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Abstract
The assessment of persistence (P), bioaccumulation (B), and toxicity (T) of a chemical is a crucial first step at ensuring 
chemical safety and is a cornerstone of the European Union’s chemicals regulation REACH (Registration, Evaluation, 
Authorization, and Restriction of Chemicals). Existing methods for PBT assessment are overly complex and cumbersome, 
have produced incorrect conclusions, and rely heavily on animal-intensive testing. We explore how new-approach methodolo-
gies (NAMs) can overcome the limitations of current PBT assessment. We propose two innovative hazard indicators, termed 
cumulative toxicity equivalents (CTE) and persistent toxicity equivalents (PTE). Together they are intended to replace exist-
ing PBT indicators and can also accommodate the emerging concept of PMT (where M stands for mobility). The proposed 
“toxicity equivalents” can be measured with high throughput in vitro bioassays. CTE refers to the toxic effects measured 
directly in any given sample, including single chemicals, substitution products, or mixtures. PTE is the equivalent measure 
of cumulative toxicity equivalents measured after simulated environmental degradation of the sample. With an appropriate 
panel of animal-free or alternative in vitro bioassays, CTE and PTE comprise key environmental and human health hazard 
indicators. CTE and PTE do not require analytical identification of transformation products and mixture components but 
instead prompt two key questions: is the chemical or mixture toxic, and is this toxicity persistent or can it be attenuated by 
environmental degradation? Taken together, the proposed hazard indicators CTE and PTE have the potential to integrate P, 
B/M and T assessment into one high-throughput experimental workflow that sidesteps the need for analytical measurements 
and will support the Chemicals Strategy for Sustainability of the European Union.

Keywords Hazard assessment · New approach methodologies (NAMs) · Persistence · Mobility · Biodegradation · In vitro 
bioassay · Toxicity
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PTE  Persistent Toxicity Equivalent
REACH  European Union’s Regulation on the Registra-

tion, Evaluation, Authorization and Restriction 
of Chemicals

SVHC  Substance of Very High Concern
UVCB  Mixture of Unknown or Variable composi-

tion, Complex reaction products or Biological 
materials

vPvB  Very Persistent, very Bioaccumulative
vPvM  Very Persistent, very Mobile

Introduction

Production of chemicals has doubled since 2000 and is 
increasingly endangering human health and the environment 
(Persson et al. 2022). Chemical risk assessment and risk 
management have not kept pace with the growing number 
and structural diversity of organic chemicals used in com-
merce (Kosnik et al. 2022). Synthetic organic chemicals are 
polluting the outdoor and indoor environment thereby threat-
ening biodiversity (Hallmann et al. 2017) and increasing 
the prevalence of diseases (Landrigan et al. 2018; Neel and 
Sargis 2011; UNEP 2019), particularly non-communicable 
diseases and allergies (Celebi Sozener et al. 2022). Recent 
reports posit that the safe operating space for chemicals in 
the environment has been exceeded (Persson et al. 2022).

While society aims for a circular economy, it neglects 
the dangers posed by chemical pollution (Kümmerer et al. 
2020). Within the contemporary discussion on establishing 
a circular economy, the topics of elemental flows of car-
bon, nitrogen and phosphorus are often prioritized over the 
fate of synthetic organic chemicals (e.g., pharmaceuticals, 
pesticides, consumer product chemicals), which are either 
ignored or only marginally considered as “novel entities”. 
This is a grave oversight, as chemical safety can be jeopard-
ized in a circular economy by, for example, the accumulation 
of toxic chemicals in recycled products (Fantke and Illner 
2019; Lowe et al. 2021) or the build-up of persistent aquatic 
pollutants during water recycling and reuse, which has been 
recognized in the regulation on minimal requirements for 
water reuse (EP&EC 2020).

The current risk assessment paradigm dates back to the 
early 1970 and includes an initial hazard assessment, fol-
lowed by parallel exposure and effect assessment, ultimately 
bringing those elements together in a risk characterization 
(enHealth 2004; EP&EC 2006; NRC 1983; US. EPA 1976). 
Regrettably, these legacy risk assessment practices are slow, 
expensive, rely on animal testing, and are constantly out-
paced by chemical innovation. Regulators were unprepared 
for the sheer numbers of new chemicals to assess, includ-
ing the potential cumulative toxic action of chemicals in 
mixtures and the ability to discriminate subtle effects that 

chemical exposure can have on the environment and human 
health (Fenner and Scheringer 2021).

The European Union’s (EU) regulation REACH, which 
stands for Registration, Evaluation, Authorization and 
Restriction of Chemicals (EP&EC 2006), has improved 
this situation by implementing the principle “no data – no 
market” by placing the burden of chemical safety assessment 
onto the industry. The assessment of persistence, bioaccu-
mulation, and toxicity (PBT assessment) was introduced 
into REACH as a new element of hazard assessment to 
identify “substances of very high concern” (SVHC). SVHC 
are chemicals that are classified as PBT or very persistent, 
very bioaccumulative (vPvB) or pose specific health hazards 
by being carcinogenic, mutagenic or reproductively toxic 
(CMR) or generate equivalent concern, such as chemicals 
that contain endocrine-disruptive properties and/or cause 
neurotoxicity. It has been also proposed that persistent, 
mobile and toxic (PMT) chemicals should trigger an equiva-
lent level of concern as PBT chemicals (Hale et al. 2020). 
SVHC are subjected to the authorization or restriction pro-
cess under REACH regardless of their production volume.

One key problem with existing chemical regulations is 
that there are no effective measures to prevent regrettable 
substitutions of phased-out chemicals by compounds that 
pose a similar threat to human and/or environmental health. 
If one compound is replaced by one or several others, and 
the production volumes are initially lower, the information 
requirements for the new chemicals are also lower. Despite 
the call for a more sustainable material basis for chemi-
cal products and processes (Zimmerman et al. 2020), the 
replacement of phased-out chemicals too often has led to 
“regrettable substitutions” (Fantke et al. 2015). Substitu-
tions ultimately lead to a higher number of chemicals with a 
higher degree of structural diversity (Wiesinger et al. 2021) 
that contribute to the growing gap in testing.

The increasing number and diversity of chemicals in 
products and their occurrence in the environment have led 
to the need of dealing with mixtures in chemical risk assess-
ment (Kortenkamp and Faust 2018). There are many exam-
ples of elevated mixture toxicity, where exposure to individ-
ual chemicals failed to provoke toxicity but in combination, 
effects are detectable and predictable by established mixture 
toxicity concepts (Neale et al. 2020; Silva et al. 2002; Walter 
et al. 2002). While mixture effects have been recognized by 
the EU (European Commission 2013), chemicals are regu-
lated individually. In line with the precautionary principle, 
regulatory approaches need to evolve from considering sin-
gle chemicals to assuring safe levels of chemical mixtures.

During the past decades, there have been only incremen-
tal improvements of existing test methods used in regula-
tory hazard and risk assessments, despite huge gains in the 
mechanistic understanding of toxicity pathways from scien-
tific studies offering alternative methods to animal testing. 
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As a consequence, basic experimental PBT information was 
missing for > 98% of a large set of 95’000 organic chemicals 
on the US and EU markets before REACH (Strempel et al. 
2012). Specifically, experimental data on P, B, and acute tox-
icity were available for only 0.17, 0.78, and 1.73% of these 
chemicals, respectively. Only for 0.19% of the chemicals, 
experimental chronic toxicity data were available (Strem-
pel et al. 2012), and strikingly, only 0.07% of these chemi-
cals had a complete set of experimental data on P, B, and T 
(Strempel et al. 2012). Ten years later, > 40% of REACH-
registered substances still had insufficient experimental data 
for even a crude screening for PMT properties and an alarm-
ingly low 2.2% of > 14,000 chemicals had information on 
their environmental half-lives (Arp and Hale 2022). This 
dearth of data does not even include the recognized need for 
the inclusion of transformation products in risk assessment 
(Escher and Fenner 2011).

Given this situation, we must ask: what information is 
really needed, and how can we rapidly obtain this informa-
tion for substantially more chemicals and their relevant mix-
tures? We submit that, for the bulk of chemicals currently 
traded or under development, one has to move away from the 
idea of highly thorough assessments for a small number of 
chemicals and instead adopt methods that make it possible 
to obtain robust information for the comparative assessment 
of many more chemicals used in commerce, including as 
mixtures.

The EU has set clear goals with its “Chemicals Strategy 
for Sustainability towards a non-toxic environment” (CSS) 
(European Commission 2020). Cornerstones of the CCS 
include “one substance – one assessment” for improving 
the efficiency, effectiveness, coherence and transparency 
safety assessments of chemicals across all relevant legisla-
tion (van Dijk et al. 2021). In addition, the CSS recognizes 
that chemical mixtures must be considered to better protect 
human health and the environment.

Despite ongoing revisions of risk assessment meth-
ods, they continue to rely mainly on conventional in vivo 
methods for toxicity testing. The US National Academy of 
Science proposed a paradigm change in risk assessment 
(U.S. NAS 2017) with a more modern approach to haz-
ard assessment that adopts new approach methodologies 
(NAMs) and, in particular, high-throughput screening (HTS) 
techniques (Krewski et al. 2020; NRC 2007). In vitro assays 
were initially developed to replace animal testing in drug 
development and cosmetics testing. But with the advances 
of pathway-based toxicology, it has since been argued that 
environmental and human health risk assessment could be 
completely built on HTS (Krewski et al. 2020). For exam-
ple, HTS results for single chemicals in the Tox21 and Tox-
Cast Programs are made publicly available (Collins et al. 
2008; Richard et al. 2021) providing HTS databases sup-
porting health research by identifying putative mechanistic 

associations and toxicity pathways (Auerbach et al. 2016). 
These pathways are then linked to adverse health effects and 
used to prioritize chemicals for in vivo testing (Kassotis and 
Stapleton 2019). As a result, the US Environmental Protec-
tion Agency has committed to HTS techniques for hazard 
assessment with the decision to phase out vertebrate animal 
testing by 2035 (U.S. EPA 2021; U.S. EPA 2022).

While REACH is currently under revision, there are fears 
that revisions would lead to a sharp increase in animal test-
ing if additional testing requirements were mandated without 
the adoption of NAMs (Zainzinger 2022). In REACH, the 
so-called integrated testing strategies (ITS) (Rovida et al. 
2015) could theoretically allow modern HTS techniques 
to be used in risk assessment. But their applications have 
been limited (Sobanska et al. 2014). There have been many 
debates about the limitations of in vitro assay systems and 
the lack of proper accounting for in vitro toxicokinetic test-
ing (Blaauboer 2015). This argument overlooks scientific 
progress rooting HTS assays in adverse outcome pathways 
(Burden et  al. 2015) and unravelling the biokinetics of 
in vitro assays (Fischer et al. 2018; Proença et al. 2021) that 
strengthen the scientific basis for the use of HTS assays in 
risk assessment.

With the unprecedented progress in the development of 
HTS methods for toxicity assessment, it is time to rethink 
their application in risk assessment (Birnbaum et al. 2016; 
Luijten et al. 2020). To date, efforts have been focused on the 
refinement, reduction, and/or replacement of animal testing, 
which requires extrapolation of HTS-to-in vivo effects (Bell 
et al. 2018; Wetmore 2015). However, a revision of PBT 
assessment must go beyond a direct replacement of in vivo 
methods and instead, develop alternative views on what con-
stitutes a toxicological hazard and how it can be measured. 
Such approaches must consider the complexity of mixtures 
and biological relevance while keeping pace with chemical 
innovation and testing throughput.

This paper outlines the potential of in vitro bioassays 
as an HT approach for hazard assessment with a focus on 
toxicological endpoints currently required by REACH plus 
additional endpoints that are appropriate for next-generation 
risk assessment. In an earlier communication in this journal, 
Ball and colleagues (2022) explored how individual tests 
in REACH can be replaced by NAMs. Here, we build on 
this work to propose a hazard assessment that consider-
ably streamlines testing requirements while simultaneously 
accounting for the demand to give PMT chemicals equal 
weight as PBT chemicals (Hale et al. 2020). Specifically, 
we propose to develop a measure of total pollution potential 
based on the two major hazard indicators of persistence and 
toxicity, and we link these two indicators in an integrated 
and quantitative approach that facilitates a direct compari-
son. This would introduce a common “currency” of pol-
lution, facilitating implementation across chemical classes, 
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regulatory agencies, and governments. We suggest that this 
could be accomplished by testing new chemicals with HTS 
bioassays, before and after performing one or several (bio-) 
degradation experiments.

Status quo of PBT assessment

The identification of persistent, bioaccumulative and toxic 
(PBT) or very persistent, very bioaccumulative (vPvB) 
chemicals represents an essential element of REACH 
(ECHA 2017b) and the Stockholm convention on persis-
tent organic pollutants. PBT assessment under REACH 
proceeds in two steps, including initial screening based on 
model predictions and simple screening experiments fol-
lowed by a definitive assessment. The screening PBT criteria 
allow computational methods whereas all definitive criteria 
require that experiments be conducted with whole animals 
and (fresh) environmental samples.

A classification of a chemical as PBT has significant 
consequences and may result in a ban (“restriction”) or lim-
ited (“authorization”) use. PBT assessment may result in 
a vicious cycle: if a given chemical is restricted, this will 
likely, in turn, trigger the development of substitutes. These 
substitution products may potentially be equally or more 
harmful than the corresponding existing chemical. But it 
may take years to reveal if a substitution is safer than its 
predecessor given the slow, single chemical approach to 
PBT assessment and hazard classification. In practice, PBT 
assessment, as well as the more recently promoted PMT 
assessment, remain limited by a lack of sufficiently high-
quality experimental data (Arp and Hale 2022; Strempel 
et al. 2012).

In persistence assessment, tests for “ready biodegradabil-
ity” (OECD 301A to 301F (OECD 2002a)) or “inherent deg-
radability” (OECD 302A-F (OECD 2009)) are performed. If 
degradation in these screening tests does not meet the “deg-
radability” criteria, simulation tests must be performed for 
a definitive persistence assessment including, for example, 
tests in soil (OECD 307) (OECD 2002b), sediment–water 
(OECD 308 (OECD 2002c)), or surface water (OECD 309 
(OECD 2002d)). The latter are time-consuming, costly, and 
need to be performed with radioactively labelled test materi-
als, which additionally complicates and delays their appli-
cation. Diverse strategies for improvement of persistence 
assessment have been explored (Whale et al. 2021). Most 
focus on improving existing methods and or increasing the 
ability to assess difficult-to-test chemicals (e.g., chemicals 
with very low solubility).

Bioaccumulation assessment typically relies on the deter-
mination of bioconcentration factors (BCF) in fish. Despite 
major technical improvements in BCF testing (OECD 
1996), allowing for dietary exposure (OECD 2012), it is 

questionable whether the BCF is an appropriate parameter 
because it relies on aqueous exposure. The route of exposure 
is not ideal for very hydrophobic chemicals, and this is the 
main chemical class that are more likely to be bioaccumu-
lative. Alternative measures such as the bioaccumulation 
factor (uptake via any route) and the biomagnification factor 
(uptake via food only) would be better suited for hydropho-
bic chemicals, but they unfortunately continue to rely on 
animal tests. While integrated testing strategies have been 
proposed for bioaccumulation assessment (Lombardo et al. 
2014), REACH dossiers overwhelmingly contain BCF tests, 
many of which, for the previously stated reasons, are likely 
to be flawed, especially for hydrophobic chemicals (Glüge 
et al. 2022). Furthermore, bioconcentration is a component 
of toxicity assessment, given that higher bioconcentration 
factors lead to increased internal concentrations and hence, 
higher toxicity of a compound.

Mobility (M) is a new criterion, proposed for the haz-
ard classification of CLP, that has yet to be implemented 
in REACH (Hale et al. 2020; Reemtsma et al. 2016). Cur-
rent debate centers around use in conjunction with P (then 
vPvM) or with P and T (then PMT). Currently, several PMT 
substances have been placed directly in Annex XIV, the list 
of substances for authorization under REACH, by invoking 
Article 57(f) of REACH, which allows the inclusion of “sub-
stances which give rise to an equivalent level of concern” 
(EP&EC 2006). If PBT assessment was to be complemented 
with PMT assessment, it can be foreseen that a large major-
ity of chemicals would either be B or M, largely reducing the 
assessment to P and T. This is because the current screening 
threshold for B is an octanol–water partition constant above 
log Kow of 4.5 (ECHA 2017a) and current suggestions for 
M thresholds are an organic carbon–water partition constant 
below log Koc of 3.0 (for M) and 2.0 (for vM) (Arp and Hale 
2022). Since log Kow and log Koc are rather similar for neu-
tral organics, B and M thresholds are close to overlapping. 
For instance, of a total of 13,405 unique REACH-registered 
organic substances (including 445 transformation products 
thereof) scrutinized in terms of PMT properties by Arp and 
Hale (2022), there were only 3464 compounds (25.8%) 
that were not judged M, vM or potentially M. Yet, of those 
3464 compounds, two third (i.e., 2291 compounds) had an 
experimental or estimated log Kow or log Koc (pH 7) of > 4.5 
and would thus be considered bioaccumulative. This leaves 
a mere 1165 compounds (8.7%) of all REACH registered 
organic substances that are definitely not M or B according 
to current criteria.

Environmental toxicity for PBT assessment relies on 
acute or chronic toxicity testing for aquatic species (ECHA 
2017a) and if any measured toxicity exceeds the defined 
thresholds, the chemical is considered T. Chemicals are 
considered toxic to human health if classified in GHS cate-
gory 1A/B for specific target organ toxicity or if they trigger 
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carcinogenicity, mutagenicity and reproduction toxicity 
(CMR). Endocrine disrupting chemicals (EDC) can also be 
classified as T, provided they are proven to be “of equivalent 
concern” (Kassotis et al. 2020). As above, REACH Article 
57(a–c) offers the opportunity to directly include chemicals 
of the GHS category CMR into the authorization list (Annex 
XIV).

Thresholds for all three criteria (P, B and T) need to be 
exceeded for a chemical to be classified as a PBT chemical. 
In Europe, this classification has important consequences 
as PBT chemicals must undergo a full risk assessment and 
can be set on the candidate list of SVHCs, which may ulti-
mately lead to their restriction or the need for limited use 
authorization.

The potential of new approach methodologies 
(NAMs)

NAMs comprise all alternative (e.g., tests performed 
in ≤ 5-day zebrafish or invertebrates such as Daphnia) and 
non-animal (e.g., in silico and in vitro) testing approaches 
that can inform chemical hazard and risk assessment 
(U.S. EPA 2021; U.S. EPA 2022). NAMs can be applied 
in different contexts, for example as replacement of in vivo 
methods, for read across, or as part of more complex assess-
ment schemes such as IATA (integrated approaches for test-
ing and assessment). NAMs typically also have the capacity 
to speed up testing (e.g., to produce data for large numbers 
of chemicals) (Krewski et al. 2020). In practice, in vitro 
assays have been applied for the risk assessment of indi-
vidual chemicals (Hatherell et al. 2020; Mone et al. 2020) 
and mixtures (Bopp et al. 2018; Bopp et al. 2019; Drakvik 
et al. 2020; Fang et al. 2020).

The Globally Harmonized System of Classification and 
Labelling (GHS) of chemicals (United Nations 2019) is 
widely accepted and has been implemented in many national 
legislations, among them the EU regulation for Classifica-
tion, Labelling and Packaging (CLP) (EP&EC 2008). The 
GHS currently relies almost entirely on animal testing (Zain-
zinger 2022). Beginning in 1994, proposals were made for 
the adoption of in vitro bioassays for classification and label-
ling (Seibert et al. 1994). Today, within the GHS, non-ani-
mal methods are mainly applied for skin sensitization testing 
(Ezendam et al. 2016; Hoffmann et al. 2018).

In discussing the potential application of NAMs to PBT 
assessment, we propose an initial focus on experimental 
NAMs, including in vitro bioassays and alternative tests 
(e.g., early life stage zebrafish tests). If the PBT assessment 
paradigm was shifted from in vivo to in vitro and alternative 
test methods, then the targets of in silico methods would also 
need to be adopted to predict in vitro effects. The latter will 
be possible once sufficient high-quality data are available.

Proposed new paradigm in PBT/PMT 
assessment

Persistence and toxicity as sole hazard indicators

Combining the current state of PBT assessment, the need to 
integrate PMT, and the promise of NAMs, a straightforward 
solution to making hazard assessment more efficient and 
effective emerges: Instead of measuring P, B (or M) and 
T indicators independently with disjointed techniques, we 
suggest the use of one combined HT method to measure T, 
before and after simulated degradation, covering both biotic 
and abiotic degradation processes. The total cumulative tox-
icity equivalents (CTE) indicator refers to the toxic effects 
measured directly in a sample (single chemicals, substitution 
products, or mixtures) and PTE is the equivalent measure of 
CTE following the degradation of the sample (Fig. 1). For 
chemicals that do not form toxic transformation products, 
the reduction in toxicity would directly relate to the deg-
radation of the chemical. Some chemicals may form toxic 
transformation products following environmental-mediated 
compound degradation (Escher and Fenner 2011). Such 
chemicals will also be captured by the proposed approach.

The CTE (Fig. 1) is derived from in vitro and alterna-
tive bioassays that cover different environmental and human 
health-relevant endpoints.

Panels of HTS assays should be selected to align with 
existing environmental toxicity endpoints, including acute 
and chronic aquatic toxicity, and the human health hazard 
triggers of acute toxicity, CMR, and ED and specific organ 
toxicity (e.g., liver toxicity). The CTE approach also ena-
bles simple integration of new organ toxicity measures that 
are not yet considered in current regulations. These include 
endpoints where there is emerging societal concern, new 
scientific evidence, and/or when appropriate in vitro assays 
become available (e.g., developmental neurotoxicity).

To bring persistence into the equation, any evaluated 
sample should be subjected to one or more environmental 
(bio-) transformation processes including biodegradation 
and abiotic degradation (e.g., hydrolysis, oxidation, reduc-
tion, photolysis). The resulting extract can then be re-tested 
in the HT bioassays to quantify remaining toxicity, termed 
persistent toxicity equivalents (PTE).

In REACH, any type of degradation is considered in P 
assessment. However, in practice, the focus is on microbial 
biodegradation. As it is the most important degradation 
process for the majority of chemicals, it represents a key 
biodegradation component within the PTE indicator. Meth-
ods for abiotic degradation may be considered as well. HT 
methods for abiotic degradation are already available (Huch-
thausen et al. 2022) and may be applied in conjunction with 
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HT biotic degradation to approximate the complete range of 
degradation processes.

According to current testing paradigms, there is a sub-
stantial lack of cost-efficient (bio)degradation systems that 
go beyond the series of OECD guidelines for testing of 
“ready biodegradability” (OECD 301) and “inherent bio-
degradability” (OECD 302). These tests present a challenge 
for chemical development because approximately 50% of 
the REACH chemicals for which those data are reported 
(Table S1 in (Arp and Hale 2022)) failed these tests. If 
chemicals fail the tests for ready and inherent biodegrada-
bility, cumbersome and expensive simulation studies are 
advised that require 14C-labelled compounds (e.g., OECD 
307–309). With the proposed CTE/PTE approach, 14C-labe-
ling and chemical analysis become obsolete because only 
the mixture effects of a parent compound and its associated 
transformation products in the degraded samples will be 
quantified, yet their chemical composition will not need to 
be resolved. This allows for more cost-efficient testing in a 
tiered strategy. These new methods, provided they meet the 
expectations in several case studies, can then be developed 
into standards as, for example, OECD testing guidelines.

CTE: a range of toxicity endpoints

In vitro bioassays have yet to be used as formal hazard 
indicators in PBT assessment. However, given the concord-
ance between the critical cellular concentrations in aquatic 
animals and cell systems (Escher et al. 2019), in vitro and 
alternative bioassays also have the potential to be used to 
assess aquatic hazard. The acute and chronic toxicity end-
points measured for algae, daphnids and fish, which are 
required in PBT assessment, could be directly replaced by 
appropriate cellular toxicity systems (Fischer et al. 2019; 
Schug et al. 2020; Tanneberger et al. 2013), high through-
put algae (Glauch and Escher 2020), or invertebrate testing 
(Castro et al. 2019), or the fish embryo toxicity test (Scholz 
et al. 2014; Teixido et al. 2019). Cytotoxicity can be used 

as proxy for acute toxicity in humans and the environment 
(Lee et al. 2021).

For environmental hazards (Sakamuru et al. 2020) and the 
health hazard triggers of CMR (carcinogenic, mutagenic and 
reproduction toxic) and EDC (endocrine disrupting chemi-
cal), a suite of cell-based bioassays is available (Kleinstreuer 
et al. 2015; Shah et al. 2011; Smith et al. 2016; Toporova 
and Balaguer 2020). Thousands of chemicals have already 
been screened with HT bioassays in the Tox21/ToxCast ini-
tiatives (Betts 2013; Krewski et al. 2020), which allows for 
the use of considerable existing information in CTE/PTE 
determination. We propose to stay close to the demands 
of the existing T endpoints in REACH’s PBT assessment, 
and to gradually expand the CTE/PTE approach to a much 
broader range of toxicity pathways and organ toxicities with 
the future development of suitable assays.

As the Tox21/ToxCast assays only cover early events in 
the cellular toxicity pathway and lack coverage for more 
complex endpoints, it will be necessary to work with sev-
eral bioassays in parallel. More work is needed to determine 
how many and which bioassays will be necessary to pro-
vide a comprehensive assessment. Since the research area 
of adverse outcome pathways and bioassays is rapidly evolv-
ing, we anticipate that there will be abundant in vitro assays 
available for inclusion in the CTE/PTE testing scheme in the 
near future, including adaptive stress responses and devel-
opmental neurotoxicity. For example, unlike pesticides and 
pharmaceuticals, industrial chemicals and consumer prod-
ucts are not designed to have one dominant and highly spe-
cific/selective mode of toxic action but may cause many dif-
ferent effects that can be characterized by diverse molecular 
initiating events followed by often convergent key events and 
adaptive stress responses. Hence, adaptive stress responses 
have the potential to complement key molecular initiating 
events in a more integrative testing (Simmons et al. 2009).

Effects on reproduction, development and developmen-
tal neurotoxicity (DNT) are among the adverse outcomes 
considered most crucial to human health (Grandjean and 

Fig. 1  Proposed shift from the traditional PBT indicators imple-
mented in REACH today to our vision of modern high throughput 
screening indicators that integrate B and M in T and have a joint 
measure of P and T: cumulative toxicity equivalents (CTE) and per-

sistent toxicity equivalents (PTE). HT  high throughput, CMR carci-
nogenic, mutagenic, reproduction toxic, EDC endocrine disrupting 
compounds
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Landrigan 2006). However, existing health hazard triggers 
do not incorporate important organ toxicity hazards such as 
DNT, which has come into focus due to the rising incidence 
of neurological disorders such as autism (Rossignol et al. 
2014) and the potential association with chemical exposure 
(Bennett et al. 2016). A primary reason why DNT has not 
been considered in hazard assessment is that established 
in vivo approaches (OECD 426 for DNT) are extremely 
costly, ethically questionable, and there are concerns regard-
ing their predictivity (Masjosthusmann 2020). Recent devel-
opment of screening approaches using cellular and zebrafish 
embryo assays now enable the inclusion of DNT endpoints 
suitable for comparative assessment of chemicals (Behl et al. 
2019; Blum et al. 2023).

PTE: HT degradation coupled to HT toxicity 
screening

The CTE/PTE approach automatically integrates potentially 
toxic transformation products into hazard assessment. After 
degradation, the toxicity/effects are typically reduced in 
parallel with the decrease of the parent compound, but if 
potent transformation products are formed, they contribute 
to the mixture effect that constitutes the PTE. Since trans-
formation kinetics and pathways might vary as a function of 
environmental conditions, both for biotic and abiotic deg-
radation processes, the biggest challenge of the approach is 
the establishment and evaluation of HT (bio-) degradation 
assay set-ups to achieve environmentally realistic attenua-
tion of organic chemicals in an HT environment. Since it is 
a screening approach, the goal is to obtain a realistic picture 
of the transformation potential of a chemical and to capture 
the formation of any toxic and persistent transformation 
product (Boxall et al. 2004; Escher and Fenner 2011). In 
an HT set-up, not only biotic but also abiotic degradability 
could be evaluated with a focus on major, environmentally 
relevant abiotic processes, i.e., hydrolysis, abiotic oxidation 
and direct and indirect photodegradation.

As compared to current biodegradation testing in a hazard 
assessment context, the proposed new paradigm includes 
the assessment of degradation and formation of transforma-
tion products that are not tracked with chemical analysis. 
No degradation rate constants of the parent chemical will 
be derived, but rather the reaction mixture will be extracted 
and then subjected to repeated bioassay testing. This could 
be done repeatedly over multiple time points to obtain a 
“toxicity reduction rate” or at a final time point to obtain a 
“toxicity reduction ratio”.

As part of a hazard-based approach, this is sufficient to 
assure that degradation of the chemical or mixtures occurs 
and that no toxic transformation products are formed dur-
ing degradation. Of course, if toxicity persists, it cannot 
be known whether it is due to parent stability or formation 

of toxic transformation products. However, for the assess-
ment of “persistent toxicity”, it does not matter which sce-
nario applies as either is problematic. The PTE assessment 
would yield sufficient information at this stage to make a 
use determination.

To ensure consistency with previously generated degrada-
tion data and persistence assessments, the HT biodegrada-
tion assays should have a similar transformation efficiency as 
the traditional biodegradation simulation tests (OECD307-
309). Ideally, they would also include microbial communi-
ties from diverse environments to appropriately represent the 
diversity of degrading bacteria. For ready biodegradability 
tests, first HT test systems covering a range of conditions 
and bacterial communities from different environments to 
yield a degradation probability have been established, dem-
onstrating the feasibility of HT degradation systems (Brillet 
et al. 2016; Martin et al. 2017). At the moment, the need 
for a fast, e.g., colorimetric read-out for degradation lim-
its wider application. This issue will be overcome by PTE 
because the measured toxicity is the readout.

To benchmark the performance of new HT biodegrada-
tion assays against existing biodegradation simulation tests, 
a set of benchmark chemicals could be defined that include 
data-rich chemicals covering the relevant range of persis-
tence behavior (Honti et al. 2018, 2016; Seller et al. 2021). 
These could be used to develop HT test systems to ensure 
that they achieve similar degrees of degradation as existing 
simulation biodegradation tests, but ideally in a shorter time 
frame. To achieve the latter, one would need to move beyond 
strictly mirroring conditions of the OECD test guidelines 
and instead, maximize degradation capacity by, for example, 
using higher bacterial densities or increasing nutrient status 
and oxygenation levels.

It is conceivable that HT biodegradation assays could 
eventually be developed toward assembled communities 
of many well-characterized bacterial strains or microbes 
enriched from different environments, taking full advantage 
of robotic systems to assemble, test and optimize them. This 
could potentially provide more stable and reproducible test 
systems as the bacterial inocula, once optimized, could be 
prepared in large batches, frozen and made available to CTE/
PTE screeners. Such consensus cell lines or assembled inoc-
ula would represent a breakthrough in biodegradation testing 
because experiments could then be repeated over time in 
the same laboratory and in many laboratories worldwide, 
yielding the same results (within a range of uncertainty and 
variability). This would allow for the compilation of a large 
and robust databases of in vitro biodegradation responses 
which, in turn, could be used for the development of in silico 
biodegradation models, an effort that is currently hindered 
by the small size of available data sets from experimental 
biodegradation studies.
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Experimental challenges of in vitro testing 
after biodegradation

The practical challenge for bioassay application is to ensure 
that they are compatible with testing samples after perfor-
mance of the HT biodegradation assay. Here, we can rely 
on the experiences of application of in vitro bioassays for 
water quality monitoring and biomonitoring. Complex 
mixtures in water and other matrices are typically extracted 
with solid-phase extraction (Escher et al. 2021) and many 
studies have evaluated the SPE recoveries for highly diverse 
chemicals, which were found to be satisfactory for bioactive 
mixtures (Neale et al. 2018) and mobile chemicals (Stalter 
et al. 2016).

CTE/PTE suitable for comparative assessment 
of replacement products

The regrettable substitution of chemicals is most often 
caused by inadequate and slow assessment of replacements. 
A well-known example of this phenomenon was the ban 
of bisphenol A (BPA) (Fouyet et al. 2021). By the time 
BPA was banned in 2020, numerous substitutes had already 
entered the market and were detected in a range of human 
and environmental samples (Bennett et al. 2016; Ji et al. 
2021). As registration of new substances is only required 
above 1 metric ton per year, replacement products may sneak 
into the market with insufficient hazard and risk assessment, 
when one chemical is substituted by many different replace-
ment chemicals, generated in lower quantities.

Upon closer inspection, replacement chemicals often 
carry undesirable properties very similar to the phased-out 
chemicals. Many substitutions are structurally related and/
or cause similar toxicity (den Braver-Sewradj et al. 2020; 
Fantke et al. 2015; Thoene et al. 2020). For example, plastics 
contain a range of regulated and non-regulated brominated 
flame retardants with bromine mass balances indicating that 
the fraction of non-regulated brominated flame retardants 
is high (Hennebert 2021). Public perception might favor 
unknown relative to known risks. For instance, consum-
ers who opted for “BPA-free” products were inadvertently 
selecting for alternative products containing hazardous 
BPA analogues (Scherer et al. 2014). When informed about 
alternative products and their hazards, consumers still often 
chose the alternative even there is less known about their 
hazard (Scherer et al. 2014).

Maertens et al. (2021) argued that regrettable substitu-
tions for BPA have occurred although extensive knowledge 
exists on the adverse effects of the substitution products 
(Keminer et al. 2020; Liang et al. 2020; Pang et al. 2019). 
However, because these studies were academic studies, 
often focused on molecular or cellular alterations and not 

performed with in vivo assays accepted in regulatory risk 
assessment, they were often not considered within regula-
tory risk assessments.

Replacement of C8-PFAS to shorter chain homologues 
resulted in the desired lower potential of bioaccumulation, 
but similar persistence and a significantly increased mobility 
(Brendel et al. 2018). In contrast, the structural similarity 
of the replacement compound hexafluoropropylene oxide 
dimer acid (HFPO-DA) in comparison with the regulated 
perfluorooctanoic acid (PFOA) led to similar persistence and 
long-range transport potential (Joerss et al. 2020). Conse-
quently, both alternatives should be considered as regret-
table. A similar example is Bisphenol S (BPS). BPS has a 
lower environmental toxicity than BPA but is more resistant 
to environmental degradation and causes more pronounced 
changes in the host associated microbiome (Catron et al. 
2019). It, therefore, does not solve the problem posed by 
BPA.

It will take years to assess and regulate unsuitable sub-
stitution products one-by-one. CTE/PTE hazard indicators 
would remediate that situation because they enable a direct 
comparative assessment of a chemical and its substitution 
products (S1, S2, etc.), while considering bioactivation 
and detoxification events. This direct comparison removes 
the need for in vivo data on the substitute. In the suggested 
approach, CTE and PTE of chemicals and their substitu-
tion products can be directly compared and only substitu-
tions with better screening outcomes would be considered 
as potentially suitable replacements and undergo a full risk 
assessment. This strategy could therefore be used for the 
targeted development of benign-by-design substitution prod-
ucts, a tenant of the green chemistry movement.

The strategy to avoid regrettable substitutions is illus-
trated in Fig. 2. As an example, the CTE of the chemical of 
interest for a certain bioassay is reduced by 40% after deg-
radation. Any substitution chemical should have lower CTE 
and PTE values. In the example, the substitution chemical S1 
has the same CTE but is persistent, so CTE = PTE, and PTE 
is higher for S1 than the original chemical, which makes S1 
unfit as replacement.

Although S2 has an apparent lower toxicity (CTE), it 
forms toxic transformation products, so PTE > CTE, which 
is not acceptable, despite CTE is lower for S2 than the origi-
nal chemical. The inclusion of the toxicity of transformation 
products demonstrates one considerable advantage of includ-
ing the PTE indicator. If only primary degradation and toxic-
ity of a chemical is considered, the formation of persistent 
and potentially toxic transformation products could be over-
looked. In this example, only S3 and S4 could be considered 
as suitable replacement products. S3 has similar CTE rela-
tive to the original chemical but lower PTE, while S4 seems 
initially to be much worse with a higher CTE but is fully 
degradable, leaving no trace of toxicity. Hence, educated 
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choices can be made, depending on use, for a substitution 
product with higher CTE but lower PTE because this would 
mean that the substitution product would be less problematic 
than the original substance.

Incorporating mixtures into hazard assessment

Numerous chemicals have been detected in parallel in the 
environment and in humans (Escher et al. 2020). We submit 
that any method that is applicable for testing of chemicals 
should also be applicable for use in biomonitoring and to 
test environmental mixtures. This concept applies to unde-
fined substances of unknown composition such the UVCB 
(Unknown or Variable composition, Complex reaction prod-
ucts or Biological materials), which pose a major challenge 
in risk assessment (ECHA 2017c; Lai et al. 2022). Any novel 
approach to hazard assessment must be versatile enough to 
be applicable for the assessment of mixtures and UVCB to 
meet the demands of the CSS (European Commission 2020). 
Not only can the CTE/PTE indicators be measured with sin-
gle chemicals and used to rank the hazard of chemicals, they 
can also be measured for UVCBs and other intentional and 
unintentional mixtures, for example those found in consumer 
products.

Consumer products are made up of many different chemi-
cals. It has been estimated that people may place over 500 
chemicals on their skin through cosmetics use alone (www. 
scien ce. org. au/ curio us/ people- medic ine/ chemi stry- cosme 
tics) that typically contain emulsifiers, preservatives, thick-
eners, emollients, dyes, fragrance materials and pH stabiliz-
ers, preservatives, UV-filters, antioxidants, and impurities 
from the production process (Tang et al. 2021). While mix-
ture exposure is evident, hazard potentials remain unclear for 
such intentional mixtures from products and unintentional 
mixtures from the use of many products because the risk 
assessment is performed at the level of individual chemicals, 
not on the level of the consumer product.

Since CTE/PTE measure the effect before and after deg-
radation, it is amenable to mixtures in products, including 
first use and recycled consumer products. Recycled products 
were shown to contain many more chemical features than 
virgin products in analytical suspect screening, but little is 

known about the comparative hazard of virgin versus recy-
cled products (Lowe et al. 2021).

Benefits of the novel hazard indicators CTE/PTE 
for chemicals regulation and society

A sustainable and circular use of chemicals is a major goal 
of decision makers in the EU and beyond. This goal is in 
contrast with the open uses of many chemicals. Open uses 
are generally dispersive and therefore not circular (and can 
never be). Therefore, the way in which chemical products 
are used has to fundamentally change to establish a circular 
economy (Kümmerer et al. 2020) that is adequately protec-
tive of human and environmental health.

To reach the goal of a sustainable use of chemicals, 
decision-makers need to address many existing societal 
and regulatory challenges. These challenges include a very 
complex, expert-led regulatory infrastructure focused on 
the authorization of single chemical substances; a lack of 
inclusion of civil society groups in regulatory processes at 
the EU level and in member states; and consumer interests 
that can only be met through the use of synthetic chemicals 
(e.g., cosmetics can be stored over a long time in a warm 
bathroom) (Hüesker and Lepenies 2022).

The new CTE/PTE indicators introduced here provide 
an opportunity to address these challenges by (1) increasing 
the transparency of PBT assessment and basing it on experi-
mental data rather than simulated models, (2) supporting the 
application of the precautionary principle, and 3) helping to 
initiate responsible innovation processes.

CTE/PTE can support the application 
of the precautionary principle

The precautionary principle is a major guiding principle 
for decision-makers faced with emerging risks, scientific 
uncertainty, and public concerns (Aven 2011). The precau-
tionary principle has provided an important guidance for 
situations of uncertainty, where decisions, e.g., about chemi-
cals’ marketing or regulation, must often be taken in situ-
ations of lacking data (Klinke and Renn 2001). In situa-
tions where possible negative impacts are still uncertain, the 

Fig. 2  Theoretical application 
of CTE/PTE hazard indicators 
for comparative assessment of 
a chemical and its substitution 
products

http://www.science.org.au/curious/people-medicine/chemistry-cosmetics
http://www.science.org.au/curious/people-medicine/chemistry-cosmetics
http://www.science.org.au/curious/people-medicine/chemistry-cosmetics
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precautionary principle allows decision-makers to impose 
regulatory actions when there are reasonable grounds for 
concern. Clear guidelines for implementing the precaution-
ary principle are lacking and the principle has been criticized 
for hindering technological innovation and for neglecting 
countervailing risks (Lofstedt 2014). In this situation, CTE/
PTE can aid the application of the precautionary principle 
in chemicals management in a systematic way.

As a fast and simple screening tool, CTE/PTE would 
permit testing of any chemical/substitution product prior 
to registration under REACH as a precautionary measure 
or directly after registration. If, at that point, rapid in vitro 
screening of the CTE/PTE indicators suggests that there is 
the potential of a new entity or a replacement product to be 
hazardous, it should not be marketed without firm evidence 
that the in vitro results do not translate to in vivo hazard. 
Beyond that, industry could preemptively use the CTE/
PTE indicators during the research and development phase 
to avoid investing development time and costs into envi-
ronmentally problematic chemicals. Based on its potential 
for simplified testing, CTE/PTE would answer current calls 
for taking multiple use cycles into account when assessing 
hazards and risks to reach “sustainable circularity” (Wang 
and Hellweg 2021).

CTE/PTE can increase the transparency of chemical 
safety assessment

Risk management on the basis of hazard characterization 
of substances and mixtures could initiate a review of cur-
rent legal pathways to justify risk management. Currently, 
PBT assessment represents a crucial first step of the overall 
chemical safety assessment where a chemical is declared 
“not PBT” even if assessed only by screening criteria using 
predicted data or very simple screening tests. If it is deemed 
to be PBT, it will not undergo further chemical safety evalu-
ation unless it fulfills the criteria for classification under 
CLP (ECHA 2017b). PBT assessment relies on data of vari-
able quality for an important decision. In most cases, trans-
formation products are not considered in these assessments. 
Implementation of the CTE/PTE indicators would assure 
that the decision is based on comparable experimental data 
that facilitate inclusion of transformation products into the 
evaluation, thus allowing for transparent and data-driven 
decisions.

CTE/PTE can help initiate and sustain responsible 
innovation

In parallel with developing the technical basis for CTE/
PTE, it is pivotal to include relevant stakeholders includ-
ing regulatory agencies, civil society, and industry to 

ensure that innovations like CTE/PTE meet societal needs 
and respond to pressing societal challenges (Owen et al. 
2021). To achieve this goal, we propose a transdisciplinary 
approach in the development of CTE/PTE as novel hazard 
concept, consisting of the following three aspects. One, con-
duct focus groups with key societal stakeholders, including 
industry and civil society organizations, to systematically 
explore their needs and reaction to the CTE/PTE indicators. 
Two, organize scenario workshops and case studies based 
on quantitative data generated by hazard assessments and 
qualitative data from the focus groups to describe plausi-
ble visions of the future and demonstrate alternatives to 
the ‘‘business as usual’’. This will open up the space of 
options for future deployment of CTE/PTE by stimulating 
discussion and an exchange of arguments and ideas amongst 
stakeholders. Three, develop and communicate shared narra-
tives about the value of chemicals testing and pathways for 
future regulation (Leipold 2021). This inclusive and trans-
disciplinary strategy allows for the integration of scientific 
evidence, stakeholder concerns, and the public for more 
comprehensive hazard and risk assessment and improved 
regulation of chemicals (Malakar et al. 2022; Von Schomb-
erg 2019). Collectively, this strategy can provide crucial 
guidance for the implementation of the CTE/PTE concept 
and key operative and regulatory innovations.

Conclusion

The proposed approach to base hazard assessment exclu-
sively on in vitro and alternative testing has the potential 
to modernize hazard assessment as envisioned for twenty-
first century toxicology and risk assessment (Krewski et al. 
2020). With this paper, we aim to spark a debate. We can 
rely on existing in vitro and alternative assays to begin, but 
we still need to develop coherent and robust batteries of 
bioassays to measure the hazard indicators CTE and PTE 
and formally adopt them in testing guidelines.

The novel indicators CTE/PTE provide hazard assessment 
with a new, comprehensive perspective. To leverage its high 
innovation potential, this requires a new paradigm within 
chemical regulation. The CTE/PTE approach must meet 
legal requirements and fit the EU zero pollution ambition 
for a toxic-free environment. To achieve this goal, important 
elements remain to be implemented and critically evaluated, 
such as robustness, repeatability, quality assurance/quality 
control, consistency with present PBT outcomes, blind spots 
and guidance document development.

This paper is our attempt to accelerate the implementa-
tion process, encourage researchers to start activities, and 
engage stakeholders from the regulatory, industrial, and 
public sectors to discuss their needs and identify key areas 
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that require additional innovation. In the end, CTE and PTE 
might not be realized exactly as we envisioned it here. But 
we hope that our ideas serve as a nucleus for an accelerated 
implementation of NAMs in hazard assessment to modern-
ize PBT assessment. While we aim to initiate this strategy in 
European Union-funded research and innovation programs, 
if proven useful, we propose that this regulatory concept be 
applied to ultimately improve protection measures for human 
health and the environment.

CTE and PTE can be used in prospective hazard assess-
ment for the development of substitution chemicals or new 
products as outlined above. CTE might also have potential 
for application in the GHS and CLP similar to what has 
recently been outlined in this journal by Ball and colleagues 
(2022). The CLP has eight health hazard categories and for 
each, suitable in vitro and alternative assays are needed. 
With the development of adverse outcome pathways as 
structuring principles in mechanistic toxicology, it is possi-
ble to match appropriate in vitro assays to adverse outcomes 
of interest (Carusi et al. 2018).

While we emphasized in vitro and alternative methods 
in this article, we want to stress that they can be comple-
mented by in silico approaches in the future. This will fur-
ther increase the speed of assessments while simultaneously 
decreasing costs (Muratov et al. 2020). Considering the 
increasing power of in silico methods, these approaches can 
be also used to complement in vitro measurements to prior-
itize compounds for testing (Abdelaziz et al. 2016). As CTE/
PTE is a new approach, the experimental database still needs 
to be expanded before in silico prediction methods, which 
are also subsumed under the term NAMs, can be develop 
and productively applied. Predictive methods, including 
AI-supported and machine learning approaches (Fantke 
et al. 2021; Wu et al. 2021) have a great potential to further 
advance the use of NAMs in hazard and risk assessment.

The unprecedented advantage of the proposed approach is 
that the same indicators, CTE and PTE can be used for both 
prospective hazard assessment and retrospective assessment 
by incorporating these tools in (bio)monitoring. This will 
provide a universal parameter for chemical pollution that can 
be used to monitor chemical pollution and can be integrated 
into a global chemical risk assessment strategy. CTE and 
PTE would be a common currency across regulatory silos 
and enable the assessment of past pollution and guide future 
development of safer chemicals.
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