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A B S T R A C T   

Species distribution models are commonly applied to predict species responses to environmental conditions. A 
wide variety of models with different properties exist that vary in complexity, which affects their predictive 
performance and interpretability. Machine learning algorithms are increasingly used because they are capable to 
capture complex relationships and are often better in prediction. However, to inform environmental manage-
ment, it is important that a model predicts well for the right reasons. It remains a challenge to select a model with 
a reasonable level of complexity that captures the true relationship between the response and explanatory 
variables as good as possible rather than fitting to the noise in the data. 

In this study we ask: 1) how much predictive performance can we gain by using increasingly complex models, 
2) how does model complexity affect the degree of overfitting, and 3) do the inferred responses differ among 
models and what can we learn from them? To address these questions, we applied eight models with different 
complexity to predict the probability of occurrence of freshwater macroinvertebrate taxa based on 2729 Swiss 
monitoring samples. We compared the models in terms of predictive performance during cross-validation and for 
generalization out of the calibration domain ("extrapolation" or transferability). We applied model agnostic tools 
to shed light on model interpretability. 

Contrary to our expectation, all models predicted similarly well during cross-validation, while no model 
predicted better than the null model during out-of-domain generalization on average over all taxa. Performance 
was best for taxa with intermediate prevalence. More complex models predicted slightly better than standard 
statistical models but were prone to overfitting. 

Overfitting indicates that a model describes not only the signal in the data but also part of the noise. This 
impedes the interpretation of response shapes learned by the model, because one cannot distinguish the signal 
from the noise. Furthermore, the strongly overfitting models learned irregular relationships and strong in-
teractions that are ecologically not plausible. Thus, in this study, the minor gain in predictive performance from 
more complex models was outweighed by the overfitting. 

Ecological field data that is used as model input or for calibration is typically prone to different sources of 
variability, from sampling, the measurement process and stochasticity. We therefore call for caution when using 
complex data-driven models to learn about species responses or to inform environmental management. In such 
cases, we recommend to compare a range of models regarding their predictive performance, overfitting and 
response shapes to better understand the robustness of inferred responses.   

1. Introduction 

A central question in ecology is to understand how species respond to 
environmental conditions. Species distribution models (SDMs) are 

useful tools to infer effects of environmental conditions on the distri-
butions of organisms, i.e., to quantify their realized niches. They are also 
used to make predictions and inform environmental management 
(Linke et al., 2008; Araújo et al., 2019; Timoner et al., 2021), which are 
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urgently needed in the current situation of climate change and biodi-
versity loss (IPBES, 2019). Whether to learn about species responses or 
to inform environmental management, we have to be confident that the 
models predict well for the right reasons, i.e., because they capture true 
relationships, and are not based on spurious correlations in the data 
(Schuwirth et al., 2019; Arif and MacNeil, 2022). 

Many different statistical modeling approaches and machine 
learning (ML) algorithms are used for species distribution models (Elith 
and Franklin, 2013; Beery et al., 2021). The SDMs differ in their data 
requirements and their mathematical properties, which allow them to 
model non-linear response shapes, interactions between explanatory 
variables or multiple taxa at the same time. This results in various levels 
of complexity and ease of interpretability; simpler models impose a 
more constrained structure, usually easier to interpret, while more 
complex models or ML algorithms provide a more flexible structure, 
which can be perceived as black-box. The difference in the flexibility of 
the response shapes impacts the ability to fit to the calibration data and 
to make accurate predictions on unseen data. Overfitting arises, if the 
model allows too much flexibility in the response shapes or if the 
amount of data is limited and there is high variability in the data that 
cannot be explained by the influence factors, which is often the case in 
ecological datasets (Møller and Jennions, 2002; Barry and Elith, 2006). 
A model describing noise rather than species responses can be 
misleading in the context of decision support for environmental man-
agement. This is especially the case, when the model is projected in 
space or time, because overfitting reduces transferability (Randin et al., 
2006), but also when the goal is to learn from the inferred response 
shapes within the domain of calibration. Therefore, overfitting should be 
quantified and the inferred response shapes should be investigated and 
assessed for plausibility. 

In recent years, complex ML algorithms like random forest (RF) or 
artificial neural networks (ANN) have been increasingly applied because 
they have shown to perform well on big data sets in terms of predictive 
performance. However, they are harder to interpret due to their inac-
cessible internal structure (Rahman et al., 2021; Visser et al., 2022). 
Conversely, statistical models like generalized linear models (GLM) are 
easier to interpret, but have a less flexible structure and are therefore 
less able to capture complex patterns in the data (Guisan et al., 2002; 
Elith and Graham, 2009). Ensemble modeling (applying various models 
to the same dataset and averaging their output) can be a good strategy, if 
one is mainly interested in robust predictions (Araújo and New, 2007). 
However, ensemble modeling is not intended to be easily interpretable 
and therefore not very useful to learn about the system. In summary, 
more complex ML models are not necessarily superior in all cases and it 
remains challenging to select the right level of complexity for each 
application. 

Many comparative studies have been conducted to determine which 
SDMs have the best predictive performance, within the domain of cali-
bration (Elith and Graham, 2009; Li and Wang, 2013; Rahman et al., 
2021; Stupariu et al., 2021; Visser et al., 2022) and when generalizing 
out of calibration domain, i.e., assessing model transferability (Tuanmu 
et al., 2011; Werkowska et al., 2017). Some also investigate what the 
different models learned by using model agnostic tools, i.e., tools that 
can be applied to any model, like variable importance assessment or 
visualization of response shapes (Zurell et al., 2012; Wenger and Olden, 
2012; Fukuda et al., 2013; Molnar, 2019; Lucas, 2020). Various studies 
go a step further and interpret model responses to enhance our under-
standing about species niches or to support environmental management 
(Elith et al., 2008; Srivastava et al., 2019; Urbina-Cardona et al., 2019; 
Ryo et al., 2021). However, it remains unclear, if the best predicting 
models were prone to overfitting or not, which would affect the plau-
sibility of the learned response shapes (Merow et al., 2014). To our 
knowledge, there have been few attempts to compare the learned 
response shapes of different models and systematically link them with 
model properties, performance and especially degree of overfitting. 

The aim of this study is therefore to systematically assess the 

predictive performance, the degree of overfitting and the learned 
response shapes of SDM approaches with differing complexity. We ask: 
1) how much predictive performance can we gain by using increasingly 
complex models, 2) how does model complexity affect the degree of 
overfitting, and 3) do the inferred responses differ among models and 
what can we learn from them? We apply eight statistical and machine 
learning models including different properties to a nationwide macro-
invertebrate presence-absence biomonitoring data set from Swiss 
streams that spans 10 years of monitoring and 2729 observations. 
Macroinvertebrates are used as bioindicators to assess the ecological 
state of streams. There is therefore high interest in their response to 
different natural and human-induced environmental factors, like water 
quality, hydromorphology and temperature. We assess the predictive 
performance of the models during three-fold cross-validation (CV) and 
out-of-domain generalization (ODG). The latter is important to under-
stand how useful the different models are to make predictions for 
changes that go beyond the conditions that are covered in the calibration 
data (e.g., highly relevant for climate change impact studies). Finally, 
we evaluate how the model properties and model complexity impact 
their interpretability. 

Based on previous studies, we expect ML models to have higher 
predictive performance during CV compared to standard statistical 
models, because of the higher flexibility of the relationships between the 
response and explanatory variables (Fukuda et al., 2013; Li and Wang, 
2013). We expect that especially complex interactions between 
explanatory variables can improve the predictive performance 
compared to simpler generalized linear models that do not include 
interaction terms. However, we expect ML models to be worse in ODG, 
because they have fewer mathematical constraints (Pearson et al., 2006; 
Wenger and Olden, 2012). Finally, by comparing the response shapes 
learned by the different models, we expect to determine model deficits 
of the simpler models and identify overfitting. 

2. Material and methods 

2.1. Macroinvertebrate dataset 

We used presence-absence data of stream macroinvertebrate taxa 
from the Swiss Biodiversity Monitoring program (BDM) and other fed-
eral and cantonal monitoring programs. The dataset consists of 2729 
observations taken at 1802 different sites covering the whole of 
Switzerland. The data was accessed via the MIDAT database, run by info 
fauna CSCF (Centre Suisse de Cartographie de la Faune) & karch. We 
selected data sampled between 2010 and 2019, where each site has been 
sampled between one and eight times by applying the same multi- 
habitat sampling strategy (OFEV, 2019). For this study, we selected 
the 60 taxa that have a prevalence (i.e., the proportion of observations 
where the taxon was observed to be present) between 5% and 95%. 
Among them, 57 taxa are resolved to family level, one to order level, one 
to class level and one to phylum level. We can expect taxa on the family 
level or even coarser taxonomic levels to be less sensitive to environ-
mental factors than on species level (Caradima et al., 2020). However, 
for a reasonable application of machine learning algorithms it is 
important to have a large enough sample size, therefore using smaller 
data sets with a better taxonomic resolution was not an option for this 
study. This is aligned with the Swiss assessment method for macro-
invertebrates, which is based on family level (OFEV, 2019). 

2.2. Environmental dataset 

We selected nine environmental factors as explanatory variables 
(Table 1, see Supporting Information A 2.1 – A 2.3 for more details) 
based on expert knowledge and experience with statistical models pre-
viously applied to a similar macroinvertebrate dataset (Caradima et al., 
2019, 2020). The data was derived from the Swiss Federal Office for the 
Environment (water quality monitoring data, hydrological data, 

E. Chollet Ramampiandra et al.                                                                                                                                                                                                             



Ecological Modelling 481 (2023) 110353

3

hydromorphological data, land use data), the Swiss Federal Office of 
Topography (topographical data), and the Swiss Federal Statistical Of-
fice (population statistics). We standardized each environmental factor 
by subtracting the mean and dividing by the standard deviation before 
applying the different models. We back-transformed them when 
analyzing the outputs of the models to facilitate the interpretation. 

2.3. Model definitions and properties 

We selected eight prototypical models based on their different 
properties and complexity as summarized in Table 2. By complexity we 
refer to the flexibility of the model structure imposing more or less 
constraints in the response shapes. Accordingly, we characterized the 
models by three properties: 1) enforcement of a smooth response shape, 
which seems desirable from a biological point of view, 2) the inclusion of 
potential interactions between environmental factors (e.g., the response 
to temperature could be different a low flow velocity than at high flow 
velocity), and 3) if a model predicts the occurrence of a single taxon or 
multiple taxa. Multi-taxa models may have an advantage for taxa with 
lower prevalence, if they can use information from other taxa (Car-
adima et al., 2019). The aim was to cover a wide range of model 

complexities. Therefore, we did not include interaction terms or more 
than quadratic transformations in the GLMs, because highly non-linear 
models are already covered by the ML approaches. Similarly, we did 
not run the multi-taxa models in a single taxon mode, because we are 
interested, if the predictive performance increases for multi-taxa models 
compared to single taxon models that are already included in the study. 

The hGLM and chGLM (called UF0 and CF0 in Caradima et al., 2019) 
refer to hierarchical generalized linear models that are fitted jointly to 
multiple taxa, and where the regression coefficients of each taxon are 
constraint by an overarching community distribution. This prevents 
overfitting for taxa with unbalanced data (i.e., with low or high preva-
lence). The chGLM imposes in addition correlations among the com-
munity parameters that are inferred jointly with the regression 
coefficients. 

The classification into statistical and ML models is somewhat arbi-
trary, because the transition is rather continuous. However, for easier 
comprehensibility, in the following we refer to the three GLMs and the 
GAM as statistical models and to the SVM, BCT, RF and ANN as ML 
models. 

All models were interfaced from R using different packages and 
methods (see Table 2). The implementation of the hGLM and chGLM was 
based on Caradima et al. (2019). We took advantage of the caret 
R-package to automatically tune the hyperparameters of the GAM, SVM, 
BCT, and RF. The hyperparameters of the ANN were tuned manually 
(see Supporting Information A 3.3). The hyperparameters were tuned by 
three-fold cross-validation on the calibration dataset (see paragraph 2.4 
and Supporting Information A 3.1). For each model, we used the same 
environmental factors listed in Table 1 as explanatory variables. We 
included a null model for comparison to analyze how much more the 
models learned compared to predicting only based on prevalence. 

2.4. Model assessment 

We evaluated the predictive performance of the models during three- 
fold cross-validation (CV) and during out-of-domain generalization 
(ODG). For CV, the data was randomly split into three subsets of equal 
size while taking care of avoiding data leakage, i.e., making sure that all 
observations from a site occur only in a single set (Nisbet et al., 2009). 
For ODG, we split the data into two subsets according to the temperature 
factor using the observations from the 80% coldest sites for calibration 
and the 20% warmest sites for prediction. We chose temperature, 
because it is the most important influence factor of aquatic macro-
invertebrates (Ward and Stanford, 1982; Caradima et al., 2020) and of 
interest regarding climate change. 

We assessed the predictive performance of the models by calculating 
the standardized deviance and, to allow for comparison with other 

Table 1 
Explanatory variables selected to predict the probability of occurrence of 
freshwater macroinvertebrates (see Supporting Information A 2.1 for more de-
tails on water temperature).  

Environmental factor Description 

Temperature (◦C) Mean maximum morning summer stream temperature 
predicted from a linear mixed effect model based on 
catchment area, mean catchment elevation, and a 
random year effect 

Flow velocity 
(m/s) 

Mean annual stream flow velocity estimated from spatial 
data 

Riparian agriculture (%) Fraction of agricultural land use within a buffer distance 
of 10 m from the stream 

Livestock unit density 
(CE/km2) 

Cattle equivalent (CE) units of livestock per square 
kilometer of catchment area 

Insecticide application 
rate (-) 

Sum of crop type fractions in the catchment weighted by 
the number of crop type specific insecticide treatments 
per year 

Urban (%) Proportion of urban and transport-related land use 
within the catchment 

Forest (%) Proportion of forest intersecting the river length in the 
catchment upstream from the site 

Forest buffer (%) Proportion of forest intersecting the river length within 
150 m distance of the site 

Width variability (-) Expert evaluation of width variability of the stream 
channel ranging from 0 (channelized river) to 1 (natural 
width variability)  

Table 2 
Abbreviations, description, properties and implementation of the eight selected models plus the null model, sorted by increasing complexity. Note that we included a 
quadratic term for the factors temperature and flow velocity in the three different GLMs to account for taxa with mid-range preferences for temperature and flow 
velocity but we did not include any interaction terms.  

Model Description Properties Implementation   
Smooth response 
shape 

Interactions between 
environmental factors included 

Single taxon or multi- 
taxa prediction 

Package Method 

Null 
model 

Probability of occurrence at all sites 
equals the prevalence 

– – – – – 

iGLM Individual Generalized Linear Model 
(GLM) 

yes no single Caret ‘glm’ 

hGLM Hierarchical multi-taxa GLM yes no multiple Rstan – 
chGLM Correlated hierarchical multi-taxa 

GLM 
yes no multiple Rstan – 

GAM Generalized Additive Model intermediate no single Caret ’gamLoess’ 
SVM Support Vector Machine yes yes single Caret ‘svmRadial’ 
BCT Boosted Classification Tree no yes single Caret ‘ada’ 
RF Random Forest no yes single Caret ‘rf’ 
ANN Artificial Neural Network (Multilayer 

Perceptron) 
yes yes multiple Keras ‘keras_model_sequential’  
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studies, by measuring the area under the receiver operating character-
istic curve (AUC) (Pearce and Ferrier, 2000). The AUC ranges from zero 
to one with higher values indicating a better performance. The stan-
dardized deviance is a statistical equivalent to the mean square of the 
residuals of a model with normally distributed errors (Hardin et al., 
2007). It also is proportional to the binary cross-entropy used in the ML 
field. The standardized deviance is based on the likelihood for 
presence-absence data. We write yi = 1 if a taxon is observed present in 
the ith observation and yi = 0 if it is observed absent. We use the upper 
case letter to describe the respective random variable Yi. For a given 
taxon, model, its parameters θ, and the set of explanatory variables xi, 
the likelihood function is defined as: 

P(yi|xi, θ) =
{

P(Yi = 1|xi, θ) if yi = 1,
1 − P(Yi = 1|xi, θ) if yi = 0.

The standardized deviance is calculated as follows: 

d =
− 2
n

∑n

i=1
log(P(yi|xi, θ))

with n being the number of observations. By averaging over the number 
of observations, we can compare the performance of a model for taxa 
differing in their sample size. This metric ranges from zero to infinity, 
with a small value corresponding to a good performance. For further 
analysis and visualizing performance results, we chose to look only at 
the standardized deviance over other usual classification metrics to 
avoid defining an arbitrary classification threshold and to keep infor-
mation on the predicted probability of occurrence (Lobo et al., 2007). 

To quantify the degree of overfitting, we computed the likelihood 
ratio between calibration and prediction performance for each model 
(Hardin et al., 2007). For each taxon and each model, we calculate it as 
follows: 

λ = e− dcal − dpred
2 

It corresponds to the ratio between the geometric mean of the like-
lihood during calibration and during prediction. It usually ranges from 
zero to one, with a lower value indicating a big gap in performance 
between the calibration and the prediction phases that we interpret as 
high degree of overfitting. If it is close to one, it indicates that the model 
performed similarly during calibration as during prediction. This metric 
could exceed one, if the predictive performance is better than the per-
formance during calibration. 

2.5. Taxon-specific response 

To visualize the inferred response shapes between the predicted 
probability of occurrence of the taxa and the environmental factors for 
each model, we used two model agnostic methods (Molnar, 2019; 
Lucas, 2020). 

In a first step, we plotted the Individual Conditional Expectation 
(ICE) (Goldstein et al., 2014). To this end, we randomly selected 100 
observations from the monitoring data set, each representing a specific 
combination of environmental factors (we confirmed that the influence 
of the random sampling is minor by testing different seeds). For each of 
these combinations, we then predicted and plotted the probability of 
occurrence across the whole range of one environmental factor at a time, 
while the others remained fix, leading to 100 lines. On ICE plots, in-
teractions between factors are reflected by non-parallel lines. Therefore, 
ICE show within which range of the environmental factor and to what 
extent the model learned interactions as well as non-linear responses. 

The average model response to changing one variable is visualized 
by the Partial Dependence Plots (PDP) (Friedman, 2001), which can be 
approximated by averaging the ICE lines. The maximum difference of 
the PDP line on the y-axis across the whole range of the variable can be 
interpreted as a measure of sensitivity (as indicated by a black arrow in 

the figures). The PDP lines were also compared across all models to 
visualize differences in the learned responses. 

If the environmental factors are independent from each other (e.g., 
for the GAM model), the PDP is exactly the averaged predicted re-
sponses, which makes it straightforward to interpret. As additional in-
formation, we also plotted the partial response when the other 
environmental factors are kept at their averaged value, as it is sometimes 
done in the SDM literature (e.g., Elith et al., 2008). 

3. Results 

3.1. Predictive performance during cross-validation 

During cross-validation (CV), more complex models tend to predict 
slightly better than the statistical ones, both when assessed with the 
standardized deviance and the AUC. This can be observed in Table 3, 
with RF showing the best performance statistics for both metrics and in 
Fig. 1a from the green line showing that RF has the lowest median 
during prediction, followed by BCT, GAM and ANN. Fig. 1a also shows 
that all models have a better predictive performance than the null model 
based on the standardized deviance across all taxa. 

We also see that more complex models, especially RF, demonstrate 
stronger overfitting, observable by the large difference in performance 
between calibration and prediction (distance between purple and or-
ange boxes in Fig. 1a). This is also indicated by the median likelihood 
ratios (Table 4), where a lower value (e.g., 0.76 for RF) indicates a 
higher degree of overfitting compared to the statistical models (e.g., 
0.99 for iGLM, hGLM and chGLM). 

When looking at the predictive performance measured with the 
standardized deviance per taxon and sorted by prevalence (Fig. 2b), we 
see that for taxa with unbalanced data (i.e., low or high prevalence), 
most models are close to the null model. This is indicated by the colored 
dots that are close to the continuous black line, which represents the null 
model. 

There is an improvement in predictive performance compared to the 
null model mainly for taxa with intermediate prevalence. However this 
improvement varies by taxon, with all models performing considerably 
better than the null model for some taxa, e.g., Gammaridae, and not for 
others, e.g., Psychodidae (Fig. 2b). Moreover, we observe only minor 
differences in predictive performance among models for the same taxon, 
as shown by the colored dots aligned vertically being close to each other 
in Fig. 2b. The figure also illustrates that the more complex models 
perform much better during calibration (Fig. 2a) than during prediction, 
especially RF represented by pink dots that are below 0.5 for all taxa, 
which again indicates strong overfitting. 

Finally, we can visualize the geographic distribution of the predicted 
probability of occurrence of each model for each taxon during CV, where 
observations are colored in red if the taxon was observed absent and in 
blue if it was observed present (Fig. 3 shows predictions of the null 
model and RF for Gammaridae, see Supporting Information A 5 for the 
predictions of all models). Fig. 3 illustrates that RF has a better predic-
tive performance than the null model, which shows the same probability 
of occurrence at all sites, as indicated by the size of the dots. However, 
when comparing RF with the other models, we observe only minor 
spatial differences in prediction, indicating again that the different 
models had a similar predictive performance during CV (Figure SI A 21). 

3.2. Out-of-domain generalization 

Averaged over all taxa, all models fail to generalize out-of-domain. 
This is indicated by the median of the distribution of the standardized 
deviance during prediction (black line in the orange boxes on Fig. 1b), 
being similar or even higher than the null model for every model. We 
can also see that overfitting of all models increased compared to CV, 
with RF again showing the strongest overfitting. This can also be seen in 
Table 4: all models have a lower median likelihood ratio (indicating 
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higher overfitting) during ODG than during CV, with RF having the 
lowest value of 0.69. However, if we examine the predictive perfor-
mance of the models for each taxon (Fig. 2d), we see that for most taxa 
with intermediate prevalence the models still perform better than the 
null model (as indicated by dots below the black line), while for most 
taxa with unbalanced prevalence the models perform even worse than 
the null model, in particular the models GAM and SVM, as indicated by 
the dots above the black line. 

3.3. Comparison of learned response shapes 

The Individual Conditional Expectation (ICE) and Partial Depen-
dence Plots (PDP) illustrate the inferred responses of the taxa to the 
environmental factors of the different models. Figs. 4 and 5 show as an 
example the model response shapes of Gammaridae for temperature (see 
Supporting Information A 6 and B for the response of Gammaridae to all 
environmental factors and Supporting Information C for the response of 
all taxa to temperature). 

We did not include interaction terms between environmental factors 
in the statistical models iGLM, hGLM, chGLM and GAM, which is 

indicated by the colored lines that do not cross each other in Fig. 4. In 
contrast, the SVM, BCT, RF and ANN account for interactions and 
learned different response patterns for the same environmental factor 
depending on the other factors, as indicated by the intersecting colored 
lines in Fig. 4. When generalizing on scarcer data, the models with 
constrained response shapes, i.e., iGLM, hGLM, chGLM and GAM, tend 
to an extreme prediction value, e.g., zero probability of occurrence for 
low temperature values. The more flexible models either allow for 
various responses for the same range of scarcer observations, e.g., SVM 
and ANN, or predict a constant value from the last observation, e.g., BCT 
and RF (Figs. 4 and 5). Overall, while the statistical models show 
unimodal response shapes, the other models show multiple local optima 
in the ICE (Fig. 4), and BCT and RF show large jumps in predicted 
probability of occurrence for small changes in temperature that are not 
plausible from an ecological point of view. While it would be possible 
that families consisting of species with distinct realized niches indeed 
exhibit multiple optima and the structure of tree-based models like RF 
and BCT allows non-smooth responses, the high degree of overfitting of 
these models indicates that these irregular shapes are rather artefacts of 
overfitting than ecologically plausible responses. Furthermore, 

Table 3 
Summary statistics of predictive performance measured with the standardized deviance (the lower the better) and the AUC (the higher the better) over all taxa for each 
model during cross-validation. Models are sorted from left to right by increasing level of complexity. Numbers in bold show the best performing model for each statistic, 
here RF for both metrics.    

iGLM hGLM chGLM GAM SVM BCT RF ANN 

Standardized deviance 
(the lower the better) 

min 0.38 0.39 0.38 0.39 0.41 0.38 0.37 0.40 
median 0.81 0.81 0.82 0.80 0.86 0.79 0.76 0.81 
max 1.35 1.35 1.35 1.32 1.30 1.30 1.28 1.34 

AUC 
(the higher the better) 

min 0.57 0.55 0.52 0.59 0.57 0.56 0.61 0.51 
median 0.76 0.74 0.75 0.77 0.73 0.77 0.78 0.74 
max 0.91 0.91 0.91 0.92 0.91 0.92 0.92 0.90  

Fig. 1. Boxplots for the distribution of the 
standardized deviances (the lower the better) 
across the 60 taxa during calibration (purple) 
and prediction (orange), showing model per-
formance. The top and the bottom of the boxes 
indicate the 75th and the 25th percentiles, 
respectively, of the distribution, while the hor-
izontal black line in each box represents the 
median. Models on the x-axis are sorted by 
increasing level of complexity. The upper panel 
(a) shows cross-validation (CV) results, the 
lower (b) the out-of-domain generalization 
(ODG). The blue horizontal line shows the me-
dian standardized deviance of the null model 
and the green horizontal line shows the median 
standardized deviance of the best performing 
model during prediction, here RF during CV (a) 
and the null model during ODG (therefore, the 
blue and green line are overlapping) (b).   

Table 4 
Summary statistics for overfitting: the likelihood ratio over all taxa for each model during cross-validation and out-of-domain generalization. A lower value indicates a 
bigger difference between performance during calibration and prediction, interpreted as a higher degree of overfitting. Models are sorted from left to right by 
increasing level of complexity.    

iGLM hGLM chGLM GAM SVM BCT RF ANN 

Cross-validation min 0.98 0.98 0.98 0.96 0.93 0.93 0.65 0.98 
median 0.99 0.99 0.99 0.97 0.96 0.96 0.76 0.99 
max 1 1 1 0.98 0.99 0.99 0.87 1 

Generalization min 0.61 0.6 0.59 0.11 0.52 0.57 0.57 0.62 
median 0.98 0.98 0.97 0.77 0.96 0.96 0.69 0.96 
max 1.29 1.29 1.29 1.25 1.24 1.26 1.07 1.3  
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especially the ICE of the RF model show strong and irregular interactions 
for some sites that are not plausible. 

A comparison of the partial dependence plots for temperature (PDPs, 
Figs. 4 and 5, see Figure SI A 24 for the other environmental factors) 
indicates that on average all models learned that the probability of 
occurrence of Gammaridae increases with temperature. Another com-
mon pattern among models is that the predicted probability of occur-
rence stabilizes above 17 ◦C. However, we can also observe that the 
complexity of the model and its way to generalize on scarcer data im-
pacts the averaged responses. Thus, the statistical models present very 
similar smooth PDPs with a predicted probability of occurrence ranging 
from zero to one, while the more complex models predict a higher 
probability of occurrence for low temperature values, with BCT and RF 
predicting almost 0.5 probability of occurrence close to 0 ◦C and big 
jumps for higher temperature values, which is not plausible from an 
ecological point of view. 

The difference between the minimum and the maximum values of 
the PDPs (vertical black arrows on the right of each panel in Fig. 4) 
indicates the average change in predicted probability of occurrence over 

the whole range of the explanatory variable. This is a measure of how 
sensitive the model is to a variable. Similarly, the range of the y-axis 
covered by each of the colored lines indicates the local sensitivity of the 
model at different points in the space of the other environmental pre-
dictors. Especially the RF, BCT and SVM exhibit a much smaller sensi-
tivity to temperature compared to the GLMs, which cover almost the 
whole range from 0 to 1. 

Finally, we observe that partial responses show different results 
depending on how they are calculated. Apparently, it matters if we first 
propagate the inputs through the model and average afterwards over the 
model outputs (as in the PDP, represented by thick black line in Fig. 4) or 
if we first average over the inputs and then propagate it through the 
model (as in the partial responses, thin black dashed line in Fig. 4). 

4. Discussion 

SDMs can inform management decisions by making predictions and 
by helping to increase our understanding of ecological systems (Sri-
vastava et al., 2019; Urbina-Cardona et al., 2019). However, we need 

Fig. 2. Standardized deviance (the lower the 
better) of each model for each taxon, ordered 
on the x-axis according to their prevalence 
(only taxa with prevalence between 5% and 
95% included), during calibration (left column) 
and prediction (right column), and during 
cross-validation (top row) and out-of-domain 
generalization (bottom row). The continuous 
black line indicates the null model perfor-
mance. The vertical dashed lines show the po-
sition of Psychodidae (left) and Gammaridae 
(right) in each panel (see panel b for the labels).   

Fig. 3. Geographic distribution of the predicted probability of occurrence (indicated by the point size, see legend) of the null model (left map) and RF (right map) for 
Gammaridae during cross-validation. Observations are colored in red for an absence and in blue for a presence. Small red and large blue dots indicate a good 
agreement between model prediction and observation, which is mostly the case for the RF but not for the null model. 
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Fig. 4. Individual conditional expectation (ICE, colored lines), partial dependence plots (PDP, thick black line) and partial response when other factors are held at 
their mean (thin black dashed line) of inferred Gammaridae responses to temperature for the different models (panels) calibrated to the whole dataset and sorted 
from top to bottom by increasing level of complexity. Each colored line represents one of the 100 randomly selected observed combinations of environmental in-
fluence factors from the monitoring data. Intersecting lines indicate that the model learned interactions between environmental factors. The rug, i.e., small vertical 
lines on the x-axis, represents the distribution of temperature values in the 100 randomly selected observations. It shows how the different models generalize when 
the observations are scarcer, e.g., for temperatures values below 10 ◦C or above 21 ◦C. The black vertical arrow on the right of each panel represents the difference 
between the minimum and the maximum values of the PDP, indicating the sensitivity of the model to the variable. 
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confidence that the model learned the right relationship between causes 
and effects (Schuwirth et al., 2019). To increase confidence, it is 
important to 1) select the explanatory variables based on the knowledge 
about causal effects in the system (Arif and MacNeil, 2022), and to 2) 
assess the plausibility of the response shapes inferred by the model. 

4.1. Minor effects of increasing complexity on predictive performance 

In this study, we compared models with different complexity to 
understand how complexity affects predictive performance and inferred 
responses. We were expecting ML models, such as RF, to have a better 
predictive performance during cross-validation (CV) than simple sta-
tistical models, because their structure allows them to learn more flex-
ible response shapes (Li and Wang, 2013). By using increasingly 
complex models with different properties, we expected to learn, which 
additional features could be included in the simpler models to gain 
predictive performance while keeping an easily interpretable structure. 
However, for this data set and by looking at the median over all taxa, the 
more complex models showed only a minor improvement in predictive 
performance compared to the statistical models (chGLM and RF have 
only a difference of 0.03 in median AUC and 0.06 in median standard-
ized deviance in prediction during CV). This statement is supported by 
the comparison of the geographic distribution of the predicted proba-
bility of occurrence for each taxon (Supporting Information A 5), where 
we observe only minor differences among models. Only for some specific 
taxa with intermediate prevalence the ML models performed substan-
tially better than the simpler statistical models. This indicates that a 
larger number of data points could improve the inference of more 
complex responses, especially for the rarer taxa. 

During out-of-domain generalization (ODG), the statistical models 
were expected to have a better predictive performance than the ML 
models, because they are more constrained. However, by looking at the 
median standardized deviance over all taxa, all models performed 
similarly or worse than the null model. This indicates that we have to be 
careful, especially for taxa with unbalanced prevalence, if we want to 
use any of the tested SDMs to predict effects of environmental changes 
beyond the range that is covered in the calibration data, for example the 
effect of global warming for sites that are already at the upper end of the 
temperature range. If it is required to make predictions out of the cali-
bration domain, and knowledge about taxa responses under these cir-
cumstances is available from other sources, a model that can include 
prior knowledge about the preferences of the taxa could be useful (e.g., 
Vermeiren et al., 2020b). For some taxa with intermediate prevalence, 

the out-of-domain generalization worked better than expected and even 
better than under cross-validation (for example Gammaridae). This 
seems to be related to the prevalence in the ODG training (calibration) 
and testing (prediction) data set (see Supporting Information A 3.2). For 
example, Gammaridae had a higher prevalence in the ODG testing data 
set than in the training. They occurred at most of the warmest sites. This 
was easier to predict by the model, because the probability of occurrence 
at the upper end of the training data was already high, so that extrap-
olation lead to a very high performance. For other taxa, such as Nem-
ouridae, the optimum temperature was around the temperature 
threshold that was used to divide training and testing data. For this 
taxon, the models were not able to predict the decreasing probability of 
occurrence at the highest temperatures and therefore performed worse 
during ODG. 

4.2. Effect of overfitting on interpretability 

While the ML models only partially predicted better than the statis-
tical models in this study, the main impact of their complexity is 
observed on overfitting and consequently on the learned response 
shapes and their interpretability. The difference between performance 
during calibration and prediction was much higher for the more com-
plex models (especially RF with an average likelihood ratio of 0.76) than 
for the simpler GLM models (average likelihood ratio of 0.99), which 
indicates that the complex models fit closer to the data. When taking the 
RF alone, the large degree of overfitting makes it difficult to judge, 
which characteristics of the response shapes capture real patterns and 
which are just describing the noise in the data. For this, a comparison 
with models that are less overfitting but have a similar predictive per-
formance are helpful. 

The learned response shapes that are visualized with the ICE and PDP 
plots indicate that more flexibility allows the more complex models to 
learn interactions and complex relationships, but also sometimes lead to 
multiple optima and abrupt jumps. Ecological theory supports that 
response shapes should be unimodal (with the exception of taxa con-
sisting of multiple species with distinct responses) and smooth (Oksa-
nen, 1997; Austin, 2007; Holt, 2009), which questions the plausibility of 
the response shapes inferred by the more complex models and their 
suitability for learning about the true system behavior. It is known that 
the properties of some models, in particular the tree-based structure of 
RF and BCT, result in non-smooth response shapes. As even more critical 
we judge the sometimes strong interactions. In order to support envi-
ronmental decisions, we often want to make site-specific predictions. 
While we can expect some interactions in the response to some vari-
ables, the ICE for the RF model shows that the influence of a variable can 
be inverted for a few sites, which seems implausible. Since these models 
also show stronger overfitting and similar predictive performance than 
the statistical models (with lower degree of overfitting), it is justified to 
interpret the implausible responses shapes and interactions as results of 
fitting the noise in the data. 

Finally, we observe that also the choice of visualization can impact 
the interpretation. For the same taxon, we can get different response 
shapes for the PDP compared to the partial response calculated by 
setting the other factors to their mean (see for instance the difference 
between the straight and dotted black line in the GAM and other more 
complex models in Fig 4.). The computation of the PDP is more expen-
sive, but it considers a broader range of input data and is therefore more 
informative. 

4.3. Choosing the right level of complexity 

In summary, our results indicate that identifying models with a big 
difference in performance during calibration and prediction, i.e., a high 
degree of overfitting, is a good indicator for implausible complex 
response shapes. In this study we found that more flexible response 
shapes are not necessary to describe the patterns in the data or that the 

Fig. 5. Comparison of Partial Dependence Plots of inferred Gammaridae re-
sponses to temperature among models (see legend for the color-coding). The 
rug, i.e. small vertical lines on the x-axis, represents the distribution of tem-
perature values in the 100 randomly selected observations used to calculate 
the PDPs. 
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underlying complex relationships are masked by noise. Overall, it is 
acknowledged that it is challenging to find the optimal level of 
complexity to reach the best predictive performance (Elith and 
Franklin, 2013; Merow et al., 2014). This is illustrated in Fig. 6, where 
the change in performance during calibration and prediction is plotted 
against model complexity. Because plausible response shapes are 
important to interpret the results of a model with confidence, we would 
prefer to select a model that is slightly underfitting (e.g., point A in 
Fig. 6) than a model having a bigger difference in performance between 
calibration and prediction and consequently showing overcomplicated 
response shapes, even if it is predicting slightly better (e.g., point B or 
point C in Fig. 6). For instance, in our study, RF presents a large dif-
ference in performance during calibration and prediction and implau-
sible response shapes, while predicting only slightly better than simpler 
statistical models, indicating that the RF is closer to point C than to point 
A. 

4.4. Limitations and outlook 

In this study, the overfitting problem is most likely caused by the 
noise in the dataset. It highlights that the limiting factor for further 
improving predictive performance is not model complexity but the in-
formation content of the response and explanatory variables. Increasing 
the amount of data, especially for taxa with low prevalence, and 
improving the precision of the environmental factors used as explana-
tory variables could help increasing the predictive performance of all 
models. For some influence factors, e.g., water quality, we had to rely on 
proxies based on land use. More directly linked variables, e.g., mea-
surements of chemical water quality, could improve the predictive 
performance. Including other spatial factors might also lead to an 
improvement in predictive performance, e.g., by accounting for 
dispersal limitation. Similarly, improving the taxonomic resolution in 
the data, e.g., from family to genus or species level, could lead to an 
improvement in predictive performance because the models could learn 
stronger responses, especially for taxa with a high prevalence (Car-
adima et al., 2019, 2020; Vermeiren et al., 2020a, 2020b). However, a 
better taxonomic resolution could also increase the noise in the data in 
some cases, due to misidentification, and would lead to a decrease in 
prevalence. 

For future studies with similar data, we recommend to put more 
effort in preventing ML models to overfit by applying stronger regula-
rization. For the scope of this paper, we intended to use standard ap-
proaches implemented in software packages that are currently used in 
the field of SDM, such as the R-package “caret”. The “caret” package uses 
internal tuning or basic grid search (Kuhn, 2022), which did not lead to a 
significant improvement in prediction by hyper-parameter tuning. A 
better regularization to find an optimum level of complexity so that 
overfitting is minimized while still reaching a high predictive 

performance (see Fig. 6) would increase the confidence in interpreting 
ML model results. It may be promising to investigate more complex 
tree-based models that allow to regularize the interactions strength, for 
example XGBoost (Chen and Guestrin, 2016). 

Other ways to deepen the analysis of taxa responses to environ-
mental factors would be the use of time series data with a temporal 
resolution that fits the temporal dynamics and the integration of infor-
mation from controlled experiments, ideally from the field. The latter 
could be achieved by a monitoring design that is targeted to success 
control of large scale management programs. 

Future research might also explore the use of synthetic data with 
different noise levels to discern the sensitivity of the different modeling 
approaches to noise (Austin et al., 2006; Meynard and Quinn, 2007; 
Zurell et al., 2010). This could help to draw generalizable conclusions 
about the optimal level of model complexity depending on the noise in 
the data in a controlled setting. 

As a general conclusion, to find the optimal level of model 
complexity in the context of SDMs, we recommend the following steps:  

1) Apply several models that differ in complexity.  
2) Compare their predictive performance and degree of overfitting, as 

indicated by the difference in performance during calibration and 
prediction.  

3) Compare the inferred response shapes with model agnostic tools, 
such as PDP and ICE plots.  

4) Evaluate, if the response shapes are ecologically plausible by putting 
them in the perspective of the results in predictive performance and 
degree of overfitting. 

This comparison of predictive performance, overfitting, and learned 
response shapes allows us to understand, if a gain in predictive perfor-
mance is due to real complexity in the relationships between the 
explanatory and response variables, or rather due to fitting to the noise 
in the data. Such a comparison helps us to make a well-grounded choice 
on the level of model complexity. 

5. Conclusions 

Despite the increasing use of machine learning algorithms in species 
distribution modeling, some work still needs to be done to determine, 
which model is most appropriate for the data available and the purpose 
of a study (Tredennick et al., 2021). Our study shows that the compar-
ison of several modeling approaches with different levels of complexity 
and their resulting response shapes is a useful approach to gain confi-
dence in model predictions. We found that, for this specific dataset, the 
improvement in predictive performance between the statistical and the 
machine learning models is too small to accept overcomplicated 
response shapes. The degree of overfitting was a good indicator that the 

Fig. 6. Conceptual illustration of the dependence of predictive per-
formance (orange line) and performance during calibration (purple 
line) based on the standardized deviance (y-axis) with a lower value 
indicating a better performance, on model complexity, represented 
conceptually on the x-axis. Overfitting is indicated by the difference 
between the two lines, the likelihood ratio λ (vertical arrow between 
orange and purple lines). The point B (black point) shows the optimal 
complexity regarding predictive performance. The point A (diamond) 
indicates a compromise between high predictive performance and low 
overfitting that could be expected to lead to more plausible response 
shapes. The point C (triangle) shows that even an intermediate pre-
dictive performance between point A and B can be related to a higher 
degree of overfitting, leading to unplausible response shapes.   
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response shapes should be interpreted carefully. The individual condi-
tional expectation and partial dependence plots showed that more 
complex models fitted the noise in the data by allowing complex in-
teractions, abrupt jumps and multiple optima in the response shapes for 
only a minor improvement in predictive performance, compared to 
simpler models showing less overfitting and smoother response shapes. 
Moreover, on average all models learned similar patterns in the response 
shapes, especially in the range of the explanatory variables that was well 
covered in the data, implying that statistical models already captured 
useful information in the data. Therefore, we should be careful when 
using data-driven approaches to learn about the system in an ecological 
sense. A critical review of inferred responses in light of ecological 
knowledge about the taxa is always recommended before using the re-
sults to inform decision making. In particular, we recommend to be 
cautious for predictions regarding future environmental changes that go 
beyond the range of environmental conditions observed so far. We 
conclude that a comparative analysis of models with differing 
complexity can guide model selection and increase the confidence in the 
interpretation of results. 
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make ecological models useful for environmental management. Ecol. Modell. 411, 
108784 https://doi.org/10.1016/j.ecolmodel.2019.108784. 

Srivastava, V., Lafond, V., Griess, V.C., 2019. Species distribution models (SDM): 
applications, benefits and challenges in invasive species management. CABI Rev. 
2019, 1–13. https://doi.org/10.1079/PAVSNNR201914020. 
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