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Abstract
1. Lakes are recipients of allochthonous organic matter and nutrients. However, the 

importance of these subsidies for food webs and how they vary with lake trophic 
status remains unclear, especially for large lakes.

2. We assessed the source and fate of organic matter and nutrients in seven perial-
pine lakes across a gradient of trophic status. We measured carbon and nitrogen 
stable isotopes of amino acids of lake- residing Atlantic trout, Salmo trutta, to de-
termine the source of primary production (i.e., how carbon is fixed in the ecosys-
tem) and how it is transferred through food webs, respectively. Based on essential 
amino acid carbon fingerprinting, we estimated the probability of organic carbon 
originating from autochthonous (algal), allochthonous (terrestrial plant), and re-
cycled (bacterial) sources. In addition, we used amino acid δ15N to track how this 
primary production is transferred to consumers in general, and by using different 
trophic amino acids (glutamic acid and alanine), identify the trophic pathways in-
volving either metazoan or protozoans.

3. We found a high likelihood of autochthonous origin of organic carbon (86 ± 9%) 
in trout that contrasted with allochthonous origins of particulate organic mat-
ter and some sediments. We showed that those estimates are good proxies of 
source reliance. Our results also highlighted the importance of bacterial origin 
of organic carbon in fish (12%). The likely autochthonous origin of this carbon 
was supported by trophic markers (Ala δ15N) that suggest the role of protists 
in transferring recycled organic carbon up the food web. While the sources of 
nitrogen sustaining food webs varied among lakes, we found a conserved carbon 
fingerprinting of fish. Overall, this suggests an uncoupling between the source of 
nutrients and organic carbon in large perialpine lakes.

4. Across a wide range of trophic status (c. 2 orders of magnitude range of phospho-
rus concentration), several lines of evidence suggested that perialpine lake food 
webs shared a common reliance on autochthonous and bacterial production.
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1  |  INTRODUC TION

The notion that ecosystems are reciprocally linked by fluxes of 
nutrients, organic matter and energy has been formalised in the 
meta- ecosystem framework (Loreau et al., 2003). This perspective 
is especially relevant for inland water ecosystems (i.e., streams and 
lakes) in which allochthonous inputs of organic carbon (OC) have 
been estimated to exceed autochthonous production (Gounand 
et al., 2018). Although lakes cover only c. 1.2% of the earth's surface 
(Downing et al., 2006), they receive about c. 1.9 Gt of terrestrially 
derived carbon/year1 (Cole et al., 2007). Understanding the fate of 
allochthonous organic carbon in lakes is critical in the context of 
aquatic– terrestrial linkage disturbances with implications for carbon 
cycling and lake resource management.

The classical view of lake production is that autochthonous pro-
duction mainly provides OC to consumers (Carpenter et al., 1985). 
However, over recent decades, studies have challenged the impor-
tance of autochthony (Cole et al., 2011; Pace et al., 2004). Recent 
meta- analysis supported the importance of terrestrial organic car-
bon (OCTerr), that accounts on average for c. 42% of zooplankton 
OC across a wide range of boreal and temperate lakes (Tanentzap 
et al., 2017). For instance, Karlsson et al. (2012) reported that more 
than50% OC of fish in a small boreal lake was derived from terres-
trial production. Meanwhile, in similar lakes, Francis et al. (2011) re-
ported a trivial contribution of c. 5% OCTerr to zooplankton. Organic 
carbon can subsidise aquatic consumers through dissolved OC, par-
ticulate OC, or prey items (Cole et al., 2006). The relative importance 
of one pathway or the other depends on the characteristics of the 
OCTerr and the recipient ecosystems. In general, OCTerr is believed 
to subsidise aquatic consumers mainly through the assimilation of 
either dissolved OC (Karlsson et al., 2012) or particulate OC (Cole 
et al., 2006) by bacteria and protists (Mehner et al., 2022). However, 
there are also specific instances of fish being supported by subsi-
dised terrestrial prey (e.g. terrestrial insects or rodents) (Milardi 
et al., 2016). The effect of allochthonous subsidies depends on its 
relative importance to the recipient ecosystems and is predicted to 
be higher in oligotrophic ecosystems (Flecker et al., 2010). At a global 
scale, humans have doubled the amount of nitrogen in the terrestrial 
cycle (Vitousek et al., 1997), cascading to lake eutrophication and 

causing algal blooms (Glibert, 2017). However, little is known about 
how this shift in autochthonous production affects the source of OC 
for lake consumers (Carpenter et al., 2016; Kritzberg et al., 2005). 
Therefore, the fate of OCTerr in lake food webs of distinct trophic 
status remains elusive.

Part of the difficulty of quantifying the pathways associated with 
the assimilation of OCTerr is the wide range of methods available, 
and their various limitations. Ecosystem metabolism (heterotrophy/
autotrophy) has often been used as an argument for the impor-
tance of allochthony (Karlsson et al., 2012), but carbon oxidation 
does not necessarily reflect the relative importance of OC for food 
webs (i.e., it does not reflect carbon that is effectively transferred 
up consumers) (Brett et al., 2012). To quantify food web reliance, 
many studies rely on the use of natural stable isotopes in bulk tissues 
(Berggren et al., 2014; Vlah et al., 2018). However, there are sev-
eral challenges with this approach: (1) it is often technically difficult 
to isolate different sources of primary production (e.g. algal, detri-
tus) to act as baselines for the food web (Hamilton et al., 2005); (2) 
baselines often exhibit high spatio- temporal variability (Matthews 
& Mazumder, 2005); (3) mixing models are often sensitive to vari-
ability in both baselines and discrimination factors associated with 
trophic transfer (Bond & Diamond, 2011; Phillips et al., 2014); (4) 
prior knowledge on sources and assimilation pathways are needed 
for implementing models (Cole et al., 2002); and (5) good knowledge 
about the dynamics of isotopic fractionation is needed for each po-
tential tracer. For instance, incorrect assumptions about deuterium 
exchange with ambient water might have led to an overestimation 
of OCTerr in aquatic consumers (Brett et al., 2018). Those limitations 
could explain some apparent contradictory estimates. In the exam-
ple of Francis et al. (2011) above, including deep particulate organic 
matter (POM) as a potential source in stable isotope mixing, which 
often has a low δ13C signature (Matthews & Mazumder, 2006), com-
pletely shifted the model outcome and resulted in a low contribu-
tion of OCTerr to zooplankton. To overcome those caveats, more 
advanced markers and methods have been developed. For instance, 
radiocarbon offers the possibility to directly date the transfer of or-
ganic matter in food webs (Kruger et al., 2016); and revealed how 
classical mixing models can differ drastically from more realistic esti-
mates (Ishikawa et al., 2020). The use of labelled tracers, such as 13C 

5. Our study is the first to quantify the dependence on allochthonous organic car-
bon in lake food webs based on new amino acid stable isotope markers (carbon 
fingerprinting and Ala δ15N) and shows promise for estimating the source of car-
bon fixation in ecosystems. Our results support previous suggestions that ter-
restrial organic carbon is a relatively minor source for aquatic consumers despite 
contributing to the pool of organic matter, and more importantly, its contribution 
does not vary substantially with trophic status in perialpine lakes.

K E Y W O R D S
aquatic– terrestrial linkage, carbon fingerprinting, lake eutrophication, lake food web, primary 
production

 13652427, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fw

b.14071 by Paul Scherrer Institut PSI, W
iley O

nline L
ibrary on [08/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



872  |    SABORET et al.

enrichment, provides the ability to isolate some sources and hence 
showed stronger evidence for the fate of OCTerr in lakes (Carpenter 
et al., 2005; Pace et al., 2004). However, these studies are still con-
strained by bulk stable isotope limitations listed above, and remain 
unrealistic for larger lakes and over longer time periods. As a result, 
it is still unclear how OC flows in most lakes, especially large lakes 
in which both experimental and empirical approaches are difficult.

Over the past decade, stable isotope analysis (SIA) of amino acids 
(AAs) has emerged as a promising tool to track the origin and fate 
of OC in ecosystems (Ohkouchi et al., 2017; Whiteman et al., 2019). 
This is based on three key insights. First, essential AAs (EAAs) are 
only synthetised at the basis of food webs by primary producers, 
meaning that the carbon skeleton and δ13C values EAAs remain 
largely unchanged up the food web (Takizawa et al., 2020). This 
can help alleviate some of the uncertainties in mixing models based 
on baseline variability of δ13C. Second, different phyla of primary 
producers leave consistent δ13C offsets between AAs (i.e., the δ13C 
difference between pairs of AAs is fixed) referred to as carbon fin-
gerprinting (Larsen et al., 2009), which is believed to be mostly inde-
pendent of source δ13C and metabolism (Elliott Smith et al., 2022; 
Larsen et al., 2013). In recent studies, the C fingerprinting of algae 
and vascular plants revealed high levels of autochthony in large 
rivers (Thorp & Bowes, 2017) or cave fish (Liew et al., 2019), two 
ecosystems that were believed to depend mainly on OCTerr. Third, 
AA- SIA (δ15N) can be used to track source EAAs (e.g., Phe) that un-
dergo little transamination and reflect the δ15N baseline (McMahon 
& McCarthy, 2016) and trophic AAs (e.g., Glu, Ala) that leave a con-
sistent δ15N enrichment with each trophic transfer (Chikaraishi 
et al., 2014), allowing the measurement of OC transfer in food webs 
(Bowes & Thorp, 2015; Gutiérrez- Rodríguez et al., 2014). Overall, 
AA- SIA opens new avenues for understanding how carbon is fixed 
(i.e., reduced by primary producers) and how it flows through eco-
systems (i.e., oxidised by consumers).

In this study we asked the following questions: (1) what is the 
origin of primary production that sustains perialpine lake consum-
ers? (2) how are different sources of organic carbon transferred up 
through the food web? and (3) how does lake nutrient status in-
fluence sources of primary production? We used AA- SIA of C and 
N in consumers of perialpine lakes with different trophic status. 
We focused the analysis on communities of lake- residing Atlantic 

trout, Salmo trutta, that rely on different energy channels available 
in the ecosystem (benthic, pelagic, and deep pelagic) (Klemetsen 
et al., 2003).

2  |  METHOD

2.1  |  Study sites and study species

We conducted our study in seven perialpine lakes of the northern 
ranges of the Swiss Alps (Figure 2a). The lakes are located in an 
area with a radius of less than 100 km and are subject to the same 
temperate climate, but have different trophic status, ranging from 
oligotrophic (Brienz, Thun) to eutrophic (Lugano, Zug; Table 1). To 
describe nutrient limitations in lakes, we used the total phosphorus 
concentration in the lakes, measured as the volume- weighted con-
centration after winter mixing over the last 10 years. Data were ob-
tained from Steinsberger et al. (2020), and for Lake Lugano and Lake 
Zug from Alexander and Seehausen (2021). We were confident that 
data were comparable between the two studies given that values for 
Lake Lugano and Lake Zug have varied little over the past 10 years 
(Lepori & Capelli, 2021; Schwefel et al., 2019), and are consistent 
among studies (Müller et al., 2019, 2022).

We focused our analysis on lake- residing Atlantic trout, Salmo 
trutta, hereby referred to as trout, as trout are generalist feeders. 
Atlantic trout is a plastic species, which means that individuals can 
specialise on a wide range of available food items: surface insects, 
fish, aquatic larvae, plankton (Klemetsen et al., 2003). Preliminary 
genotyping analysis suggests that trout form communities of sev-
eral populations that specialise on different carbon sources (as 
depicted by bulk δ13C), similar to findings in Piggott et al. (2018). 
Thus, individual trout can feed on the different energy channels 
available: benthic, pelagic, and profundal pelagic. It is worth noting 
that trout do not represent the complexity of the whole lake food 
web (e.g., insectivore specialists or aquatic birds feeding on mac-
rophytes). Rather, we used trout as an integrative tool, because as 
top consumers they integrate the OC that flows up the food chains 
(Mehner et al., 2022). By looking at EAAs in trout (see below), we 
could therefore describe the OC at the base of the food web that 
is effectively transferred up food chains, and so the source of OC 

TA B L E  1  Summary of study sites.

Local name Name
River 
basin

Area 
(km2)

Elevation 
(m)

Max. depth 
(meter)

Total 
phosphorus 
(mg/m3) Trophic status

Sample 
size

Brienzersee Lake Brienz Rhine 29.81 563.7 260 0.6 Oligotrophic 13

Thunersee Lake Thun Rhine 47.74 557.8 215 1.8 Oligotrophic 13

Ägerisee Lake Aegeri Rhine 7.25 723.9 82 5.4 Oligotrophic 10

Bodensee Lake Constance Rhine 473 396 252 7.5 Mesotrophic 12

Hallwilersee Lake Hallwil Rhine 10.21 448.7 47 15.8 Eutrophic 12

Lago di Lugano Lake Lugano Po 48.67 270.5 288 55 Eutrophic 9

Zugersee Lake Zug Rhine 38.41 413.6 198 83 Eutrophic 10
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    |  873SABORET et al.

that sustains the food web. The fact that trout is the most com-
mon top consumers in Swiss lakes (Alexander & Seehausen, 2021) 
allows comparison between lakes.

In 2019– 2021, 79 trout were collected by professional and recre-
ational fishers by gill nets and angling, respectively, in the different 
habitats of the lake (shallow shoreline c. −2 m deep to deep water 
down to −70 m). Fish were frozen upon capture by the fishers and 
thawed in the laboratory before measurement (total length of the 
carcass, mean of two measurements) and taking a biopsy of the 
dorsal muscle for stable isotope analysis. Stomach content analysis 
showed a wide range of prey items— terrestrial insects, benthic in-
vertebrates, zooplankton, and fish— supporting the generalist feed-
ing behaviour of trout communities. This dataset is not evaluated in 
this study as stomach content only reflects short term diet and does 
not necessarily reflect assimilation (e.g., some terrestrial insects in 
fish intestine were mostly preserved suggesting poor digestion effi-
ciency). For each lake, we randomly selected c. 10 (9– 13) fish of dif-
ferent sizes with a total length of 30– 90 cm, so that this subsample 
of fish is representative of resource partitioning by size, and so of the 
different energy channels used by trout.

We further studied two lakes, Thun and Zug, as they represent 
two extreme trophic status. For those lakes we also had access to 
published data of AAs δ13C and δ15N for POM, sediment, and zoo-
plankton (Stücheli et al., 2021). We sampled and analysed aquatic 
snails and zebra mussels for baselines of the benthic and pelagic en-
vironment, respectively (see Table S2).

2.2  |  Sample preparation and bulk analysis

We dried the samples at 60°C for at least 2 days. We homoge-
nised the samples by grinding them using tungsten beads (3 min at 
30 hertz). For bulk stable isotope analysis, we measured δ13C and 
δ15N using a Vario PYRO CUBE CN elemental analyser (Elementar, 
Langenselbold, Germany) connected to an isotope ratio mass spec-
trometer (IRMS, Elementar, Langenselbold, Germany). We weighed 
c. 0.5 mg of the dorsal muscle. Every tenth sample we ran urea 
and acetanilide standards with certified values (Schimmelmann, 
University of Indiana). We corrected the measured stable isotope 
ratios for sample weight (i.e. considering peak intensity), and drift 
in the sequence, when we observed a significant drift (linear regres-
sion). The δ13C and δ15N values of all samples were normalised to 
Vienna Pee Dee Belemnite and atmospheric air, respectively. The 
standard deviation of the acetanilide standard in one batch was at 
maximum 0.21‰ and 0.13‰ for δ13C and δ15N, respectively.

We corrected fish δ13C for lipid depletion in 13C (Δδ13Clipid), using 
a mass balance approach (Hoffman et al., 2015):

δ13Clipid free = δ13Cbulk– flipid. Δδ13Clipid, with flipid the fraction of 
lipids, given by:

flipid = 1−C:Nlipid free/C:Nbulk, with C:N the atomic C:N ratio.
We used Δδ13Clipid = 7‰, which is a common value reported on 

fish and salmonid (Hoffman et al., 2015; Mumby et al., 2018; Post 
et al., 2007) and C:Nlipid free = 3.1, corresponding to average protein 

atomic ratio (3.2 in McConnaughey & McRoy, 1979, lowest value of 
our data set).

2.3  |  Stable isotope analysis of AAs

We weighed an amount of 2– 10 mg (animal tissue) to 30 mg (moss 
and plant leaves that we cleaned with deionised water), and hydro-
lysed the samples with 1– 2 mL 6 M HCl at 110°C for 20 h. We also 
prepared an in- house AA standard containing 15 AAs of interest: 
Ala, Gly, Val, Leu, Ile, Pro, Asp, Ser, Thr, Glu, Met, Phe, Lys, Tyr, Met. 
We purchased individual AAs through Sigma- Aldrich, purity >99.5%. 
We determined the stable isotope ratios of carbon and nitrogen 
prior to derivatisation by five measurements on a Vario PYRO CUBE 
CN elemental analyser (Elementar, Langenselbold, Germany) con-
nected to an isotope ratio mass spectrometer (IRMS, Isoprime, U.K.).

We derivatised the free AA to N- acetyl methyl ester (NACME- AA) 
derivatives following previous protocols (Corr et al., 2007; Larsen 
et al., 2013). Briefly, we first extracted the lipophilic compounds 
using 2 mL n- hexane/dichloromethane. For all samples, we used 
no additional cleaning steps (e.g. ion- exchange resin). We added 
0.1– 1 mL (depending on the sample concentration) norleucine 
(Nle) 4.7 μMol as an internal standard. Prior to derivatisation, the 
HCl of the hydrolysed samples was evaporated at 110°C under N2. 
Subsequently, we methyl- esterified carboxylic groups using an ex-
cess of acidified methanol (6:1 anhydrous methanol: acetyl chloride) 
for 60 min at 75°C. Afterwards, amine groups were acetylated using 
an excess of acetylation mixture (1:2:5 acetic anhydride:triethyl-
amine:acetone) for 10 min at 60°C. Before and after each reaction, 
we flushed the vials with N2 and dried excess solvent under N2 at 
60°C, respectively. We dissolved the samples in 2 mL ethyl acetate 
and removed precipitates and salt using 1 mL of saturated NaCl solu-
tion. We dried the ethyl acetate solution in which the NACME- AA 
were dissolved under N2 and brought them to a final volume of c. 
300 μL in gas chromatography (GC) vials.

We separated AAs on an Agilent 6890 Series Gas- Chromatography 
System equipped with a Gerstel MultiPurposeSampler MPS2 
(Gerstel, Mühlheim, Germany) and an InertCap 35 GC column (GL 
Sciences, 60 m × 0.32 mm × 0.50 mm), using the same temperature 
program as Larsen et al. (2013). We determined the isotopic ratio 
using a Delta V/ Delta V + Advantage, (Thermo) coupled to a com-
bustion tube. We run every sample in duplicate or triplicate for C 
and N, respectively. We ran the in- house AA standard at the begin-
ning, at the end, and every five samples of each sequence. Before 
and after each AA standard, we ran an external caffeine standard of 
known isotopic composition (Schimmelmann, University of Indiana). 
Within each sequence, we measured three peaks of gas reference 
before and after the sample peaks. We injected 0.1– 3 μL of sample 
so that peak intensity was similar to that of the standard. We re-
ported isotopic measurements when we achieved sufficient baseline 
separation, sufficient peak intensity (> minimum standard intensity) 
and coherent peak reference values (±0.15‰). To account for iso-
topic kinetic effect of the carbon added during derivatisation, we 
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calculated correction factors using in- house standard measurements 
following the formula in Corr et al. (2007). We used the same correc-
tion factors for the five batches of derivatisation that we carried out 
as we found no significant differences between the standards we in-
dependently derivatised for each batch. We calculated standard de-
viation based on replicated measurements and for δ13C propagation 
of uncertainty due to carbon addition (Corr et al., 2007). To apply the 
C fingerprint approach, we normalised EAA values to the mean value 
of the five EAAs (see below).

For δ13C and the five EAAs (Ile, Leu, Thr, Val, Phe), the stan-
dard deviation of the in- house standard (including propagation of 
uncertainty due to added C during derivatisation) was on average 
between 0.51‰ (Leu) and 0.64‰ (Thr), and was 0.67‰ for the in-
ternal standard Nle. For δ15N, the standard deviation of the in- house 
standard was on average between 0.44‰ (Ala) and 0.51‰ (Glx), 
and was 0.52‰ for the internal standard Nle. The in- house standard 
Δ15NGlx- Phe deviated on average by 0.01‰ from Δ15NGlx- Phe derived 
from elemental analyser– IRMS values, with a standard deviation of 
0.27‰. In other words, we achieved high precision of relative δ15N 
difference between AA within a run, reducing uncertainty for tro-
phic position estimates.

For N stable isotope, we directly compared GC- IRMS values of 
the internal standard to values measured on the elemental analyser– 
IRMS. For every batch, values did not significantly differ when con-
sidering mean and standard deviation (assuming normal distribution).

Because during hydrolysis Gln is deaminated to Glu, we reported 
measurements for Glx (Glu and Gln). It means that Glx δ15N corre-
sponds to the δ15N of the α-  amine of Glu and Gln.

2.4  |  Carbon fingerprinting predictions

We used the carbon fingerprinting of EAAs to predict the source 
of primary productions, hereby referred to as C fingerprinting. It has 
emerged as a powerful tool to track OC in ecosystems because: (1) 
only primary producers can de novo synthesise EAAs whose car-
bon skeleton remains unaltered up the food web (i.e. EAA δ13C in 
consumers reflect those of primary producers); (2) different phyla 
of primary producers leave distinct EAA δ13C signals and hence a 
unique fingerprinting; (3) this fingerprint is not influenced by environ-
mental factors (e.g., habitat, climate or seasonal variation), meaning 
that is not related to bulk δ13C; and (4) because AAs are the main 
components of organisms, this isotopic tracer depicts more accu-
rately fluxes of OC (unlike specific biomarkers, such as lipids, whose 
stoichiometries in food webs are unclear and only constitute small 
amount of biomass fluxes).

Since the first description of the C fingerprinting method (Larsen 
et al., 2009; Scott et al., 2006), a decade of growing evidence sup-
porting (2) and (3) has passed. Based on several published datasets, 
Liew et al. (2019) found a distinct and consistent fingerprint between 
vascular plants and algae, which they used to predict the source of 
OC sustaining a cave fish population. Likewise, Besser et al. (2022) 
presented a unique dataset of primary producer C fingerprinting that 

allowed them distinguishing algae from plants, and different phyla 
of plants (C3, C4, and CAM). The spatiotemporal universality of the 
C fingerprinting was further supported by empirical data of divers 
autotrophs across a broad oceanic scale, which showed consistent 
fingerprints despite very distinct environments, from the Alaskan to 
Californian coast and collected from different seasons (Elliott Smith 
et al., 2022).

Organic carbon in lakes could be derived from three sources 
of primary producers: vascular plants (allochthonous production); 
algae and cyanobacteria (autochthonous production); and bacteria 
(recycling of organic matter or chemoautotrophy) (Brett et al., 2017; 
Cole et al., 2006; Vlah et al., 2018). Based on a first dataset, Larsen 
et al. (2013) were able to distinguish among plants, bacteria and 
aquatic phototrophs, which comprised microalgae and cyanobacte-
ria. We gathered data from the literature reporting AA δ13C values 
and assigned species to three main phyla: plants, algae, and bacteria. 
We included cyanobacteria and algae in a common group of aquatic 
phototrophs since there are few data on cyanobacteria. They both 
represent autochthonous production and have similar C finger-
prints (Larsen et al., 2013). We focused the C fingerprinting on five 
EAAs: Leu, Ile, Val, Thr and Phe since they are the most commonly 
measured and have led to conclusive results (Liew et al., 2019). We 
tested for differences between the three groups using an ANOSIM 
test, and performed a post hoc ANOVA to test for significance.

Predicting the relative contribution of different primary 
producers to OC based on the C fingerprinting remains a chal-
lenge (Arsenault, Thorp, et al., 2022; Liew et al., 2019; Skinner 
et al., 2021). In our case, the model comprised a large number of 
samples for the source dataset (n = 501). This approach allowed 
us to encompass the range of natural variation of the C finger-
printing that could also be found in lakes; but did not allow model 
convergence using classic Bayesian or MixSIAR approach because 
the sources overlapped in normalised δ13C of some EAA. Thus, 
we used a linear discriminant analysis (LDA) bootstrap resam-
pling approach that showed conclusive results in previous studies 
(Elliott Smith et al., 2021; Fox et al., 2019). Because we had three 
sources, we used the LDA posterior probabilities of classification 
as proxy of the relative contribution of different sources, follow-
ing Elliott Smith et al. (2021). We examined the predicative abil-
ity of our model following three tests. More details can be found 
in Appendix S1, but in brief we: (1) performed a reclassification 
procedure of the source data; (2) checked for empirical data that 
there was a predictable relationship between the distance from 
source centroids and LDA posterior probabilities; and (3) simu-
lated consumer data to explore the relationship between model 
output and relative reliance from which the C fingerprinting might 
arise. By doing so, we could check that our model could be applied 
to natural consumers and could be interpreted in term of relative 
reliance. Finally, we tested this approach by including other sam-
ples measured in the laboratory, which depicted diverse sources 
of primary production. We included samples collected in 2021 in 
south- west Greenland (Narsaq peninsula) of different producer 
origins: marine (anadromous char sampled in streams, mussels and 
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    |  875SABORET et al.

snails sampled on fjord shore); freshwater (invertebrate larva in 
small streams); and terrestrial (grass and moss). We also tested tis-
sue of terrestrial consumers (beef, chicken, and pig) and fungi that 
we purchased in a commercial store in 2021, as well as one of the 
author isotopic signal (hair, a common isotopic record of mammal 
diet, Crawford et al. (2008)).

We ran 10,000 iterations in which we bootstrapped the source 
dataset by resampling randomly 80% of the dataset; and simulated 
possible consumer C fingerprint based on measurement uncertainty. 
For this purpose, we modelled for each AA a value following a nor-
mal distribution of known mean and standard deviation (as derived 
from duplicate measurements). When we had no standard deviation 
(one measurement only), we used a standard deviation of 0.5 (c. max 
standard deviation). We then calculated the mean and standard devi-
ation of the 10,000 iterations for each consumer. The bootstrapping 
approach allowed us to test the importance of the source dataset 
in our model. We simulated the measurement error to test for the 
sensitivity of the C fingerprinting to uncertainty around AA δ13C, 
which can be high due to IRMS measurement error and propagation 
of uncertainty due to C added during derivatisation.

We used the package MASS (Venables & Ripley, 2002) to per-
form lda, and the package ggtern (Hamilton & Ferry, 2018) to plot 
results in ternary diagrams.

2.5  |  Trophic transfer to metazoan consumers

Assessing consumer trophic position (TP) based on bulk δ15N re-
mains challenging due to uncertainties regarding δ15N of primary 
producers and the trophic enrichment factor of consumers (Bowes 
& Thorp, 2015). Instead, we calculated TP based on the δ15N dif-
ference between one trophic AA, Glx, which shows a consistent 
and large trophic enrichment for each trophic step, and one source 
amino acid, Phe, which shows little trophic enrichment and repre-
sent the δ15N of primary producers (Chikaraishi et al., 2014).

We calculated TP as follows (Chikaraishi et al., 2009, 2014):

where TDFGlx- Phe and βGlx- Phe represent the relative trophic enrichment 
of Glx over Phe in consumers and the isotopic offset in primary produc-
ers, respectively. We used a TDFGlx- Phe of 6.9‰, which is a mean value 
reported for aquatic consumers (Blanke et al., 2017), and not signifi-
cantly different from the first reported value (Chikaraishi et al., 2009) 
and a performed meta- analysis (Nielsen et al., 2015). Because we con-
sidered that OC was mainly derived from aquatic phototrophs (see 
Results), we used a unique βGlx- Phe of 3.4‰ (Chikaraishi et al., 2010), 
a value that has also been further supported by a more recent meta- 
analysis (Ramirez et al., 2021). We calculated Δ15NGlx- Phe within each 
injection, including the in- house standard, for which we obtained a 
consistent standard Δ15NGlx- Phe of −1.00 ± 0.27. We calculated stan-
dard deviation of TP following propagation of uncertainty, but did not 
consider variations around TDFGlx- Phe and βGlx- Phe.

2.6  |  Protozoan trophic transfer

It has been suggested that protozoans leave a δ15N trophic enrich-
ment distinct from metazoans, as they only isotopically fractionat-
ing Ala but not Glx (Gutiérrez- Rodríguez et al., 2014). Based on this 
observation, empirical studies suggested the importance of pro-
tozoan into transferring organic matter up food webs in the open 
ocean (Landry & Décima, 2017) and deep sea (Bode, Pilar Olivar, & 
Hernández- León, 2021).

We applied this method for the first time to lake food webs to 
investigate the link between the source of OC (e.g., relative impor-
tance of allochthony or organotrophy) and assimilation pathways 
(protist metabolism). Because bacterial OC is thought to be assimi-
lated by protozoa (Cole et al., 2006), we hypothesised that protozoan 
trophic enrichment could depict bacterial loops in lake food webs.

We did not directly estimate protist transfer, because of a lack 
of knowledge on Δ15NAla- Phe in protists and metazoan, especially 
in freshwater food webs. Rather, we calculated the deviation of 
observed δ15NAla to predicted δ15NAla in trout, based on meta-
zoan values of Δ15NAla- Phe = 6.1‰ and βAla- Phe = 3.2‰ (Chikaraishi 
et al., 2009). By doing so, we could potentially identify organic mat-
ter that has been assimilated by protozoa, resulting in relatively en-
riched 15N in Ala, after accounting for metazoan food steps.

We found that predicted δ15NAla were on average higher than 
measured δ15NAla: mean = 3.2, SD = 1.4; which indicated that 
Δ15NAla- Phe and/or βAla- Phe that we used were overestimated and 
underestimated, respectively. This result further showed the un-
certainty around 15N fractionation of Ala in food webs, which has 
been less studied than other trophic AAs, such as Glx. We found 
that the predicted δ15NAla and measured δ15NAla were positively 
correlated (R2 = 0.86, p < 0.001), with δ15NAla.predicted = 6.8 + 0.86.
δ15NAla.measured. Importantly, we found that the residuals of the re-
lationship of predicted- to- measured δ15NAla were not correlated to 
fish TP (Figure S5). This indicates that the δ15NAla enrichment arises 
from natural processes, and is not driven by propagation of uncer-
tainty related to increasing TP.

Thus, we used the relative difference between measured δ15NAla 
and predicted δ15NAla to depict relative differences of protozoan tro-
phic steps in organic matter transfer to fish. We compared levels of 
δ15NAla enrichment of trout between lakes using one- way ANOVA. 
To explore the direct link between bacterial OC and protist transfer 
to food webs, we fitted a linear model between δ15NAla enrichment, 
fish TP, and bacterial AA origin.

2.7  |  Sources of nitrogen and inorganic carbon

We used Phe (an essential EAA) δ15N and δ13C to assess the base-
line in consumers, depicting stable isotope signal of nutrients and 
carbon, respectively. We corrected for the little trophic enrichment 
observed for Phe δ15N as follows:

δ15NPhe.corrected = δ15NPhe−(TP- 1). TDFPhe, using TDFPhe = 0.4‰ 
(Chikaraishi et al., 2014).

TP =
(

Δ15
NGlx−Phe − βGlx−Phe

)

∕TDFGlx−Phe + 1
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876  |    SABORET et al.

There are many factors that determine the bulk δ13C isotopic 
composition in algae, including the source of dissolved inorganic car-
bon (Perga & Gerdeaux, 2004), uptake rate, and fractionation during 
photosynthesis (Finlay, 2004) which is not necessarily related to dis-
solved inorganic carbon availability (Bade et al., 2006). In this study, 
we use δ13CPhe as a proxy for the source of inorganic carbon, repre-
senting the δ13C signature of the inorganic carbon that is effectively 
fixed by algae. This isotopic value is different then the above defined 
C fingerprint which is independent of δ13C baseline variations.

To compare the relationship between the source of nutrients 
and inorganic carbon, and trophic status, we fitted linear models be-
tween mean community values of δ13CPhe, δ15NPhe.corrected, as well 
as bulk δ13C and δ15N and log- transformed minimum phosphorus 
concentration.

To understand how OC was distributed and flowing into food 
webs, we fitted a generalised linear model of δ13CPhe and δ15N-

Phe.corrected to fish TP, lake origin, and bacterial contribution to AA. 
We hypothesised that δ13CPhe and δ15NPhe.corrected would depict dif-
ferences in energy flows between trophic levels, and differences in 
the source of OC (algae vs. bacteria). We included lakes as a random 
effect to account for baselines differences (intercept) and differ-
ences in internal processes.

2.8  |  Data analysis

All analysis were done in R (R Core Team, 2020).
For linear models and generalised linear models (protist transfer, 

source of nutrients, and inorganic carbon), we selected the best fits 
based on the Akaike information criterion (Burnham et al., 2002), 
and only considered variables with significant (p < 0.05) effect. After 
model selection, we calculated variable effects using the package 
effects (Fox et al., 2019).

3  |  RESULTS

3.1  |  Carbon fingerprinting modelling

The three potential sources of primary production: algae, vascular 
plants, and bacteria showed significant separation (p = 0.001) and 
dissimilarity (ANOSIM dissimilarity = 0.47), despite including sam-
ples from a broad range of locations, laboratory protocols and spe-
cies (Figure 1a). The three groups mainly could be differentiated by 
Phe (relatively enriched in plants relative to algae and bacteria) and 
Leu (relatively enriched in bacteria).

The reclassification procedure of our predictive model, based on 
the LDA bootstrapping method, showed good posterior estimates 
of reliance for most of the samples. On average, posterior reliance 
were >85%, >90%, and 95% for algae, bacteria, and plants, respec-
tively (Figure S1). Some algal samples were estimated to have a 
mixed contribution between algae and bacteria, or algae and plant, 
as they have an intermediate carbon fingerprinting on the LDA space 

(Figure 1a). Especially, cyanobacteria (which we included in the cat-
egory algae) had on average an isotopic signature between algae and 
plants (Figure 1a), and showed poor likelihood of source origin (63% 
algal posterior reliance, n = 6).

Simulated consumer data showed a predictive relationship be-
tween the model outcome and simulated mixture of reliance on the 
three sources (Figure S3). The predictive power was higher when 
simulated consumers relied on a higher number of individuals within 
each source, reducing variation of the C fingerprinting of sources. 
Simulations showed that the model performed poorly at estimating 
mixed contribution of bacteria and plant. Specifically, the model 
produced false positive of algae reliance. Some samples with algae 
reliance 0%– 60% could actually originate from computed mixed 
contribution of bacteria and plant. This uncertainty was removed 
for high contribution of algae that could only originate from algae 
C fingerprinting. By contrast, dependence on plant and bacteria 
is much more likely to be truly indicative of contribution of those 
sources to the pool of EAA. Those simulations gave us confidence 
that there was a predicative relationship between likelihood origin 
of OC (model outcome) and relative reliance on sources; and gave us 
insight on how to interpret the results.

We empirically applied our model to a broad range of samples that 
we measured (Table S1 for detailed results). The model predicted all 
samples derived from either a mixture of plant and algae, or algae and 
bacteria (Figure 1b). The terrestrial primary producers (grass, moss) 
and marine feeder (arctic char) showed >98% posterior estimates 
from plant and algae origin, respectively. Terrestrial consumers (pig 
and chicken) and the lake macrophyte also showed high dependence 
and resemblance, respectively, to vascular plant production. Stream, 
lake, and fjord consumers and producers (e.g. snails, mussels, inverte-
brates, biofilm) showed an aquatic origin, with contribution of bacteria 
(up to c. 50% for biofilm). The beef sample showed an unexpected 
posterior dependence on algae (64 ± 19%) and plant (26 ± 19%). 
Likewise, the human sample had mainly an aquatic and bacterial reli-
ance. The fungi sample showed an aquatic reliance.

3.2  |  Source of OC and nitrogen in fish

Fish showed a wide range of bulk stable isotopes of C and N 
(Figure 2b). Bulk δ13C was not related to trophic status (R2 = 0.05, 
p = 0.6), and Lake Hallwil showed the most depleted C with some fish 
<−30‰. Bulk δ15N was positively correlated to log- concentration of 
phosphorus (R2 = 0.6, p = 0.02).

Based on the C fingerprinting model, we found that lake- residing 
trout had a high probability of autochthonous origin of EAA (mean of 
all trout = 86% ± 14%) with on average very little contribution of ter-
restrial EAA (Figure 2c). Based on simulations (Figure S3), we were 
confident that this C fingerprint could only arise from a high contri-
bution of autochthonous production (>60– 80%), and was represen-
tative of reliance. Only three fish from Lake Lugano showed posterior 
reliance on plant >10%, but with high uncertainty (SD between 10% 
and 19%). The seven lakes showed similar model outcomes, and the 
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    |  877SABORET et al.

relative proportion of autochthony was not related to lake trophic 
status (Figure 2c, linear regression, R2 = 0.37, p = 0.14).

We found that the baseline 15N (as depicted by δ15NPhe.corrected) 
was strongly correlated to lake trophic status (Figure 2d): δ15N-

Phe.corrected increased linearly (R2 = 0.8, p < 0.01) with increasing log- 
concentration of phosphorus.

3.3  |  Source of OC in food webs

We further investigated the source of OC in two lakes: Thun (oligo-
trophic) and Zug (eutrophic). We found similar patterns in the two lakes 
(Figure 3). Lake consumers (snail, mussel, zooplankton, and fish) had all 
a C fingerprint similar to algae and/or bacteria (Figure 3a). The model 
predicted a c. 89% algal origin of zooplankton AAs (mean = 89% ±4%), 
while mussels and snails showed in addition a substantial dependence 
on bacteria AAs c. 15– 56% (mean = 32% ± 15%, Figure 3b, see Table S2 

for detailed results). Zebra mussels were not a good representative of 
pelagic consumers, with a C fingerprint similar to that of sediments 
rather than POM and zooplankton (Figure 3a,b).

Particulate organic matter of surface water (10 m depth) was 
predicted to derive mainly from autochthonous production (c. 80– 
95%). However, we found a high contribution of allochthonous AAs 
in deeper POM and some sediment samples (Figure 3a,c). The ter-
restrial origin of some sediment samples (e.g. at the river inlet of 
Lake Thun, 0.89% reliance on plant) and some POM (e.g. 105 m, 
155 m in Lake Zug) was high. Sediments showed different reliance 
on allochthony between the two lakes. In Lake Thun, we found a 
unique C fingerprint between bacteria and plants (Figure 3b), dif-
ferent from all samples of our training sample dataset (Figure 1b). 
In Lake Zug, we found very little allochthonous contribution to sed-
iments (Figure 3b). In both lakes, we found a bacterial C fingerprint, 
that resulted in substantial contribution of bacteria to sediment AAs 
(mean = 37% ± 18%, min = 8%, max = 76%).

F I G U R E  1  (a) Linear discriminant 
analysis (LDA) plot of normalised essential 
amino acid δ13C (Ile, Leu, Phe, Thr, Val) 
for three phyla of primary producers: 
bacteria, aquatic phototroph and plants, 
based on literature data. Ellipse show 
95% confidence intervals. Essential amino 
acid texts show their relative contribution 
to LDA axis. (b) Estimates of the relative 
contribution of algae, plants and bacteria 
to different consumers’ amino acids 
(Table S1), based on LDA bootstrapping 
approach (see Method). Results are shown 
in a ternary diagram.
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878  |    SABORET et al.

In summary, we found similar C fingerprinting signature in both 
lake components, with distinct origin of consumers OC and sinking 
particle OC. Further, the benthic (snail) and pelagic (zooplankton) 
energy channels were characterised by specific C fingerprinting, 
with a partial bacterial reliance for snails.

3.4  |  Transfer of OC and nitrogen up through the 
food web

Δ15NGlx- Phe showed trophic enrichment, from POM to primary 
consumers and predators (trout; Figure 3c). We found that 

F I G U R E  2  (a) Map of study sites and study species, Salmo trutta (b). Bulk stable isotope biplot. Ellipses show 80% distribution. (c) 
Estimates of the relative contribution of algae (green), plants (red) and bacteria (blue) to Salmo trutta of different lakes of different nutrient 
load (Total phosphorus min, y- axis). Colour names of the lakes refer to colours on the map in (a). (d) Relationship between the source of 
nitrogen, as inferred from δ15NPhe, and lake nutrient loads, as inferred from log- transformed annual concentration in phosphorus (mg/m3). 
Error bars show standard deviation within fish communities. Dashed line shows the positive linear relationship.

Lake Zug

Lake Hallwil

Lake Lugano

Lake Constance

Lake Aegeri

Lake Thun

Lake Brienz

(a)

(c)

Switzerland

Salmo trutta

Europe (b)

(d)

F I G U R E  3  Amino acid stable isotope analysis of organic matter and consumers (see top panel for colour legend) in two perialpine lakes 
in Switzerland, lake Thun (oligotrophic, left) and lake Zug (eutrophic, right; a). Linear discriminant analysis (LDA) plot of normalised essential 
amino acid δ13C (Ile, Leu, Phe, Thr, Val). (b) Ternary plot of predicted origin of organic carbon: aquatic phototroph, bacteria and plants. (c) 
Bidimensional representation of the food web. y- axis: Δ15NGlx- Phe as a proxy of trophic position (see direct trophic position estimates to the 
right). The full vertical line corresponds to basal aquatic production (βGlx- Phe of 3.4‰). Dotted lines show trophic steps (TDFGlx- Phe of 6.9‰). 
x- axis: Relative proportion of aquatic phototroph production, as inferred from essential amino acid fingerprinting (panels a and b).
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Lake Thun - oligotrophic Lake Zug - eutrophic

POM

Snail
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Zooplankton
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Sediment
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lake trout were secondary to tertiary consumers (TP [2.9– 4.5], 
mean = 3.6), for which TP was positively correlated to size 
(R2 = 0.3, p < 0.001, Figure S4). We found similar TP between 
lakes Thun and Zug of aquatic snails (mean = 2.1, range 2.1– 2.2) 
and zebra mussels (mean = 1.4, range 1.3– 1.6), similar to reported 
values of POM (mean = 1.3) and zooplankton (mean = 1.7. range 
1.4– 2.0).

We found that within lakes, δ15NPhe.corrected was best explained 
by the dependence on bacterial AAs (Figure 4b, p = 0.02) and fish 
TP (Figure 4c, p < 0.001, ΔAIC > 20). On average, δ15NPhe.corrected was 
negatively correlated to trophic steps and dependence on autoch-
thonous OC (algal C fingerprint).

Likewise, δ13CPhe was best explained within lakes by fish TP 
(Figure 4d, p < 0.001, ΔAIC>8). That is, when accounting for lake 
baseline differences, longer trophic chains supported the transfer of 
isotopically lighter carbon and nitrogen.

3.5  |  Protist trophic transfer of bacterial OC

The δ15NAla residuals, after accounting for trophic transfers involv-
ing metazoans, did not differ among lakes (ANOVA, p = 0.14, F = 1.7, 
df = 68), suggesting that the importance of protist in food webs was 
not different among lakes. At the individual level, we found that re-
siduals were positively correlated to the reliance on bacteria AAs 
(Figure 4a, p = 0.05, ΔAIC > 20 with null model). In other words, the 

bacterial fingerprinting in EAA carbon was correlated to enrichment 
in δ15NAla, a marker for protozoan food step.

4  |  DISCUSSION

4.1  |  New evidence that terrestrial organic matter 
is recalcitrant to lake food webs

We applied the C fingerprinting to lake consumers for the first time 
and found that trout had a C fingerprint typical of algae, character-
ised by isotopically light Phe and slightly depleted Leu, relative to 
the mean of the five EAA (Leu, Ile, Val, Thr, Phe). Consequently, our 
model predicted that most of OC was derived from direct autoch-
thonous production (aquatic phototrophs 86 ± 9%) and indirect pro-
duction by the bacterial loop (12 ± 8%). Lake Lugano showed some 
contribution of vascular plants, which could also be explained by 
the similarity of the C fingerprint between plants and some cyano-
bacteria taxa. Furthermore, our model showed similarities between 
macrophyte production and terrestrial OC as the C fingerprint of 
vascular plants is similar to our macrophyte sample. Given the low 
contribution of vascular plants (2 ± 3%), this suggests that both 
OCTerr and macrophytes contribute little to trout OC.

The high dependence to allochthony should not be extrapolated 
to lakes at a global scale, as large perialpine lakes have relatively small 
inputs of OCTerr (Piovia- Scott et al., 2016), and extensive pelagic 

F I G U R E  4  Relationships between 
trophic transfer and source of carbon and 
nitrogen in fish. Blue shades show 95% 
error interval around glm model estimates. 
Bars at the bottom show individual trout. 
Relationship between bacterial origin of 
amino acids (x- axis, as inferred from C 
fingerprinting estimates), and protozoan 
trophic step, y- axis, as inferred from Ala 
δ15N relative enrichment (a), and source 
of nitrogen, as inferred from δ15NPhe (b). 
Relationship between lake trout trophic 
position and carbon (c) and nitrogen (d) 
baselines, as inferred from essential amino 
acids.

(a) (b)

(c) (d)
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habitat owing to their depth (Kelly et al., 2018). The relative impor-
tance of allochthony will be higher depending on the relative ratio 
of allochthony/autochthony (Polis & Hurd, 1996). This is the case 
either in lakes with very low autochthonous production (e.g., Vlah 
et al., 2018) or high input of OCTerr (e.g., Cole et al., 2011). However, 
we observed that the autochthonous origin of fish OC was in con-
trast to the predicted terrestrial origin of some sediment samples 
and POM (from Stücheli et al., 2021), consistent with the fact that 
lakes are globally sinks of allochthonous OC (Gounand et al., 2018). 
Using perialpine lakes, our results highlight the uncoupling between 
subsidies and food webs as well as OC burial and OC fixation, and 
so the notion that OCTerr is not being used to a greater extent by 
aquatic food webs.

The C fingerprint evidence of OCTerr not being used as resource 
is in line with findings in stream fish across different biomes and en-
vironment (Arsenault, Thorp, et al., 2022; Liew et al., 2019; Thorp & 
Bowes, 2017). On the one hand, the C fingerprinting was able to di-
rectly trace the origin of carbon fixation in AAs (Larsen et al., 2013), 
unlike other isotopic markers that have confounding effects of the 
inorganic carbon signature (Pingram et al., 2012). By looking at AAs, 
the building blocks of proteins, the C fingerprinting describes carbon 
flows as they occur in food webs. Thus, the mismatch between the 
POM and consumers C fingerprint highlights that aquatic consumers 
do not assimilate OCTerr, although it could be dominant in the water 
column. This is probably because it is associated with poorly digest-
ible molecules (Brett et al., 2017; Taipale et al., 2014), which also 
explains the burial dynamic of unused OCTerr (Baldock et al., 2004). 
On the other hand, it is worth noting that OCTerr can serve beside 
AAs as an energy source either in the form of fatty acids (Masclaux 
et al., 2013), or carbohydrates (Taipale et al., 2016). It can additionally 
be used as an energy fuel for bacteria (Cole et al., 2006).

The latter process could explain the substantial dependence on 
bacterial production (12 ± 8%) that we found. Individual trout vary in 
their relative dependence to bacterial AAs (0– 38%), and we found 
that this contribution was correlated to protist trophic transfer (as 
deduced from Ala δ15N). This finding is another line of evidence 
showing the transfer of bacterial OC to higher consumers in food 
webs. However, more experimental studies are needed— especially 
with freshwater species— to better characterise protist AA δ15N.

Bacteria de novo synthesis can be attributed to either chemoor-
ganotrophic (Ask et al., 2009) or chemolithotrophic bacteria (Ravinet 
et al., 2010). The fact that we found a consistent baseline δ15N enrich-
ment with bacterial dependence (deduced from the C fingerprinting) 
within lakes shows trophic discrimination characteristic of organo-
trophs (Bode, Pilar Olivar, López- Pérez, & Hernández- León, 2021). 
This result also implies an autochthonous source of the N15 baseline, 
as all lakes share a common allochthonous δ15N baseline that is not 
reflected with increasing bacterial dependence among lakes. That is, 
the nitrogen signal in Phe supports the notion that structural mole-
cules in bacteria are of aquatic origin as well, and that the OC recy-
cling is also supported by autochthonous production.

In conclusion, both δ13C and δ15N of AAs showed evidence of the 
importance of autochthony in lake food webs, partially supported by 
the bacterial recycling loop.

4.2  |  Predicting the source of primary production 
in consumers from the C fingerprinting

There is growing literature on the use of C fingerprinting to pre-
dict contribution of autochthonous and allochthonous OC (Liew 
et al., 2019; Thorp & Bowes, 2017), green and brown OC (Larsen 
et al., 2016; Pollierer & Scheu, 2021), or more than two or three 
sources, including bacteria and fungi (Arsenault, Thorp, et al., 2022; 
Nakamoto et al., 2022). However, there is no consensus on the sta-
tistical approach and the reliability of estimates. Here, we imple-
mented a new model to predict the dependence on the three main 
sources of OC. We found that the C fingerprinting was significantly 
different between those sources and allowed us to distinguish be-
tween allochthonous, autochthonous, and bacterial OC. Our predic-
tive model showed robust outcomes, both for our training dataset 
and for our lake samples. Furthermore, our C fingerprinting simula-
tions (Appendix S1) gave us confidence that the C fingerprint we 
measured could only arise from a specific mixture of primary pro-
duction. Specifically, simulations showed that high probability of 
algal origin is only met with high reliance on algae; and probability of 
terrestrial origin is a sufficient condition to infer reliance on plants. 
However, we raise caution for interpreting some model outcomes as 
low- to- medium algal contribution can arise from theoretical mixture 
of bacteria and plants. We encourage future studies based on such 
models to explore how the C fingerprinting- scape scales with actual 
mixture of sources.

In addition, we point out four caveats that should be in the future 
considered when applying this approach.

1. The universality of the C fingerprinting relies on standardised 
procedures between laboratories. It is unclear how consistent 
δ13C AA measurements are across methods and laboratories. 
For instance, different derivatisation methods and standards 
are used, with potential implications for measurement value. 
Replicate measurements across laboratories can differ signifi-
cantly, e.g., see Stücheli (2018) with an interlaboratory offset 
of −0.6 ± 1.6‰ using external samples. Although it is hard 
to tease apart differences due to different species or phyla, 
it appears that some studies had consistent C fingerprinting 
offsets (e.g. Pollierer et al., 2020).

2. While it is assumed that the C of EAAs is not fractionated in 
consumers (Larsen et al., 2013; McMahon & McCarthy, 2016), 
other studies reported significant trophic discrimination of EAAs 
(Manlick & Newsome, 2022; Whiteman et al., 2018). It is unclear 
how common trophic discrimination of EAAs is and what role 
endosymbiotic bacteria play in providing some EAAs. However, 
Manlick and Newsome (2022) found that the C fingerprinting 
was largely conserved from diet to consumers despite of C frac-
tionation, supporting its usefulness to discriminate between iso-
topically distinct organic sources at the base of food webs. More 
experimental studies are needed to further characterise the 
transfer of the C fingerprinting up through the food web.

3. While our model assumes a uniform stoichiometry of EAAs, 
this might not be the case because: different primary producers 
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and diet sources can have different AA stoichiometry (Dwyer et 
al., 2018), and some AAs might be preferentially assimilated by 
consumers (Larsen et al., 2022) or degraded by bacteria in lakes 
(Krempaska et al., 2021). This could be particularly the case for 
consumers that rely on endosymbionts. For instance, some EAAs, 
e.g., Val and Ile, might be preferentially delivered to mice hosts by 
endosymbionts (>2 times more than other EAAs) (Newsome et 
al., 2020). This situation could explain the unrealistic model out-
come for the beef and human sample, in which different EAAs 
might come from different sources (yeast, bacterial endosymbi-
onts, plants).

4. Similar to classic mixing model, the sources that are considered 
determine the model predictions. For instance, we found a high 
aquatic reliance of the fungi sample. This unrealistic prediction 
arises from the fact that fungi (that can synthesise EAAs) are not 
considered as a source in our model, as we have prior expectations 
of low fungi contribution to lake OC (Cole et al., 2006; Grossart 
et al., 2019). As a result, fungi might overlap with algae on the 
LDA- space. In addition, fungi show complex metabolism, and can 
directly incorporate EAAs from the environment (Arsenault, Liew, 
& Hopkins, 2022), stressing that brown food webs might be hard 
to track using the C fingerprint.

For most other consumers, our model provided realistic out-
comes for the training samples, supporting its use for studying global 
patterns of primary production (Larsen et al., 2013), but we urge 
caution about laboratory measurements, stoichiometry of EAAs and 
sources considered in future model implementations.

4.3  |  Flow of autochthonous production to 
lake consumers

We found that trout showed non- discrete TPs, ranging from sec-
ondary consumers to TP of 4.5, half a trophic step higher than most 
of lake ecosystems that are composed of four trophic levels (Jake 
Vander Zanden & Fetzer, 2007) This supported the top consumer 
position of trout in the food webs, and so the fact that they integrate 
the OC and energy that flows up the food chain (Mehner et al., 2022).

Autochthonous production that we found in trout could come 
from either benthic (biofilm) or pelagic (phytoplankton) energy chan-
nels (Mehner et al., 2022), two sources that we could not distinguish 
in our model. However, samples of primary consumers (i.e. snails, 
mussels, and zooplankton) showed similar patterns between Lake 
Thun and Lake Zug: zooplankton (pelagic) showed a very high contri-
bution of algal OC, while snails (benthic) showed that their food had 
a high contribution of bacteria, suggesting that it came from biofilms 
(Risse- Buhl et al., 2012). We found that fish exhibited an intermedi-
ate bacterial dependence, suggesting the use of both benthic and 
pelagic energy channels. However, we found that bacterial food used 
by fish did not correlate to the baseline δ13C (δ13CPhe), normally a tra-
ditional marker of benthic– pelagic origin (Hecky & Hesslein, 1995). 

Rather, the correlation with relative δ15NAla enrichment was indica-
tive of assimilation by protozoa (Landry & Décima, 2017), suggesting 
the dependence on a different pelagic energy channel derived from 
OC recycling.

Our study also shows that mussels, traditionally used to provide 
a baseline for pelagic environments (Post, 2002), showed an import-
ant contribution of bacteria de novo synthesis. Additionally, they 
also exhibited low Glx trophic enrichment, falling in between aquatic 
primary producers and primary consumers, resulting in a TP of c. 1.4, 
characteristic of mixotrophs (Fox et al., 2019). Both carbon and tro-
phic signal suggest that mussel tissue arose from mixotrophy of en-
dosymbiotic bacterial de novo synthesis and heterotrophy, similar to 
findings in other mussels (Vokhshoori & McCarthy, 2014). Those re-
sults are consistent with recent findings of benthic OC providing food 
source for riverine mussels (Fogelman et al., 2022). Zooplankton also 
showed unrealistic TP < 2 (mean 1.7), in contrast to previous results 
of TP > 2 in marine plankton based on the same method (Hannides 
et al., 2013; McClelland et al., 2003). It could be that the trophic dis-
crimination factor (TDF) for this trophic step is lower than the one 
we used, consistent with the variability in bulk TDF of zooplankton 
with food quality (Matthews & Mazumder, 2008). The decrease of 
TDFGlu with decreasing food quality has also been experimentally 
assessed in vertebrates (Chikaraishi et al., 2015); and altogether it 
raises caution about the use of a single TDFGlu in aquatic food webs.

Within lakes, we found a common pattern that fish of a higher 
TP had depleted Phe in both C and N. Since Δ15NGlx- Phe and δ15NPhe 
were estimated independently (see method), we were able to rule 
out measurement bias. Rather, this result suggests that fish commu-
nities shift towards isotopically lighter OC sources with increasing 
TP, which is characteristic of pelagic energy channels (France, 1995). 
This suggests that benthic production is either inefficiently trans-
ferred through the food web, or insufficient to sustain long food 
chains.

Both the C fingerprinting and δ15N trophic AAs highlighted that 
despite common origin of primary production, food web reconstruc-
tion using bulk stable isotopes might be difficult because common 
baselines (mussels, zooplankton) are not necessarily primary con-
sumers, and not representative for the use of organic carbon by 
benthic and pelagic channels.

4.4  |  Eutrophication does not affect the relative 
importance of allochthony and bacterial loop 
to consumers

Given the increasing global concern about eutrophication (Vitousek 
et al., 1997), we asked how nutrient status could affect the relative 
reliance on primary production in lakes. The change of N source with 
eutrophication became clear when looking at the δ15NPhe. In Lake 
Brienz, isotopically very depleted N values (δ15NPhe < 0‰) were typi-
cal for diazotrophic fixation (Mompeán et al., 2016). The higher the 
nutrient concentration, the more isotopically enriched N values were 
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found, indicating reliance on anthropogenically derived or recycled N 
(Jankowski et al., 2012). The 15N result was another line of evidence 
of the importance of autochthony for fish, given the strong relation-
ship between aquatic phototroph processes (from diazotrophy to 
nitrification) and the origin of N in fish (as depicted by source 15N).

The most important finding of our study is that this source of 
nitrogen was unrelated to the source of OC to high trophic levels. 
While fish showed clear differences in the source of N and inorganic 
C between lakes, they showed a shared backbone of C fingerprint-
ing characteristic of autochthonous production, suggesting that the 
source of OC, and thus C fixation, is independent of the trophic sta-
tus. The C fingerprinting clearly showed the uncoupling between OC 
that is present in the water column and sediments, and that actually 
sustains lake consumers up food webs. Further, lakes showed sim-
ilar patterns of trophic transfer of OC (similar contribution of pro-
tists), supporting the idea of similar dependence on basal resources. 
Although nutrient load is known to affect lake metabolism and gross 
primary production (Hanson et al., 2003; Solomon et al., 2013), we 
find that those processes do not affect the relative dependence 
of food webs to allochthonous production and bacterial recycling. 
Although more studies are needed to extrapolate those results to 
other inland water bodies (e.g. tropical floodplains, boreal lakes), our 
results based on perialpine lakes indicate that the source and trans-
fer of OC through inland water food webs do not necessarily react 
to eutrophication and show some energetic constraints.

While our study focuses on the general pattern of primary pro-
duction in perialpine lakes, eutrophication could affect the OC cy-
cling in many other ways: food quality (Taipale et al., 2022), energy 
transfer efficiency (Mehner et al., 2022), biodiversity (Glibert, 2017; 
Watson et al., 1997) or food web structure and resilience (Kelly & 
Schallenberg, 2019). The stable isotope analysis of specific com-
pounds, such as AAs, also opens new ways to answer some of these 
questions. For instance, it provides new tools to elucidate the origin 
of different compounds (Larsen et al., 2022; Pilecky et al., 2021), 
nutrient limitation in consumers (Wang et al., 2019; Whiteman 
et al., 2021) or new dimensions of the consumers diet niche (Larsen 
et al., 2020; Ledesma et al., 2020).
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