into 
adjacent alluvial aquifers in terms of infiltration fluxes and GW resi
dence times (e.g. Bertin and Bourg 1994, Frei and Gilfedder 2021, 
Hoehn and Von Gunten 1989, Popp et al. 2021, Stellato et al. 2013, Vogt 
et al. 2010). 

Estimation of fluxes and residence times of bank filtrate with 222Rn 
usually relies on the apparent age model of Hoehn and Von Gunten 
(1989), which is based on the definition of a single 222Rn end-member 
activity representative of GW at radioactive equilibrium with the 
aquifer matrix. This is usually undertaken by sampling GW at a location 
where 222Rn activities are expected to be at secular equilibrium with the 
aquifer matrix, or by measuring 222Rn production rates directly from 
recovered sediment samples. However, the definition of a single 222Rn 
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end-member activity is only meaningful if 222Rn production rates are 
spatially homogenous at the scale of investigation. This assumption 
contrasts with results from several field studies, which have shown that 
222Rn production rates can vary considerably, sometimes by over one 
order of magnitude, at small scales within alluvial aquifers (e.g., Mul
linger et al. 2009, Peel et al. 2022, Schaper et al. 2022). 

Recent studies put forward the potential of explicitly simulating 
222Rn activities with mass transport models rather than relying on 
simple apparent age (or implicit) models (e.g., Gilfedder et al. 2019, 
Peel et al. 2022, Schaper et al. 2022). The latter even recommend 
avoiding the apparent 222Rn age model if field measurements suggest 
“substantial” variations in 222Rn production rates. This follows a more 
general trend in hydrological sciences in which the explicit simulation of 
tracer concentrations in mass transport models is considered to extract 
the information content of tracer measurements (e.g. Schilling et al. 
2019, Thiros et al. 2021, Turnadge and Smerdon 2014). 

However, the explicit simulation of tracer concentrations might not 
be suited when the time or the ability to incorporate tracer measure
ments into mass transport models coupled with sophisticated calibration 
approaches is not available. In such conditions, simple mathematical 
models (e.g. apparent age models or lumped-parameter models) are 
usually preferred. It is therefore critical to understand how site- and 
tracer-specific properties (e.g. aquifer hydraulic properties, transient 
hydraulic conditions, spatiotemporal variations in tracer sources/sinks, 
etc..) may lead to bias in tracer-derived apparent GW ages. Systematic 
exploration of the performance of the apparent 222Rn age model 
simultaneously accounting for different aquifer properties, variable 
hydraulic conditions and spatially heterogenous 222Rn production has 
not yet been undertaken, although it is of clear interest for water re
sources management. Accordingly, the goal of the present study is to test 
the sensitivity of apparent (or radiometric) 222Rn ages to (i) aquifer 
hydraulic and transport parameters, (ii) transient hydraulic conditions, 
and (iii) the magnitude and spatial scale of variability of 222Rn pro
duction into GW. We quantify the bias between mean and apparent GW 
ages and illustrate some limits of the apparent 222Rn age model. We also 
identify cases in which 222Rn can provide reliable information on GW 
residence time without having to resort to complex numerical models. 
To this end, we constructed a synthetic 2-D mass transport model 
explicitly simulating mean GW age and dissolved 222Rn, with both 
spatially homogenous and heterogenous 222Rn production. The model 
simulates subsurface flow and transport along a transect downgradient 
of a losing river, with variable 222Rn production rates based on high- 
resolution sediment incubation experiments (Peel et al., 2022). Specif
ically, we seek to disentangle the relative importance of different sources 
of apparent age bias arising from (i) mixing of water of different ages, 
(ii) transient hydraulic conditions, and (iii) variable 222Rn production. 

1.1. 222Rn as a tracer of GW age 

222Rn (half-life ~3.8d) is an intermediary product in the 238U decay- 
chain, and occurs naturally in GW mainly as a result of alpha-decay of 
matrix-bound 226Ra (Cecil and Green, 2000). The magnitude of 222Rn 
production in GW is controlled by several factors, including total 226Ra 
activity of aquifer material, the location of 226Ra in or around mineral 
grains, sediment specific surface area, pore geometry, as well as water 
saturation (Cecil and Green, 2000). 

As there is no significant atmospheric source of 222Rn, most surface 
water bodies exhibit 222Rn activities generally much lower (often orders 
of magnitude) than those measured in GW (Cecil and Green, 2000). Only 
in and downstream of strongly gaining river reaches do 222Rn activities 
in streams reach significant levels (Cartwright and Gilfedder, 2015). 

1.2. 222Rn dating method 

GW dating with 222Rn is based on gradual increase of 222Rn activities 
in recently infiltrated water as a function of residence time (i.e. time 

since infiltration). Assuming spatially constant production of 222Rn in 
GW, the apparent age of a water sample aapp [T] can be computed with 
the following equation (Cranswick et al., 2014; Hoehn and Von Gunten, 
1989): 

aapp = −
1

λRn
ln
(

ARn,eq − ARn,meas

ARn,eq − ARn,0

)

(1) 

Where ARn,meas [T − 1L− 3] is the activity of 222Rn in a given GW 
sample, ARn,eq [T − 1L− 3] is the activity of 222Rn at equilibrium with the 
aquifer matrix (222Rn end-member activity), ARn,0 [T − 1L− 3] is the 222Rn 
activity of surface water at the time of infiltration, and λRn [T − 1] is the 
222Rn decay constant (~0.18 d − 1). The equilibrium 222Rn concentra
tion of GW ARn,eq is the ratio of the aquifer 222Rn production rate γRn [T −
2L− 3] and the 222Rn decay constant: 

ARn,eq =
γRn

λRn
(2) 

In practice, GW may be considered at equilibrium after approxi
mately four to five half-lives of 222Rn (~15–20 days). Eq. (1) has regu
larly been used to date young (i.e. < 15–20 days) GW in bank filtration 
contexts (e.g. Cranswick et al. 2014, Frei and Gilfedder 2021, Pittroff 
et al. 2017, Schilling et al. 2017). As is the case for most tracer-based 
apparent age models, Eq. (1) is only valid in the restrictive case of 1-D 
piston flow, meaning if there is no mixing of water of different ages in 
a GW sample (e.g. due to intra-aquifer mixing or sampling of multiple 
flowlines). Moreover, Eq. (1) also relies on the definition of a single 
222Rn end-member activity (ARn,eq) representative of GW at equilibrium 
with the host aquifer matrix, which inherently supposes homogenous 
222Rn production (γRn) at the scale of investigation. Therefore, in cases 
where 222Rn production is not homogenous, definition of a single or a 
range of 222Rn end-member(s) for the computation of apparent GW ages 
is not trivial and is limited by the fragmentary knowledge of the dis
tribution of 222Rn activities and production rates at a given study site (e. 
g. Peel et al. 2022). 

1.2.1. Apparent age bias and GW mixing 
When tracer concentrations vary non-linearly with respect to time, 

any process that leads to mixing and spreading of a solute will system
atically result in biases of apparent ages relative to mean ages McCallum 
et al., 2013; Varni and Carrera, 1998; Waugh et al., 2003). On top of 
spatially heterogenous production in the case of 222Rn, sources of 
apparent age bias include intra-aquifer mixing due to dispersion and 
diffusion, as well as mixing of waters following different flow paths in 
piezometers or wells with long screens (Bethke and Johnson, 2008; 
Manning et al., 2005). Even in the simple case of 1D, homogenous 
steady-state flow along a hypothetical flowline, hydrodynamic disper
sion will lead to mixing of water of different ages, and any GW sample 
will exhibit at least an inverse-Gaussian distribution of ages, with vari
ance proportional to the dispersion coefficient (Ginn et al., 2009). 
Assuming homogenous 222Rn production, the relationship between 
mean and apparent 222Rn ages in such 1-D systems is given by the 
following functional relationship (derived from Massoudieh and Ginn 
2011, Eq. ((7)): 

aapp(x)
amean(x)

=
v0

2λRnαL

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
4αLλRn

v0

√

− 1

)

(3) 

Where aapp(x) [T] and amean(x) [T] are apparent and mean ages at 
sampling location x [L], v0 [LT− 1] the steady state GW flow velocity (or 
Darcy velocity), and αL [L] the longitudinal dispersivity. Under such 
conditions, the apparent age bias is a function of the ratio v0/λRnαL, akin 
to the Péclet number, and is independent of the magnitude of the 222Rn 
production rate γRn. This relationship highlights how apparent 222Rn 
ages are always smaller than mean ages in the case of homogenous 222Rn 
production. Only in the extreme case of purely advective transport (high 
Péclet number) or minute tracer decay both ages are equal. In more 
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general terms, when the rate of tracer accumulation decreases with 
increasing residence time (such as in the case of 222Rn), mixing of waters 
of different ages will lead to an apparent age younger than the mean age 
(McCallum et al., 2013). 

2. Materials and methods 

2.1. Synthetic 2-D numerical model 

A generic 2-D mass transport model was constructed to analyse the 
effects of aquifer hydraulic and mass transport parameters, transient 
hydraulic conditions, and spatially variable 222Rn production rates on 
the distribution of 222Rn activities and apparent 222Rn ages in the sub
surface. The synthetic model simulates infiltration of river-water into an 
aquifer, and GW flow and transport in variably-saturated conditions. 
The numerical code HydroGeoSphere (Aquanty, 2023) was used, as it is 
capable of simulating variably-saturated flow and solute transport with 
both source and decay terms, corresponding respectively to 222Rn 
ingrowth and disintegration. The scope of the 2-D model is to explicitly 
simulate 222Rn signatures in groundwater along multiple flowlines 
downgradient from the site of infiltration (i.e. a stream or river) in both 
steady-state and transient hydraulic conditions. 

Model dimensions are 400 m x 50 m in the horizontal (X) and vertical 
(Z) directions respectively. A channel representing a simplified river-bed 
and bank was included at the top-left of the model domain (channel 
depth: 4 m; width: 10 m; bank slope: 30◦). The model was discretized 
into approximately 40′000 triangular elements, with element edges 
ranging from about 15 cm near the top of the model and stream/aquifer 
interface to 2.5 m at depth near the model outlet (X = 400 m). 

The river was simulated by a constant head boundary condition (BC) 
along all channel nodes. To ensure continuously losing river conditions 
(i.e. infiltration of river water into the aquifer), the outlet (X = 400 m) 
was assigned a constant head at least 2 m lower than that at the inlet. To 
simulate the effect of transient hydraulic conditions on 222Rn signatures 
(for example as a consequence of increased GW pumping), a variable- 
head BC was applied to the model outlet, which simulated two incre
mental 1-m decreases in hydraulic head followed by a gradual return to 
initial conditions (see Fig. 1). This variable-head boundary leads to 

transient 50% and 100% increase in overall hydraulic gradients, and is 
chosen to highlight the effect of significant variations in GW flow ve
locity on the distribution of 222Rn throughout the model domain. 

No-flow BCs were applied to the left (X = 0 m) and bottom (Z = -40 
m) boundaries. The no-flow condition at the X = 0 boundary represents 
a hypothetical water divide, whereas the lower boundary represents the 
lower limit of the alluvial aquifer. A diffuse and spatially constant 
recharge of 300 mm/y was applied to the top boundary. 

The effect of GW flow velocity and aquifer dispersivity on 222Rn 
signatures in GW was explored by simulating various combinations of 
homogenous and isotropic hydraulic conductivity (K [L T − 1]) and 
longitudinal and transverse vertical dispersivity (αL, αTV [L]). Three 
spatially homogenous values of K (100, 250 and 500 m/d) and two of 
longitudinal dispersivity αL (5 and 20 m) were selected. Transverse 
vertical dispersivity was set to 10% of longitudinal dispersivity. The 
values of K are representative of sand and gravel aquifers (Bear, 1972), 
while those of dispersivity are consistent with measurement scales be
tween 1 and 1000 m (Gelhar et al., 1992; Schulze-Makuch, 2005). No 
clogging layer was considered at the stream/aquifer interface, and the 
hydraulic conductivity was the same as within the aquifer. The van 
Genuchten – Mualem model was used to simulate variably-saturated 
flow with parameters α and β set to 4.1 m − 1 and 2.2 (-) respectively. 
A constant porosity 0.2 was assumed for all simulations, which is 
representative of unconsolidated sandy gravel aquifers (e.g. Fetter 
2001). 

The solute transport model simulated both 222Rn concentrations and 
mean GW age. Mean age was simulated by applying a zero-age BC at the 
inlet and top boundaries, and all elements were assigned an age source 
term simulating a theoretical tracer with a growth rate of unity in the 
subsurface (i.e., 1 day per day, Goode (1996). Mean GW age is therefore 
directly simulated through the advection-dispersion transport equation, 
and treated as a conservative solute with zero age at model inlets, and a 
subsurface ageing term γAge [-] of 1 day per day (Goode, 1996). 

A zero-concentration BC was applied to the inlet and top boundaries 
for 222Rn. This boundary condition reflects the fact that 222Rn activities 
in surface waters tend to be negligible compared to those in ground
water, as there are no atmospheric sources of 222Rn, and any dissolved 
222Rn is quickly lost to the atmosphere through gas transfer (Cecil and 
Green, 2000). 222Rn production by the aquifer matrix was simulated by 
applying a (spatially-variable) zero-order source BC to all model ele
ments. Note that 222Rn production and emanation rates are related by 
the following expression (e.g. Cook et al. (2006), Eq. (14)): 

γRn = EmρgrainλRn
1 − φ

φ
(4) 

Where Em[Bq kg− 1] is the 222Rn emanation rate, ρgrain [kg l − 1] is the 
density of the mineral phase, and φ [-] is the sediment porosity. A ho
mogenous grain density of 2.65 kg l− 1 was assumed. 222Rn production 
rates in the unsaturated zone were scaled to account for variable water 
content and air/water partitioning of 222Rn, as described in Delottier 
et al. (2022). 222Rn production rates in the unsaturated zone are effec
tively decreased by simulating instant equilibrium of produced 222Rn 
between air and water phases according to 222Rn solubility and water 
saturation (Delottier et al., (2022); Eq. (7)): 

γRn,eff (Sw) = Sw
HccγRn,sat

HccSw + [1 − Sw]
(5) 

Where γRn,eff (Sw) [T − 2L− 3] is the effective (or scaled) 222Rn pro
duction rate in water as a function of water saturation Sw [-], γRn,sat [T −
2L− 3] is the 222Rn production rate in saturated conditions (i.e., Sw=1), 
and Hcc [-] is the dimensionless air-water partitioning coefficient of 
222Rn 

(
Hcc = Cwater

Cair

)
. A constant air-water partitioning coefficient equal to 

that at 10 ◦C was used for 222Rn (Hcc ≈ 0.35), calculated after Weigel 
(1978). Free-solution diffusion coefficients for both 222Rn and mean age 
were set to 10− 9 m2/s (Goode, 1996; Ishimori et al., 2013). For each 

Fig. 1. 2D model setup. A: Geometry and boundary conditions; B: Variable 
head boundary condition at model outlet. 
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transient simulation, initial 222Rn concentrations were determined from 
steady-state conditions with outlet hydraulic head h0 = 5 m. Finally, the 
transient model was run for a total simulation time of 60 days (Fig. 1B). 

222Rn production rates are based on a high-resolution dataset of 
222Rn emanation rates in a bank filtration setting (Peel et al., 2022). 
These production rates provide a realistic basis upon which a variety of 
spatial distributions of 222Rn production could be constructed. A 
simplified geostatistical framework was employed to create 
spatially-variable distributions of 222Rn production rates in the 2-D 
model. Three synthetic variogram models, representing small-, inter
mediate- and large-scale variability of 222Rn production, were employed 
to capture a substantial range of spatial distributions of 222Rn produc
tion rates. For all scenarios, an exponential variogram model was used, 
with ranges from 20 × 10 m up to 200 × 30 m in the X and Z directions 
respectively (see Table 1). Synthetic conditioning data, based on the 
statistical properties of measured 222Rn emanation rates, were placed at 
regular intervals within the model grid with spacing equal to half the 
variogram ranges in both the X and Z directions. For the three variogram 
models, fifty sets of synthetic conditioning data were created. For each 
of these datasets, ten equiprobable realizations of the spatial distribution 
of emanation rates (total 500 realizations per variogram model) were 
generated with a Sequential Gaussian Simulation (SGS) algorithm with 
the GEONE python software package (Straubhaar, 2020). A full 
description of the geostatistical workflow can be found in Appendix A. 
This methodology led to a coefficient of variation (CV) of modelled 
222Rn production rates of over 50% for each realization, with a mean 
222Rn production rate (± 1-σ) of 3.0 ± 1.6 Bq l− 1 s− 1 (see Table 1). 

2.2. Quantification of apparent age bias 

The bias – or relative deviation - between apparent 222Rn and mean 
ages at a given location can be defined as: 

bias(x, t) =
aapp(x, t) − amean(x, t)

amean(x, t)
(6) 

Where amean(x, t) [T] and aapp(x, t) [T] are the mean (directly simu
lated) and apparent (computed from simulated 222Rn activities) ages of 
groundwater at sampling location x and simulation time t. In the 
considered 2-D system, bias can arise from (i) mixing of water of 
different ages (hydrodynamic dispersion) and (ii) variable 222Rn pro
duction rates (γRn) i.e., a non-unique 222Rn end-member activity (ARn,eq). 

Mixing due to sampling of multiple flowlines is not considered in the 
present study, although this may be an issue in many real-world contexts 
due to long screens in piezometers. 

To disentangle the contributions of mixing and variable 222Rn pro
duction to the age bias (Eq. (6)), transient simulations were run for the 
six combinations of hydraulic conductivity and dispersivity (see Table 1) 
with a constant value of γRn assigned to all model elements. In these 
scenarios, any age bias results from mixing of GW with different ages. 
Synthetic linear observation wells were placed throughout the model 
domain at regular intervals of 2.5, 6.25, and 12.5 m in the horizontal 
direction for cases where K was equal to respectively 100, 250, and 500 
m/d (well placement shown in Appendix B). Each well is placed from the 
surface to a depth of 20 m. Output including mean GW age and 222Rn 
activities was produced for all nodes located within 10 cm of these 
synthetic observation wells. This allowed the calculation of apparent age 
bias at various locations within the model domain at every timestep for 
cases where 222Rn production is spatially constant. A generic value of γRn 
equal to porosity (i.e. 0.2) was selected for these simulations. Note that 
apparent age bias does not depend on the choice of γRn in the case of 
constant 222Rn input, as all simulated 222Rn activities are normalized by 
the end-member activity ARn,eq for calculation of apparent age. For the 
calculation of apparent ages, ARn,eq was constant and defined as the ratio 
of γRn and λRn (Eq. (2)). 

Subsequently, simulations were run by assuming spatially variable 
222Rn production. The 222Rn apparent age bias, that is the amount of 
bias attributed solely to the spatial variability of 222Rn input, was 
defined from Eq. (6) as: 

biasRn(x, t) = bias γRn,var (x, t) − bias γRn,cst (x, t) =
a γRn,var

app (x, t) − a γRn,cst
app (x, t)

amean(x, t)
(7) 

Where bias γRn,var (x, t) and bias γRn,cst (x, t) [-] are the apparent age 
biases in the case of spatially variable and constant 222Rn production 
(γRn) respectively, and a γRn,var

app (x, t) [T] and a γRn,cst
app (x, t) [T] are similarly 

the apparent 222Rn ages in the two cases. 
The definition of a single 222Rn end-member equilibrium activity for 

the computation of apparent age is not straightforward in cases where 
the 222Rn input is spatially variable. Indeed, local changes in production 
rates will lead to commensurate changes in 222Rn activities, especially 
for “old” groundwater components with mean ages > 25 days. In real- 
world settings, groundwater may be sampled at one or several loca
tions where it is expected to be at secular equilibrium with the aquifer 
matrix. If 222Rn production is spatially variable, measured end-member 
activities may strongly depend on sampling location. To account for this 
non-uniqueness in the definition of 222Rn end-member equilibrium ac
tivities, and to encompass all possible apparent ages based on simulation 
results, three 222Rn end-member activities were defined, representing 
respectively the (1) minimum, (2) mean, and (3) maximum simulated 
222Rn concentrations at nodes where the mean age in steady-state flow 
and transport conditions is > 25 days. These end-member activities 
therefore represent integrated 222Rn input signals from model inlets to 
sampling points. For each simulation, end-member activities were 
computed from simulated 222Rn activities at over 150 nodes where mean 
GW age was above 25 days. 

To simultaneously account for the influence of mass-transport pro
cesses (advection-dispersion), the rate of 222Rn accumulation, and the 
scale of variability of 222Rn production in relation to the sampling scale, 
we introduce a dimensionless Damköhler-like number N0

Rn: 

N0
Rn =

λRnL2

αLv
S
L

(8) 

Where L [L] is the sampling scale (e.g., the distance from the inlet to 
the sampling point), S [L] is the scale of variability of 222Rn production 
rates (e.g., geostatistical correlation length), and v [L T − 1] the repre
sentative GW flow velocity (Darcy velocity). The first set of terms λRnL2/

Table 1 
Aquifer and geostatistical parameters used for the 2-D flow and transport model. 
An exponential variogram model representing the spatial correlation of 222Rn 
production rates was selected for all cases (see Appendix A for details). K: hy
draulic conductivity;.αL: longitudinal dispersivity; φ: porosity; ρgrain: aquifer 
grain density; λRn: 222Rn decay constant; γRn,sat : zero-order source for 222Rn (in 

saturated conditions); γAge: unit source term for age; DRn,Age
0 : free-solution 

diffusion coefficient respectively for 222Rn and mean GW age.   

Property Modelled values/range 

Aquifer properties K (m d− 1) 100 
250 
500 

αL (m) 5 
20 

φ (-) 0.2 
ρgrain (g cm− 3) 2.65 

Tracer properties λRn (d− 1) 0.1814 
γRn,sat (Bq l− 1 d− 1) 3.0 ± 1.6 (1-σ) 
γAge (d

− 1) 1 
DRn

0 (m2 s− 1) 10− 9 

DAge
0 (m2 s− 1) 10− 9 

Variogram range for 222Rn production Range (X – Z) 20 m – 10 m 
50 m – 15 m 
200 m – 30 m  
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αLv is the Damköhler number for a reaction with first-order coefficient 
λRn (e.g., Oldham et al. 2013), and represents the relative dispersive 
mass-transport and radiochemical (i.e., 222Rn accumulation) timescales. 
The ratio S/L is a measure of the relative timescale a given water sample 
will have spent in zones of distinct 222Rn production (potentially high or 
low). Here the radiochemical timescale is given by λRn instead of the 
222Rn production rates γRn, as the rate of 222Rn accumulation is one of 
first order increase, modulated by the 222Rn decay constant. If we as
sume the ratio L/v approximates the mean age of a water sample, we can 
simplify Eq. (8): 

N0
Rn ≈ NRn = ameanλRn

S
αL

(9) 

The amount of 222Rn bias (Eq. (7)) as a function of NRn may offer 
some insight on the combined effects of mass-transport, spatial corre
lation of 222Rn production rates, and the residence time of GW on the 
performance of the apparent 222Rn age model. Indeed, low values of NRn 

are associated smaller-scale spatial variations in 222Rn production rates 
(as given by S), lower GW residence times (amean) and therefore (on 
average) lower 222Rn activities, and higher smoothing of 222Rn activities 
due to hydrodynamic dispersion (αL); resultant spatial distributions of 
222Rn activities tend to be smoother, and computed apparent ages less 
influenced by the asymptotic behaviour of the 222Rn age model when 
activities approach those of the end-member. Taken together, these ef
fects likely dampen the effect of variable 222Rn production on 222Rn bias. 
The converse is true for large values of NRn. 

3. Results 

3.1. Modelled 222Rn end-member equilibrium activities 

As described in Section 2.2, three different 222Rn end-member 
equilibrium activities were defined for each simulation, representing 
respectively the (1) minimum, (2) mean, and (3) maximum simulated 
steady-state 222Rn concentrations at nodes where the mean age is > 25 
days. Each of these end-member activities vary from one simulation to 
the next, depending on the given spatial distribution of 222Rn production 
rates. The range of end-member 222Rn activities for each of the eighteen 
illustrative cases described in Section 2.1 is shown in Fig. 2. 

For the six combinations of K and αL modelled, 222Rn end-member 
activities vary, on average, around a value representative of the mean 
production rate (~16.5 Bq l − 1, see Table 1). This results from the lack of 
a systematic trend in the spatial distribution of 222Rn production rates (i. 
e. spatially constant mean production rate within the model domain). 
However, the spread of 222Rn equilibrium activities, both within a given 
222Rn end-member class (min, mean, or max) and between these end- 
member activities, depends most strongly on hydraulic conductivity 
(K), albeit with significant influence of dispersivity (αL) and the spatial 
distribution of production rates as given by the variogram models. 
Indeed, the range of end-member activities and differences between end- 
member classes are largest at low values of K and αL, and large vario
gram ranges. Coefficients of variation of the mean 222Rn end-member 
activities range from 0.04 for the case αL = 20 m, K = 500 m/d and 
smallest spatial correlation (“Vario 1′′) to 0.09 for the case αL = 5 m, K =
100 m/d and largest variogram range (“Vario 3′′). The ratio of mean 
minimum to maximum end-member activities ranges from 1.1 to 2.3 for 
the same cases. 

Fig. 2. Boxplots of 222Rn end-member activities for different combinations of hydraulic conductivity (K), longitudinal dispersivity (αL), and variogram models for the 
distribution of 222Rn production. Aggregated statistics from all simulations are shown here. Vario 1, 2, and 3 represent variogram models with ranges in the X and Z 
directions of 20 × 10 m, 50 × 15 m, and 200 × 30 m respectively (see Table 1). The min, mean, and max parameters are the minimum, mean, and maximum end- 
member activities as defined in Section 2.2. The grey dashed line represents theoretical equilibrium 222Rn activities assuming a spatially constant production rate 
equal to γmean ≈ 3.0 Bq l− 1 s− 1, leading to ARn,eq ≈ 16.5 Bq l− 1 (see Table 1). 
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These observations can be linked to the smoothing effect of both GW 
flow velocity and dispersion on observed 222Rn activities. This is readily 
seen in Fig. 3, which shows the distribution of 222Rn activities within the 
model domain for a single realization of variable 222Rn production rates. 
At low velocities and dispersivities, 222Rn activities are very sensitive to 
small-scale changes in production rates. Indeed, 222Rn concentrations 
will be highly influenced by the local magnitude of 222Rn input. As ve
locities and dispersivities increase, 222Rn activities are averaged out as 
they integrate 222Rn input signals from an increasing portion of the 
aquifer, and tend to be representative of the mean 222Rn production rate. 

This averaging effect is modulated by the range of spatial correlation 
of 222Rn production rates; indeed, large zones of below- or above- 
average 222Rn input will appear in the model domain when variogram 
ranges are largest. The core of these zones will retain distinct 222Rn 
signatures even when flow velocities or dispersivity are large, as GW 
residence times within these zones allows 222Rn activities to equilibrate 
with the local aquifer 222Rn production rates. 

3.2. Apparent age bias in steady-state conditions 

3.2.1. Sensitivity to aquifer parameters (K, αL,TV) and scale of variability of 
222Rn production 

The range of simulated 222Rn apparent age biases in steady-state 
conditions (i.e., incurred only by the spatial variability of 222Rn pro
duction, Eq. (7)) as a function of mean age at all synthetic observation 
points is shown in Fig. 4 for each of combination of hydraulic conduc
tivity, dispersivity, and choice of 222Rn end-member activity (Sections 
2.1 and 2.2). Apparent ages were truncated at 16.5 days (i.e. at ~ 95% 
end-member activities). This apparent age is practically an upper limit 
for the 222Rn dating technique (see Section 1.1); in these instances, 
additional age bias was therefore not computed. For readability, only 
results for one variogram model are shown in Fig. 4A (“Variogram 3′′

with the largest correlation length for 222Rn production); Results from 
other variogram models exhibit the same overall trends, and are shown 
in Appendix C. Note that the age bias incurred by mixing of water of 

different ages through hydrodynamic dispersion has been subtracted 
from the total apparent age bias (see Eq. (7)). In cases simulated here, 
the effect of mixing is well approximated by Eq. (3), and ranges from 
~-0.05 for the case K = 500 m/d and αL = 5 m to approximately -0.5 for 
the case K = 100 m/d and αL = 20 m (see Appendix C). 

As shown in Fig. 4A, the average 222Rn apparent age bias is neutral, 
negative, and positive when computing apparent ages respectively with 
the mean, maximum, and minimum 222Rn end-members. This is a result of 
the sensitivity of the apparent age equation (Eq. (1)) to end-member 
definition; indeed, using an end-member with large 222Rn activities 
will lead on average to an underestimation of GW age, and vice-versa. In 
all cases presented here, age bias will tend to be slightly shifted towards 
positive values, as a result of the higher production rates modelled near 
infiltration zones (see Appendix A), leading on average to higher 222Rn 
activities and thus apparent ages. This is most clearly visible at lower 
values of K and αL (Fig. 4A), as lower GW velocities will lead to increased 
residence time in zones of high 222Rn production, and the smoothing 
effect of dispersivity remains modest. 

The magnitude and range of additional age bias is very sensitive to 
both GW flow velocity (controlled by hydraulic conductivity (K)), dis
persivity (αL), and the scale of variability of 222Rn production (as given 
by the variogram models). Indeed, the range of 222Rn apparent age bias 
increases when both velocities and dispersivities are low, and the scale 
of variability of 222Rn input is large. For example, in the case where K =
100 m/d, αL = 5 m, and the scale of variability is largest (“Variogram 
3′′), the 25/75% interval for additional bias ranges between -0.3 and +1 
at mean age = 5 days, and between -0.4 and +1 at mean age = 10 days. 
Conversely, when K = 500 m/d, αL = 20 m, and the scale of variability is 
lowest (“Variogram 1′′, see Fig. 4B), additional bias is much more 
modest, with a 25/75% interval between 0 and +0.17 at mean age = 5 
days, and between 0 and +0.25 at mean age = 10 days. This observation 
is linked to the smoothing effects of both GW flow velocity and dis
persivity as described in Section 3.1. Indeed, even though 222Rn activ
ities oscillate around a value representative of the mean production rate, 
large variations in observed 222Rn concentrations at greater distances 

Fig. 3. Effect of hydraulic conductivity (K) and longitudinal dispersivity (αL) on simulated steady-state 222Rn concentrations. Results from a single realization of the 
distribution of 222Rn production rates and the six parameter combinations are shown for illustrative purposes. A: Equivalent equilibrium 222Rn concentrations (=γRn 
/λRn, Eq. (2)) in the model domain, shown here as a proxy for 222Rn production rates. They represent theoretical equilibrium 222Rn activities in saturated conditions 
without flow or molecular diffusion; B: 222Rn activities in steady-state conditions. Black contour lines represent mean groundwater age. 
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Fig. 4. 222Rn age bias (Eq. (7)) in steady-state conditions as a function of mean age computed with the mean (grey), maximum (red), and minimum (blue) 222Rn end- 
member activities (see Section 2.2 for the definition of these end-member activities). The median (µ1/2), min and max biases, as well as the 50% and 97.5% intervals 
are shown. A: Simulated 222Rn bias as a function on mean age with variogram model 3 (“Variogram 3′′, highest correlation length for 222Rn production). B: 
Comparison of two scenarios ((i) K = 500 m/d, αL = 20, lowest correlation length; (ii) K = 100 m/d, αL = 5, highest correlation length) with respectively the lowest 
and largest range of simulated 222Rn apparent age bias. Results from 500 simulations are presented for each combination of K and αL. 
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(or mean GW ages) will lead to a large range of possible end-member 
activities, and thus to highly non-unique apparent age estimates (see 
Fig. 2). 

At low mean ages (< 5–10 days), the possible range of positive 
apparent age bias (i.e., overestimation of GW mean age) tends to in
crease with mean age, as the apparent age equation becomes more 
sensitive to small changes in 222Rn activities when the latter start 
approaching end-member activities (see Eq. (1)). Conversely, the range 
of negative 222Rn age bias remains mostly constant as a function of mean 
age. Cases where the 222Rn age bias is lowest represents those where the 
222Rn production rates are lowest between the inlet and sampling points; 
222Rn activities will not near those of the end-member, and computed 
apparent ages remain low and are not affected by the asymptotic 
behaviour of the apparent age equation (Eq. (1)) at high 222Rn activities. 

The decrease in both the values and the spread of 222Rn age bias at 
higher mean ages (> 5–10 days) results from two overlapping effects: (i) 
the smoothing effect from integrating signals from an increasing portion 
of the aquifer, and (ii) the truncation of apparent ages at 16.5 days. The 
former is related to the increasing distance between the inlet and sam
pling points at higher mean ages, and 222Rn signals being increasingly 
representative of the mean production rate (i.e., lower sensitivity to 
small-scale variations in 222Rn production rates). The latter effect is 
significant for scenarios where the mean and minimum 222Rn end- 
members are used in apparent age computations (respectively grey 
and blue in Fig. 4). In such cases, 222Rn activities will more rapidly 
approach end-member activities in instances where the mean produc
tion rate between the inlet and the sampling point is comparatively high; 
when 222Rn activities exceed 95% of those of the end-member (i.e., 
apparent age > 16.5 days), apparent ages and thus 222Rn age bias are not 
computed. Therefore, at higher mean ages, computable apparent ages 
will disproportionately reflect cases where the mean production rates 
between the inlet and the sampling point are generally lower. This leads 
to lower apparent ages, and therefore to a more negative 222Rn age bias. 
This effect is even more pronounced when using the minimum end- 

member, as on average 222Rn activities will more tend to approach 
even more rapidly those of the end-member. Therefore, lower 222Rn age 
bias at higher values of mean age is not always synonymous with 
apparent age estimates being better constrained at higher mean ages; 
but rather that apparent ages can be computed at greater distances from 
the inlet only for a subset of simulations. 

Finally, the decrease in apparent age bias at higher mean ages in 
cases where the maximum end-member is used is related to the existence 
of an apparent age threshold. In many cases, apparent ages will remain 
low at even high mean ages, as 222Rn activities may remain significantly 
lower than those of the maximum end-member. 

The combined influences of mean GW age, spatial correlation of 
222Rn production rates, as well as hydro-dispersive mixing on 222Rn age 
bias can be seen in Fig. 5, which shows the 222Rn age bias as a function of 
NRn (see Eq. (9)). The spread of 222Rn age bias is lowest at low values of 
NRn, and tends to increase as NRn increases. For example, at values of 
NRn = 0.1, the 25/75% interval of 222Rn age bias ranges from 0 to 0.2, 
whereas it ranges from -0.25 to +0.5% at NRn = 10. At the highest values 
of NRn (and thus of mean GW age), the 222Rn bias tends to decrease for 
the same reasons noted in the previous paragraphs. 

When NRn>>1 (generally higher spatial correlation of 222Rn pro
duction, lower dispersivity, higher mean GW ages), measured 222Rn 
activities are likely to be strongly affected by zones of high or low 222Rn 
production, which lead to high variability in 222Rn activities (which will 
often approach those of the end-member(s)) and a large range of 222Rn 
end-members, leading in turn to high potential bias in computed 
apparent 222Rn apparent ages. Conversely, when NRn<< 1, 222Rn ac
tivities are more representative of the mean 222Rn production rate; small 
differences between end-members will exist, and only moderate 222Rn 
bias will arise when computing apparent 222Rn ages. 

3.3. Apparent age bias in transient conditions 

Fig. 6 shows the range of transient simulated mean and apparent ages 

Fig. 5. Additional apparent 222Rn age bias in steady-state conditions as a function of NRn (Eq. (9)). µ1/2 is the simulated median 222Rn bias.  
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for the six combinations of hydraulic conductivity and longitudinal 
dispersivity at nodes where mean age in steady-state conditions is equal 
to 8.0 ± 0.1 d; results follow similar trends for different mean ages and 
variogram models (see Appendix B). All data points not located on the 
mean age = 8 d line result from transient hydraulic conditions; increased 
SW infiltration and GW flow velocity caused by the variable head 
boundary at the outlet (see Fig. 1) will lead to lower mean ages at any 
given observation point. 

As already highlighted in Section 1.1.2, apparent ages in steady-state 
conditions tend to be lower than mean ages owing to hydrodynamic 
dispersion, and are clustered, on average, near (although slightly below) 
the 1-D bias line (see Fig. 6), which represents the steady-state rela
tionship between mean and apparent ages in 1-D systems with constant 

222Rn input (Eq. (3)). This is because 222Rn activities integrate infor
mation on the distribution of 222Rn production between the inlet and a 
given sampling point, and tend to be, on average, representative of the 
mean production rate. Additional negative age bias is due to the addi
tional effect of transverse dispersion which is not considered in 1-D 
systems. As explained in the previous section, apparent ages are 
consistently under- and overestimated in relation to the bias line when 
using the maximum and minimum 222Rn endmembers respectively. 
Moreover, owing to the same smoothing mechanisms described in the 
previous sections, the range of computed apparent ages in steady-state 
conditions is greatest at low velocities and dispersivities, and when 
the scale of variability in 222Rn input is highest. This is evident in Fig. 6 
by the spread of apparent ages at mean age = 8 days for the different 

Fig. 6. Aggregated apparent 222Rn ages vs mean ages for the 500 transient simulations, for all nodes where the mean age in steady-state conditions is amean = 8 ± 0.1 
d Apparent ages along the mean age = 8 d line (vertical dashed line) represent steady-state conditions. The steady-state bias line represents the 1-D apparent age bias 
with constant 222Rn production and the mean GW flow velocity in steady-state conditions. 
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combinations of K and αL. In transient conditions, the twofold increase 
in GW flow velocity due to the transient head boundary at the outlet 
leads to a decrease of mean age up to 50% (from 8 to ~4 days), a 
decrease of apparent 222Rn ages, as well as to an overall decrease in the 
spread of apparent ages. In other words, the potential for additional 
apparent age bias tends to decrease when GW flow velocities increase, 
once again due to the smoothing effects described previously. 

In the conditions simulated here, changes in mean and apparent ages 
tend to follow a mostly linear pattern, with varying slopes depending on 
the choice of the 222Rn endmember. In other words, in transient con
ditions, variations in apparent ages tend to be associated with propor
tional variations in mean ages, regardless of the choice of the 222Rn 
endmember. To better visualize this relationship, we define arel

app,Rn(x, t)
and arel

mean(x, t) as respectively the relative apparent 222Rn and relative 

mean GW ages: 

arel
app,Rn(x, t) =

aapp,Rn(x, t)
aapp,Rn(x, 0)

(10)  

arel
mean(x, t) =

amean(x, t)
amean(x, 0)

(11)  

where aapp,Rn(x, t) [T] and amean(x, t) [T] are the relative apparent 222Rn 
and mean GW ages at location x and time t, and aapp,Rn(x,0) [T] and 
amean(x,0) [T] are similarly apparent 222Rn and mean GW ages at the 
start of the simulations (t=0). arel

app,Rn(x, t) and arel
mean(x, t) as a function of 

simulation time are shown in Fig. 7. In cases where advection dominates 
over dispersive processes (i.e. high velocities and low dispersivities), 
relative mean and apparent ages behave in a very consistent manner; 

Fig. 7. Relative apparent 222Rn (arel
app,Rn(x, t)) and relative mean ages (arel

mean(x, t)) as a function of simulation time for all nodes where the mean age in steady-state 
conditions is amean = 8.0 ± 0.1 d Apparent ages were computed using the mean (grey), maximum (red) and minimum (blue) 222Rn end-member activities. 
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deviations between the two are mainly controlled by non-uniqueness in 
the definition of a 222Rn end-member. Conversely, when dispersivity is 
large in relation to the flow velocity, changes in relative mean age are 
delayed in comparison to relative apparent ages. This most evident at 
the latter portion of the simulations, where relative mean ages return 
more slowly to steady-state conditions. This is a consequence of the 
relatively low half-life of 222Rn (~3.8 d), which results in GW 222Rn 
activities being quickly in local equilibrium with the aquifer matrix even 
in transient hydraulic conditions, and the persistence of a proportion of 
“younger” GW during the return to steady-state conditions will only 
marginally affect 222Rn activities and apparent 222Rn ages. 

Despite some degree of bias arising from dispersion as well as from 
the non-uniqueness of the 222Rn end-member, relative apparent ages 
track relative mean ages within ± 5–15% in most simulations. In 
contrast, apparent ages are much more poorly constrained, most notably 
at low GW flow velocities. In cases where mass transport is dominated by 
advective rather that dispersive processes, relative changes in mean 
apparent 222Rn show excellent correlation with changes in mean GW 
age. 

4. Discussion 

4.1. Bias of apparent 222Rn ages 

Results from the synthetic models illustrate that, even in idealized 
homogenous 2-D flow systems, the 222Rn apparent age model may not 
provide reliable estimates of mean GW age in steady-state conditions. 
On top of the negative age bias incurred by mixing of GW with different 
ages through hydrodispersive mixing and multiple flowline sampling, 
spatial heterogeneity of 222Rn production rates could lead to large 
additional biases. Put together, these effects lead to apparent 222Rn ages 
regularly differing from mean GW ages by a factor of two or more in the 
conditions simulated here. The magnitude of 222Rn apparent age bias, 
that is the age bias incurred solely by variable 222Rn production rates, 
can be captured by the dimensionless number NRn, with low values (<<

1 in cases simulated here) correlated to low additional 222Rn age bias, 
and vice versa. We show that the magnitude of age bias incurred by 
heterogenous 222Rn production is highest (i) at low flow velocities, (ii) 
in cases where hydrodispersive mixing is limited, (iii) at high mean GW 
ages, and (iv) if the scale of spatial correlation of 222Rn production rates 
is high compared to the sampling scale. Under such circumstances, 222Rn 
signals are very sensitive to local variations in 222Rn production rates, 
leading to high spatial variability in the distribution of 222Rn activities, 
and ambiguity in the definition of a representative 222Rn end-member 
activity. Conversely, when flow velocities and dispersion increase, 
222Rn activities are smoothed and tend to reflect mean 222Rn production 
rates. Reliable estimates of GW age with apparent 222Rn age model are 
therefore limited to cases where advective processes dominate (i.e., high 
Péclet number; little mixing of GW of different ages), and where there is 
little additional bias from spatially-variable 222Rn production rates (i.e., 
low NRn). For both conditions to simultaneously hold, hydrodispersive 
processes must remain marginal in relation to advective transport, 
which requires the spatial scale of variability of 222Rn production rates 
to be significantly smaller than the sampling scale, and/or mean GW age 
to remain relatively low (see Eq. (9)). 

Results from transient simulations illustrate how time series of 222Rn 
activities can provide reliable information on changes in mean GW age, 
even in cases where dispersive processes are significant and the 222Rn 
end-members and apparent 222Rn ages are poorly constrained. In the 
contexts modelled here, relative apparent and mean ages show very 
similar trends, although some deviations are noticeable in highly tran
sient conditions. Indeed, 222Rn signatures are more sensitive than mean 
GW age to abrupt changes in hydraulic conditions, especially in contexts 
where dispersive processes are significant. This results from the differing 
sensitivities of apparent and mean ages to the presence of GW compo
nents with residence times above 15–20 days. Whereas mean GW ages 

are determined by the entire age distribution of GW ages at any point in 
space and time, apparent 222Rn ages are insensitive to the distribution of 
ages above the 15–20 day threshold, as these components are effectively 
at local radioactive equilibrium with the aquifer matrix. Therefore, any 
transient perturbation in the GW age distribution at ages above this 
threshold will not affect the computation of apparent 222Rn ages, but 
will nevertheless have a lasting effect on mean GW ages until the dis
tribution of ages reaches pseudo-steady-state conditions. Transient de
viations between both ages are more evident when dispersion becomes a 
dominant mass-transport process, as GW age distributions tend to be 
broad and only slowly stabilize to equilibrium conditions. Conversely, 
when hydraulic conditions vary more smoothly, both apparent and 
mean GW ages remain in excellent agreement. The coherence of the 
relative apparent and mean ages can be attributed to the fact that 
throughout the simulation period, 222Rn activities at all observation 
points integrate production rate signals from the same portions of the 
aquifer upgradient of the sampling points. In other terms, transient 
222Rn signals in GW near infiltration zones remain representative of an 
average 222Rn production rate between infiltration and sampling points. 
Therefore, in the 2-D settings presented here, temporal variations in 
222Rn activities are almost exclusively attributed to changes in time 
since infiltration (i.e., GW age), and not to changes in GW flow paths 
through zones of differing 222Rn input. 

It must however be noted that a 2-D model will lead to obvious 
simplifications over complex 3-D flow and mass transport processes 
encountered in real-world environments. Changes in hydraulic condi
tions due to precipitation, variable river discharge, changes in river-bed 
permeability, GW pumping, etc. may lead to changes in GW flow and 
mass transport patterns not captured by the models presented in this 
study. Moreover, system transience is simulated exclusively through 
changes in hydraulic head at the model outlet, downgradient of obser
vations points. In natural systems, changes in river stage (from storm 
events, seasonal patterns, etc..) will also control hydraulic gradients 
between infiltration zones and observation points. Abrupt variations in 
river stage may lead to complex flow conditions not modelled here, such 
as temporary flow reversal (e.g., bank storage return flow). Neverthe
less, under less highly-transient conditions, flow patterns will generally 
reflect overall hydraulic gradients, whether they result from down
gradient changes in GW head (e.g. through changes in GW pumping) or 
from variations in river stage. We therefore expect similar 222Rn and 
mean GW age signatures to emerge in both cases. 

Any significant changes if flowline geometry upstream of a sampling 
point will add an additional layer of complexity in interpreting 222Rn 
signals, as sampled GW will be influenced by portions of the aquifer 
where 222Rn production rates may differ. In field settings, the validity of 
assuming consistent flowline geometry under transient conditions must 
be justified by site-specific properties. This assumption is most likely to 
hold in circumstances where GW flow and mass transport are controlled 
by the existence of preferential flow pathways (i.e., highly conductive 
zones). Such preferential flow structures are abundant in many alluvial 
aquifers, and are known to strongly affect GW flow, solute transport, and 
SW-GW exchange fluxes (e.g. Boano et al. 2014, Huggenberger et al. 
1998). In conditions where GW flow is consistently channelized through 
large-scale, hydraulically connected flow structures, we expect the 
correlation between mean and apparent ages to be less controlled by the 
heterogeneity of hydraulic parameters than by the distribution of 222Rn 
production rates upgradient of sampling points, the degree of system 
transience, and the relative influence of advective and dispersive 
mass-transport processes. 

4.2. Implications for use of 222Rn as a tracer of GW age 

The assumptions underpinning the apparent 222Rn age model are 
quite restrictive and can often not be justified by field conditions. We’ve 
illustrated how apparent 222Rn ages provide reliable estimates of mean 
GW age in losing river contexts only if each the following conditions are 
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met:  

1 The scale of variation (or spatial correlation) of 222Rn production 
rates is small in comparison to the sampling scale and/or mean GW 
age is much lower than the upper limit (~15 days) of the apparent 
222Rn age model (i.e., low NRn);  

2 There is no systematic trend in the spatial distribution of 222Rn 
production rates;  

3 Mass transport is advection-dominated (i.e., high Péclet number);  
4 The 222Rn endmember can be reasonably well constrained;  
5 The assumption of sampling a single flowline is reasonable (e.g., 

short-screened intervals); 
6 There is no mixing of different GW components (e.g., recently infil

trated SW and regional GW), or this mixing can explicitly be 
accounted for (e.g., via tracer-based approaches). 

Conditions 3 to 6 also need to hold in conditions where the 222Rn 
production rate is constant, as any mixing of water of different ages will 
lead to a (negative in the case of 222Rn) bias of apparent ages in relation 
to mean GW ages. 

Ideally, data for verification of conditions 1 and 2 can be obtained 
through high-resolution measurements of 222Rn production rates from 
recovered aquifer material (e.g., through 222Rn incubation experiments 
on sediment cores). As this is often practically infeasible, high-resolution 
measurements of 222Rn activities in GW near radioactive equilibrium 
with the aquifer matrix can provide an estimate of the degree of het
erogeneity of 222Rn production. This requires a dense piezometer 
network at locations not influenced by recently infiltrated SW with ages 
< 15–20 days. However, these measurements will not provide any direct 
information on the 222Rn production rates at locations of active SW 
infiltration, i.e., where apparent 222Rn age estimates are relevant. 

In cases where field conditions and data are inconsistent with the 
above requirements, calculation of absolute 222Rn ages should be done 
with caution or avoided altogether. Indeed, we have shown that even in 
simple systems such as those simulated in the present study, modest 
variability in the spatial distribution of 222Rn production rates can lead 
to large discrepancies between mean and apparent 222Rn ages. In con
ditions modelled here, mean and apparent 222Rn ages may regularly 
differ by a factor of two or more, even for very young GW (mean age < 5 
days); such levels of uncertainty need to be factored into any estimates 
of GW age made with 222Rn. 

Additionally, the upper age limit of the 222Rn dating method is 
modulated by the magnitude of spatial variability in 222Rn production 
rates. Considering the variability in 222Rn production modelled in this 
study, apparent age estimates for GW with mean ages greater than 10 
days may become problematic, as 222Rn activities may be influenced by 
zones of high 222Rn production not captured by the chosen 222Rn end- 
member activity. Indeed, as the sensitivity of 222Rn age equation in
creases as 222Rn activities approach those of the end-member activity, 
large positive biases in GW age estimates may result. This upper age 
limit of ~10 days is lower than the ~15 days put forward in other 
studies (e.g. Cranswick et al. 2014, Hoehn and Von Gunten 1989), which 
only applies to conditions where 222Rn input is spatially constant. These 
conclusions build on those of recent studies of apparent 222Rn ages in 
alluvial contexts (e.g., Gilfedder et al. 2019, Schaper et al. 2022), which 
have highlighted the limitations of the apparent 222Rn age model in both 
homogenous and heterogenous environments. 

In transient hydraulic conditions however, valuable information GW 
age can be gained from time series of 222Rn activities. Indeed, in losing 
river contexts, variations in 222Rn activities and computed apparent 
222Rn ages may be intimately linked to changes in mean GW age. Indeed, 
if the following criteria are met, our simulations have shown that rela
tive changes in apparent 222Rn ages can be reliably used as a proxy for 
variations in mean GW ages:  

1 The system is not in a state of acute disequilibrium (i.e., system 
transience in not extreme at the time of sampling); 

2 Flowline geometry of sampled water remains stable through tran
sient conditions, i.e., sampled water integrates 222Rn production 
information from the same zones of the aquifer;  

3 The GW age distribution of sampled water is dominated by water 
with ages significantly lower than the upper age limit for the 222Rn 
dating technique (~10 days in our simulations);  

4 The 222Rn end-member is significantly higher (at least 15%) than 
measured 222Rn activities; 

5 There is no mixing of different GW components (e.g., recently infil
trated SW and regional GW), or this mixing can explicitly be quan
tified (e.g., via tracer-based approaches). 

Interestingly, these observations equally hold in cases the spatial 
distribution of 222Rn production is highly heterogenous. Moreover, the 
computation of relative apparent ages is only moderately sensitive to the 
definition of the 222Rn end-member, insomuch as its magnitude is 
significantly larger than measured activities and consistent with pro
duction rates at a given field site. Although absolute mean ages may not 
be adequately estimated from apparent 222Rn ages, temporal variations 
in 222Rn activities can be used as a tool to investigate changes in mean 
GW age at a given sampling location, assuming as the conditions listed 
above hold. These assumptions must be justified in individual field 
settings. If estimates of mean GW age can be made at different points in 
time through an alternate method (e.g., artificial tracer test), apparent 
222Rn and mean ages can be tied, allowing the computation of a time 
series of (absolute) mean ages from changes in apparent 222Rn ages. This 
would apply to both continuous and occasional measurements of 222Rn 
activities. We suggest, whenever possible, comparing several separate 
measurements of mean and apparent GW ages. This allows independent 
verification of the equivalence between variations in mean and apparent 
222Rn ages in transient conditions. 

4.3. Limitations 

Our analysis has been limited to simplified 2-D systems, which are 
unable to reproduce complex 3-D flow and mass transport phenomena. 
Moreover, GW mixing caused by lateral inflows, or water exchange with 
aquitards and/or low-permeability lenses was not considered, which 
may lead to strong underestimations of mean GW age. Furthermore, we 
only consider a simplified system with spatially homogenous hydraulic 
properties (conductivity, porosity, dispersivity). It is well established 
that bias between tracer-derived and mean GW ages increases with 
increasing heterogeneity of hydraulic parameters (e.g., Gardner et al. 
2015, McCallum et al. 2013). As noted in the preceding section, the 
effect of hydraulic parameter heterogeneity on the performance of the 
222Rn age model may not be exceedingly detrimental in conditions were 
channelized flow and transport are dominant processes. However, the 
impact of hydraulic parameter heterogeneity has not been quantified in 
the present work, and should be systematically addressed in future 
studies. Furthermore, we suspect that the conclusions concerning tran
sient 222Rn signals do not hold for sampling locations where convergent 
flow occurs, e.g., at pumping wells. Indeed, disentangling contributions 
from all GW components with ages > 10 days to the overall 222Rn signal 
is practically impossible without resorting to additional tracer methods 
and/or numerical modelling tools. Additionally, the results presented in 
this study are valid only for the magnitude of variability of 222Rn pro
duction rates modelled in the present study (i.e., CV of 50%, see Table 1, 
Section 2.1); we expect the amount of 222Rn age bias to increase with 
increasing variability in 222Rn production rates, although this should be 
investigated in future studies. Our simulations do not include systematic 
trends in the spatial distribution of 222Rn production rates, which could 
lead to additional bias in apparent 222Rn ages. This approach was chosen 
as no observable spatial trend could be discerned from the experimental 
data used in the simulations. It is unclear whether this is a peculiarity of 

M. Peel et al.                                                                                                                                                                                                                                     



Water Research 235 (2023) 119880

13

the selected field site or a feature common to many alluvial aquifers. The 
latter may be true at other similar sites, as alluvial deposits within a 
small region of an aquifer often share many features, such as common 
depositional histories, as well as rheological and geochemical 
properties. 

5. Conclusions 

The objective of the present study was to explore the reliability of 
222Rn as a tracer of GW age in bank filtration contexts where 222Rn 
production rates are spatially variable. By including laboratory mea
surements of 222Rn emanation rates in a physically-based model, we 
illustrated how spatially-variable 222Rn input as well as hydrodispersive 
mixing may lead to biased estimates of 222Rn-derived GW age. 

We show that the combined effects of GW mixing and spatially- 
variable 222Rn production rates may lead to high biases between 
apparent 222Rn ages and mean GW age, limiting the reliability of the 
222Rn dating technique to contexts where mass-transport is advection- 
dominated, sampling scale is much larger than the scale of variability 
of 222Rn production rates, and GW is sampled from shortly-screened 
intervals. 

The deleterious effects of mixing and variable 222Rn input on the 
apparent 222Rn age model are somewhat dampened when interpreting 
time series of 222Rn activities at a given observation point. Inasmuch as 
GW flow paths remain essentially stable in transient conditions, 222Rn 
activities can provide reliable information on relative changes in mean 
GW age, even in environments where the spatial distribution of 222Rn 
production is highly heterogenous. 

The scope of application for the (relative) apparent 222Rn age model 
remains quite restrictive, and information justifying its use in field set
tings may often be lacking. The sampling and continuous monitoring of 
additional tracers (e.g., electrical conductivity, stable isotopes of water, 
GW temperature) may provide further information on GW residence 
times at temporal scales relevant to bank filtration contexts. However, 
these tracers do not systematically exhibit distinct concentrations in 
river water and sampled GW or show measurable temporal variations in 
SW that can be linked to variations in GW. In such cases, 222Rn often 
remains one of few practical tracers that can provide information on GW 
residence times at timescales of days to weeks. 

The simulation of 222Rn (and any other studied tracer) in fully- 
coupled, physically-based 3-D mass-transport models offers a more 
robust conceptual framework through which the information content of 
tracer measurements can be better extracted (e.g. Turnadge and Smer
don 2014). With such models, the uncertainty in tracer-relevant pa
rameters (such as the spatial distribution of tracer sources and sinks, 
hydraulic & mass-transport parameters, etc.) may be explicitly 
accounted for. Parameterization of these models can be improved 
through the inclusion of tracer measurements (e.g. Schaper et al. 2022, 
Thiros et al. 2021), which in turn leads to increased predictive accuracy 
of estimates of management interest, such as GW-SW exchange fluxes, 
mixing ratios, and GW residence times. 

However, when access to additional such complex modelling and 
calibration tools is not possible, monitoring changes in 222Rn activities 
can be helpful to gain a better conceptual understanding of the sensi
tivity of the GW-SW system and GW age to changes in hydraulic con
ditions, although absolute age estimates should always be interpreted 
with caution. 
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