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Abstract
Gradual changes in the environment could cause dynamical ecological networks to sud-
denly shift from one state to an alternative state. When this happens ecosystem functions 
and services provided by ecological networks get disrupted. We, however, know very 
little about how the topology of such interaction networks can play a role in the transi-
tion of ecological networks when spatial interactions come into play. In the event of such 
unwanted transitions, little is known about how statistical metrics used to inform such 
impending transitions, measured at the species-level or at the community-level could relate 
to network architecture and the size of the metacommunity. Here, using hundred and one 
empirical plant-pollinator networks in a spatial setting, I evaluated the impact of network 
topology and spatial scale of species interactions on transitions, and on statistical metrics 
used as predictors to forecast such transitions. Using generalized Lotka-Volterra equations 
in a meta-network framework, I show that species dispersal rate and the size of the meta-
community can impact when a transition can occur. In addition, forecasting such unwanted 
transitions of meta-networks using statistical metrics of instability was also consequently 
dependent on the topology of the network, species dispersal rate, and the size of the meta-
community. The results indicated that the plant-pollinator meta-networks that could exhibit 
stronger statistical signals before collapse than others were dependent on their network 
architecture and on the spatial scale of species interactions.
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Introduction

Ecological systems could critically shift from one state to another in response to gradual 
changes in environmental conditions. Such critical transition occurs when environmental 
conditions cross a specific threshold, the threshold being commonly known as a tipping 
point (Scheffer et al. 2001; Dakos et al. 2014). Tipping points and transitions are gener-
ally observed in ecological systems governed by positive feedback loops. Critical transi-
tion can occur in systems ranging from acquatic systems such as algae and macrophyptes 
(Dakos et al. 2018), mutualistic ecological networks (Dakos and Bascompte 2014; Lever 
et  al. 2014; Baruah 2022; Baruah et  al. 2022), and populations exhibiting allee thresh-
olds (Hilker 2010). When such transition occur, the equilibrium state of the system jumps 
to another state where loss of beneficial ecosystem functions and services could occur 
(Hutchings and Reynolds 2004; Scheffer 2009; Dunne and Williams 2009). Such transi-
tions, thus, can cause long-term radical changes to ecosystems.

Mutualistic communities are examples of communities that exhibit positive feedback 
loops in networks of interactions between two groups of species (Bascompte and Jordano 
2013; Dakos and Bascompte 2014; Kéfi et al. 2016; Metelmann et al. 2020). While nega-
tive interactions such as intraspecific competition could have stabilising effects, positive 
interactions such as those observed in plant-pollinator or mutualistic networks, could be 
destabilising and could result in the presence of alternative stable states (Kéfi et al. 2016; 
Baruah 2022; Baruah et al. 2022). The impact of topological and architectural aspects of 
such systems such as network size, nestedness, or connectance on stability and resilience of 
ecological networks has been recently recognised (Lever et al. 2014; Baruah 2022; Baruah 
et  al. 2022). Nestedness is an ecological pattern that has been widely reported for spe-
cies occurrences as well as in species interaction networks (Bascompte and Jordano 2013). 
Nestedness occurs when specialist species in an ecological network interact more with 
subsets of species that interact with generalist species. Connectance, on the other hand, 
describes the realised number of species interactions in a community out of all possible 
interactions. These two topological features capture different aspects of species interac-
tion networks and has been suggested to impact stability of communities. However, their 
impact on tipping points in a spatial context remain somewhat unexplored (but see Revilla 
et al. (2015)). Previous studies on spatial mutualistic systems has suggested that the occur-
rence of critical transitions can be modulated by shift in mutualistic strength caused by 
mismatches in species phenology or by habitat destruction (Fortuna and Bascompte 2006). 
Habitat destruction increases the chances of transition which rewires local networks 
(Revilla et al. 2015). In addition, with strong mutualistic interactions the amount of habi-
tats required for persistence of all species then depends on the range of species dispersal 
(Prakash and Roos 2004).

Rarely, ecologlical communities occur in isolation. More often, ecological communi-
ties occur in habitat patches across a larger network of patches that is connected by dis-
persal, which is commonly known as a metacommunity. Metacommunity concept has 
gained much attention over the last decade and empirical and theoretical studies have pro-
vided with an understanding of how local and regional processes work to maintain diver-
sity both at local and spatial scale (Loreau 1998; Limberger et al. 2019). Species diversity 
can stabilize the dynamics of local communities, and species dispersal can provide spatial 
insurance. This stabilization in local dynamics can occur due to different asynchronous 
responses of species over time to temporal changes in the environment (Loreau et al. 2003; 
Heino et al. 2015; Shoemaker and Melbourne 2016). On the other hand, spatial insurance 



693Evolutionary Ecology (2023) 37:691–708 

1 3

in metacommunities arises when local communities exhibit asynchronous dynamics. This 
happens when species dispersal rate is limited or when species composition across local 
communities vary considerably thereby leading to spatial heterogeneity (Wang and Loreau 
2014; Walter et  al. 2017). Species dispersal from different habitat patches could poten-
tially rescue local communities from collapses as environment changes. However, the 
role of species dispersal on timing of transition of meta-networks remains unknown. For 
instance,does rate of species dispersal and the spread of such ecological networks (number 
of habitat patches) determine whether network collapses occur earlier or later?

Local and regional scale extinctions could occur not only due to local processes such as 
predation or competition but also due to large scale external disturbances (Cunillera-Mont-
cusí et  al. 2021). Large scale disturbances akin to changes in climate could impact spe-
cies interactions not only locally but also across communities connected in space (Revilla 
et al. 2015; Morton and Rafferty 2017; Thompson and Gonzalez 2017; Renner and Zohner 
2018; Kudo and Cooper 2019). Species mismatches due to phenological shift could be res-
cued when similar communities are accessible to species in a mosaic of communities con-
nected by species dispersal. It is, however, unknown whether such global changes in the 
environment interacts with local network topological properties to mitigate drastic change. 
Increases in phenological mismatch could be further compounded by habitat destruction 
and could lead to substantial changes in network architecture (Revilla et al. 2015). In addi-
tion, whether the size of the metacommunity matters in the occurrence of transition is 
somewhat not known.

There has been statistical tools developed to inform impending transitions that could 
occur as environment gradually changes (Scheffer 2009). Critical transitions could occur 
when changes in the environment crosses a certain threshold that pushes the ecological 
system towards another alternative state where ecosystem functions could be lost perma-
nently. However, there are statistical tools that been developed to forecast such impend-
ing transitions which are commonly known as “early warning signals”. Commonly used 
signals are temporal autocorrelation and variance that could derived using a sliding win-
dow approach (see Dakos et al. (2012a) for details) from state based temporal data such 
as abundance or biomass. However, the utility of such signals are dependent on a host of 
factors that includes sampling requirements (Arkilanian et al. 2020), data quality (Clem-
ents et al. 2015b), eco-evolutionary factors (Baruah et al. 2020, 2021) and type of species 
interactions (Dakos 2017; Patterson et  al. 2021; Baruah 2022; Baruah et  al. 2022). One 
important challenge is to test the utility of such signals in a multispecies context in a meta-
community setting. This is especially relevant as multispecies communities rarely occur in 
isolation and are generally connected by dispersal among habitat patches. The detection of 
such signals becomes even more challenging as dynamics of such communities are inher-
ently linked to their topological features which also directly impacts the occurrence of tran-
sitions (Dakos and Bascompte 2014; Baruah 2022; Baruah et al. 2022).

Here, using hundred and one empirical plant-pollinator networks in a spatial context 
collated from web-of-life.es database, I explore how the effects of topological network fea-
tures such as network size, connectance, or nestedness can interact the size of the meta-
community (number of habitat patches i.e., 2, 5, 10, 20) to impact the timing of transitions 
and on indicators of temporal and spatial resilience. Using generalized Lotka-Voltterra 
equations, I model the ecological dynamics of spatially-explicit mutualistic meta-networks 
to global changes in strength in mutualistic interactions. Specifically, using different meta-
community sizes, I show that threshold at which transition occurs depends not only on rate 
of species dispersal across habitat patches, but also on local network topological predic-
tors such as network size and connectance of the network. Furthermore, the threshold at 
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which a species could transition from a stable state to alternative state (or collapse state) is 
influenced by the degree of the species, rate of dispersal, and by the size of the metacom-
munity. In addition, how large the metacommunity was, also significantly played a role on 
how early a transition might occur. Furthermore, when such global transition of mutualis-
tic metacommunities occur, predictability with temporal and spatial resilience indicators 
also depends on the topological network features and on the rate of dispersal of species. 
These results argue the importance of understanding the dynamics of communities from a 
spatial perspective and highlights the importance of network architecture on biodiversity 
maintenance.

Methods

Using www. web- of- life. es database, I collated hundred and one empirical plant-pollina-
tor networks (see table S1 in supplementary appendix 1 for details and the references). I 
chose hundred and one networks to ensure that I had sampled networks that display a wide 
range of topological properties. These empirical networks were set up in a spatially-explicit 
landscape of different sizes of two, five, ten, and twenty habitat patches that determined 
the spatial scale of mutualistic interactions. This spatial scale determined to what extent 
plant-pollinator interactions were impacted when global changes occur at the scale of the 
metacommunity. For instance, when changes in climate that drives changes in phenologi-
cal interactions occur, does spatial context of mutualistic interactions matter in delaying a 
transition to collapse? To be noted that this study is purely exploratory and theoretical in 
nature. The only empirical part of this study comes from the fact that the networks used in 
simulating the dynamics were collected from field studies.

These spatially-explicit landscape were set up in a two dimensional landscape (see Grilli 
et al. 2015 for details). All habitat patches were connected. Following this, I model the eco-
logical dynamics of mutualistic interactions using generalized Lotka-Volterra equations:

Similarly, the dynamics of plants on a spatially explicit metacommunity can be written as:

where Ak
i
,Pk
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increases. In case of a pollinator this means that as density of the interacting plant species 
increases, the pollinator has to devote a certain amount of time to “handle” each plant it 
comes across (time for finding, consuming nectar etc.). Essentially the overall handling 
time increases and the benefits decreases at high plant density. Crudely, one can estimate 
handling time, h , by fitting pollinator visitation rate versus plant density and estimating 
the parameters (such as handling time h ) using maximum likelihood methods as shown in 
(Feldman 2006). Another way of estimating handling time would be to measure the time a 
pollinator takes in extracting a nectar as detailed in (Klumpers et al. 2019) and then aver-
aging over all the visitation rates and time in extracting nectar over multiple plants. There 
is no plant handling time per se, but since such an interaction is inherently pairwise and 
assumed to be symmetric, a pollinator interacting and handling a plant is the same as the 
plant interacting with the pollinator, and h thus comes into the mutualistic terms in both the 
dynamical equations. Handling time was hence fixed for all species at 0.15. Mk

i
 is the den-

sity of species that arrives from all the patches in the metacommunity, and finally a fraction 
of individuals emigrates from a habitat patch k at the rate a.

In the model simulations, I ensured that mutualism was obligate without any loss of 
generality. This meant that growth rates of species rk

i
 was negative for both the guilds of 

species and species persistence was dependent on mutualistic interactions between species. 
To do that I randomly sampled growth rates rk

i
 from a random uniform distribution within 

the range of U[−0.05,−0.1] for both plants and the pollinators. This particular distribu-
tion was specifically used to ensure that growth rates are negative such that mutualistic 
interactions are obligate. This indicates that species in a community need mutualistic inter-
action to maintain positive abundance. In addition, I ensured that intraspecific competi-
tion within each guild of species was strictly stronger than interspecific competition. For 
that �ii = 1 was fixed, and I sampled �ij, i ≠ j from random uniform distribution ranging 
from U[0.01, 0.05] . When ensuring intraspecific competition to be stronger than interspe-
cific competition, mutualistic communities became feasible, provided strength in mutual-
istic interactions �0 was sufficiently high (Barabás et al. 2017; Baruah 2022; Baruah et al. 
2022). This specific distribution indicates that species competition was not too strong to 
dictate dynamics in a mutualistic community. In addition, usage of different distribution 
does not impact population dynamics (Baruah 2022; Baruah et al. 2022). These distribu-
tions were particularly used such that local dynamics became feasible and stable (Baruah 
2022; Baruah et al. 2022). In addition, the distribution of intra- and inter competition inter-
action strengths were within the distribution empirically measured in plant-pollinator com-
munities (Johnson et al. 2022) or in plant communities only (Wiegand et al. 2021). In this 
context intraspecific competition was always found to be stronger than interspecific compe-
tition which is what I model in this study. The goal was to assess how network properties 
interplay with dispersal and spatial scale of interactions to impact the timing of occurrence 
of tipping points in mutualistic meta-networks.

Finally, dispersal among patches was constrained by the spatial scale and as well as 
distance among patches. Species dispersal among patches decreased exponentially as the 
distance among patches increased. Specifically, dispersal of species i from patch k can be 
written as (Thompson and Gonzalez 2017),

Following Thompson and Gonzalez (2017), more than one dispersal route can be taken 
during a particular time step, djk is the distance between patch j and k and y controls the 
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rate at which this distance impacts species dispersal, which was fixed at 0.5. Fixing it at 0.5 
gives global dispersal, which meant that as metacommunity sizes became larger species 
dispersal did not necessarily get constrained locally, and species could in principle disperse 
long distance. However, the rate at which they disperse would still depend on distance 
between patches. Finally, a gives the average rate at which species disperse. Here, when we 
vary rate of dispersal we ensure that species dispersal remains same across guilds of spe-
cies although in nature this might be species-specific. Here, three rates of species dispersal 
were used, a : 0, 0.5, 1.

Collapse of spatial mutualistic networks

Nestedness was measured as NODF which is an acronym for nestedness metric based on 
overlap and decreasing fill. Nestedness of mutualistic networks that was used in this study 
ranged from as low as 0 to as high as 0.9 , while connectance ranged from 0.08 to 0.64 . Net-
work size also ranged from as low as 8 to as high as 68.

By gradually decreasing the average mutualistic strength,�0 , globally, mutualistic net-
works were forced to collapse. As mutualism among guilds of species was obligate, 
decreasing average mutualistic strength, �0 , among species would lead to collapses of 
species. At a specific mutualistic strength (commonly known as threshold strength or tip-
ping point) collapse of the entire mutualistic network would occur. Collapse of mutualis-
tic networks thus was done by gradually decreasing �0 from 5 to 0 in steps of 0.25 . This 
parameter, �0 , is a central parameter that causes transition of the metacommunities from 
high stable biomass state to the collapse state. To be noted that h and �0 are assumed to be 
unrelated here. Decreases in �0 mimicked a scenario where environmental change slowly 
impacts the average strength of mutualistic interaction. For instance, due to climate warm-
ing, mismatches in timing of appearance of pollinators and plant flowering could poten-
tially lead to less mutualistic interactions on average, thereby causing a decrease in the 
amount of species interactions. Consequently, this then manifests in decreases in average 
mutualistic strength, �0 , and not the handling time, since if a pollinator was able to visit 
a flowering plant, the handling time would essentially remain unaffected. There has been 
previous research which have indicated that climate warming could potentially impact spe-
cies handling times (Uszko et al. 2017), but in this study I have only considered �0 as the 
focal parameter that causes a transition. For each value of �0 , I simulated the dynamics 
of the whole metacommunity for 2000 time steps. Usually, fluctuations in species density 
stabilize at around 1000 time points. I discarded the initial transient dynamics i.e., from 
t = 0 to t = 1000 and estimated equilibrium total plant and animal abundance from the last 
1000 time points. Thus, equilibrium network biomass was quantified as the sum of equil-
brium plant and animal abundance. The extinction threshold of species in such mutualistic 
networks were fixed at 10−4 . As the strength of mutualistic interactions decreased, loss of 
species occurred until the entire meta-mutualistic network collapsed. A species was noted 
to be at a collapse state when its density dropped below 10−4.

Next, I determined the point of transition or the mututalistic strength at which a mutu-
alistic network in a habitat patch k transitioned to a collapse state. This was quantified as 
when the average equilibrium meta-network biomass fell below 80 percent of its equilib-
rium metacommunity network biomass at maximum �0 . Once the mutualistic strength at 
which a network collapsed in a habitat patch k was determined, I evaluated the relationship 
of the point of transition with network topology such as connectence and network size, and 
how such a relationship was influenced by spatial scale of interactions.
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Predictors of temporal and spatial mutualistic network collapses:

I estimated a host of spatial and temporal indicators of collapses at the community level 
and at the species level. For each mutualistic strength, I estimated spatial variability, 
regional metacommunity variability, and local temporal patch variability of metacom-
munity biomass as the sum of all species abundance. I estimated regional metacommu-
nity variability defined as the variability in biomass at the metacommunity level (see 
Wang and Loreau (2014) and Wang et al. (2019) for details), - 

√

(
∑

ij wij

N
 , where wij is the 

covariance matrix of community biomass Ni(t) at patchi , Nj(t) at patch j , and N is the 
temporal mean of the total metacommunity biomass. Local temporal variability was 
estimated as 
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At the species level, I estimated standard deviation as 
√
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n

 (where n is 
the number of time points and ui is the mean species abundance), and temporal auto-
correlation coefficient of equilibrium species abundance for each level of mutualistic 
strength, for three different rates of species dispersal and metacommunity sizes. Tempo-
ral autocorrelation coefficient at first-lag and standard deviation are the classic phenom-
enological early warning signals that are suggested to be useful in forecasting critical 
transitions (Scheffer 2009; Dakos et al. 2012a). Temporal autocorrelation coefficient at 
first-lag is measured as, y

(

Nt+1

)

= �y
(

Nt

)

+ ��n , where � is the autocorrelation coef-
ficient of the first-order autoregressive (AR(1)) process. � is close to 1 for a red-noise 
and close to 0 for white noise process and ��n denotes white noise. � close to 1 would 
indicate that the temporal abundance dynamics of a species is highly correlated and 0 
would mean uncorrelated. High correlation would indicate that species is closer to a tip-
ping point. Furthermore, I also evaluated how species degree (total unique interactions 
of a species) related to occurence of tipping points and the performance of species-level 
indicators for different levels of species dispersal and metacommunity sizes.

I wanted to evaluate whether statistical metrics measured at the species level or at 
the level of the community, as strength in mutualistic interaction �0 decrease, could 
perform in indicating an impending critical transition. So for each level of changes in 
the mutualistic strength of interaction �0 , temporal autocorrelation and standard devia-
tion was measured at the species level, metacommunity variability was measured at the 
level of the metacommunity, patch variability was measured at the level of a patch, and 
spatial variability across habitat patches were estimated. To compare how these met-
rics performed in predicting collapse in relation to local network properties, I quanti-
fied Kendall’s tau correlation coefficient (Fig.  1) (Dakos et  al. 2012a). Kendall’s tau 
rank correlation coefficient has values that range from − 1 to 1 regardless of the value 
of the statistical metric, where 1 indicate perfect positive correlation and − 1 indicate 
perfect negative correlation. Kendall’s tau method has been regularly used in the early 
warning signals literature (Scheffer 2009; Dakos et  al. 2012a; Baruah et  al. 2020). It 
indicates how strong statistical metrics such as standard deviation or autocorrelation in 
network biomass could increase before a network collapse. In all our simulations as we 
change average mutualistic strength, �0 , all networks eventually collapses. However, the 
question was which type of indicators would do well in predicting collapses, and what 
network structures or spatial scale could affect such predictability. Therefore, in our 
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analyses, the aim was to evaluate which indicators will show strong increases in their 
value before eventual network collapses, and not whether one can predict accurately 
such collapses. To quantify the increases of such statistical indicators before network 
collapses, I use Kendall’s tau correlation coefficient. High positive Kendall’s tau value 
would indicate strong signals of network collapse. Higher the Kendall’s tau correlation 
coefficient, stronger is the early warning signal of network collapse and thus is of more 
predictive value. On the other hand, negative values would indicate false negatives, that 
is, a network collapsed but the above described statistical metrics failed to predict it. 

Fig. 1  A Example equilibrium metacommunity biomass of a mutualistic network as mutualistic strength is 
decreased for different sizes of metacommunity and rate of species dispersal (here dispersal rate of 0.5). B 
As mutualistic strength decreased metacommunity biomass decreased. As biomass decreased, autocorrela-
tion coefficient increased and standard deviation measured at species-level decreased here. This increase/
decrease could be quantified by Kendall’s tau correlation coefficient.Positive Kendall’s tau value would 
indicate strong increase in a statistical indicator.Here, averaged across patches,species-level autocorrelation 
coefficient increased and has higher and positive Kendall’s tau coefficient than standard deviation (which 
had negative Kendall’s tau). Thus, here, autocorrelation coefficient is better than standard deviation as an 
indicator of collapse
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Next, I then evaluated how these metrics performed in relation to network properties, 
rate of species dispersal, and size of the metacommunity.

Results

Point of transition and network properties

Results indicated that the mutualistic strength at which networks collapsed were deter-
mined by network size, species dispersal rate, and the size of the metacommunity. Par-
ticularly, the relationship between network size and the strength at which networks col-
lapsed becomes strongly negative at the highest dispersal rate modulated by the size of the 
metacommunity (Fig. 2A). When dispersal rate was zero, the size of metacommunity on 
the mutualistic strength at which network collapsed remained unaffected. However, at the 
highest dispersal rate, smaller networks collapsed much earlier (i.e., at higher mutualis-
tic threshold strength) than larger networks which became more evident at smaller meta-
community sizes. Connectance or nestedness didn’t have any significant impacts on the 
threshold at which mutualistic networks collapsed (supplementary file 2,  Fig. S1). This 
indicated that higher species dispersal might be detrimental as networks could collapse at a 
much higher mutualistic threshold strength, particularly when metacommunity sizes were 
smaller.

Indicators of transition and network properties

In an example figure of a mutualistic network (see  supplementary file 2 Fig. S5), I 
show that as metacommunity biomass collapses, indicators such as local temporal patch 
variability, spatial variability, regional metacommunity variability increases whereas 
indicators at the species level did not exhibit strong increases as strength in mutualis-
tic interaction decreased. To quantify the strength of such an increased, I measure (as 
detailed in the methods section) the Kendall’s � correlation coefficient. Such a measure 
would indicate which statistical metric had the strongest increase as the metacommunity 
collapsed.

In case of spatial variability, when dispersal rate was zero, Kendall’s � value for 
smaller networks were lower than larger networks as they collapsed. Since high and 
positive Kendall’s � value captured how strong a statistical metric increased as a eco-
logical meta-network collapsed, this particular result indicated that smaller networks 
exhibited less stronger increases in spatial variability as they collapsed than larger net-
works (Fig. 3A). This result was consistent across metacommunity sizes. As dispersal 
increased, which networks exhibited stronger spatial variability before collapse was 
slightly dependent on the size of the metacommunity. Generally, larger mutualistic net-
works embedded in larger metacommunities exhbited strong increases in spatial vari-
ability (captured by positive values of Kendall’s). Smaller mutualistic networks embed-
ded in larger or smaller metacommunities exhibited less strong increases in spatial 
variability before collapse (Fig. 3A).

Local temporal patch variability also known as alpha variability was impacted nega-
tively by the size of mutualistic networks and less impacted by species dispersal and 
number of habitat patches i.e.  metacommunity size (Fig.  3B). Particularly, larger net-
works had lower Kendall’s � value in comparison to smaller networks. This negative 
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relationship however was not impacted by rate of species dispersal or the size of meta-
communities significantly (Fig. 3B).

Results also indicated that when species dispersal was zero, size of mutualistic 
network had no impact on Kendall’s � of regional metacommunity variability even at 
higher levels of species dispersal or for different sizes of metacommunities (Fig. 3C). 
Since, network connectance was negatively correlated with network size, the above 
result remains similar except that the relationship between Kendall’s tau of regional 
metacommunity variability and connectance became slightly positive, although all 
values were below 0 which further suggests that the performance of regional regional 
metacommunity variability in forecasting meta-network collapses was rather poor (sup-
plementary file 2 Fig. S2).

The relationship of strength of mutualistic interaction at which species collapsed as 
the meta-network collapsed and species degree was negative and exponential (Fig. 4A). 
Species which had higher number of interactions i.e., higher degree, collapsed later (at a 
much lower strength of mutualistic strength, �0 ). This was similar across rate of species 
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Fig. 2  Relationship between the threshold mutualistic strength at which networks collapsed and structural 
properties of the network namely network size and connectance for different metacommunity sizes (2, 5, 
10, 20) and three levels of species dispersal (0, 0.5, 1). A Network size had a significant impact on the 
strength at which networks collapsed modulated mainly by the number of habitat patches and rate of spe-
cies dispersal. Networks at larger metacommunities collapsed on average at a lower threshold strength that 
networks at smaller metacommunities. This indicated that larger metacommunities were less vulnerable to 
collapses at a much higher mutualistic threshold strength than smaller metacommunities. Lines in A repre-
sent linear regression with 95 percent confidence intervals for different levels of metacommunity sizes. B 
Network connectance did not have a significant impact on the mutualistic strength at which networks col-
lapsed across a range of dispersal rates and metacommunity sizes
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dispersal. However, size of the metacommunity had a slight impact at higher dispersal 
rates (Fig. 4A).

Strength in warning signals such as standard deviation measured at the species-level 
was related to species degree, and less slightly on rate of species dispersal and the size of 
the metacommunity. Strength of SD, measured as the Kendall’s � correlation coefficient, 
increased as species degree increased indicating that species which have a larger number 
of unique interactions will display stronger increases in SD as the network collapses due 
to changes in the environment that weakens mutualistic interactions. Strength in autocor-
relation, however, did not relate to species degree or species dispersal (Fig. 4B, C). In 

Fig. 3  Relationship between network size and Kendalls tau coefficient of statistical metrics such as A spa-
tial variability, B Local temporal patch variability, and C) regional metacommunity variability for three 
levels of species dispersal (0,0.5,1) and four metacommunity sizes (2, 5, 10, 20). Larger positive Kendall 
tau values would indicated stronger increases as a mutualistic meta-network collapsed and negative values 
would indicate false negatives. In A, B and C, lines represent linear regression with different colors repre-
senting for different levels of metacommunity sizes
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addition, autocorrelation at first-lag, or standard deviation measured at the species level 
was slightly impacted by topological properties such as nestedness or network size but 
was not impacted by species dispersal or size of the metacommunity (Figs. 4A and S4).

Discussion

Climate change can cause shifts in interaction strengths that could lead to mismatches in 
species interactions thereby causing negative impacts on species biomass and diversity 
(Revilla et  al. 2015; Thompson and Gonzalez 2017). In mutualistic networks, positive 
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interactions between groups of species leads to a positive-feedback mechanism that pro-
motes the occurrence of sudden collapses once environmental change causes interaction 
strengths to fall below a certain threshold (Lever et  al. 2014; Kéfi et  al. 2016; Baruah 
2022; Baruah et al. 2022). Although, studies have tried to understand how such networks 
are robust to habitat destruction, and changes in phenology, little is known about how the 
architecture of such mutualistic networks at the spatial scale could influence the timing of 
such collapses. Here, I show that species disperal rate, size of the metacommunity, and net-
work architecture has significant impacts on the threshold at which a mutualistic meta-net-
work collapses. Furthermore, performance of statistical metrics that could be used to fore-
cast such unwanted collapses, such as metacommunitiy variability, local temporal patch 
variability or spatial variability, was not only dependent on the architecture of the mutual-
istic meta-network but also on species dispersal rate, and the size of the metacommunity.

When species dispersal rate was zero, all mutualistic networks distributed across a spa-
tial scale could be coalesed to independent local communities. Effectively, metacommunity 
size i.e., number of habitat patches in the metacommunity, thus, had no impact when a net-
work collapsed. This was obvious as species dipsersal was zero and spatial insurance pro-
vided by species dispersing across the landscape was effectively nil (Loreau et al. 2003). 
As a result, when strength of mutualism decreased, networks collapsed and metacommu-
nity size did not have any impact on the threshold strength at which these networks col-
lapsed. There was, however, a slight negative relationship between size of the network and 
the mutualistic threshold at which such networks collapsed (Fig. 2A). Particularly, larger 
networks collapsed later than smaller networks. Earlier studies have indicated that feasibil-
ity of mutualistic networks increases as network size or nestedness increases (Lever et al. 
2014; Baruah 2022; Baruah et al. 2022). This was intuitive as larger networks have larger 
number of species which effectively increases network biomass and persistence of the net-
work as a whole.

As species dispersal increases, the effect of metacommunity size became more evi-
dent. At high species dispersal, the relationship between network size and the mutualistic 
threshold strength at which networks collapsed became more negative. Smaller networks 
collapsed much earlier (i.e., at higher average mutualistic strength,�0 ) at higher dispersal 
rate than larger networks. This particular result was evident at smaller metacommunity 
sizes (Fig. 2A). At smaller metacommunities, for instance in a metacommunity with two 
habitat patches, species were able to easily disperse to the only other habitat and thereby 
homogenise communities. Higher dispersal, as indicated in previous studies (Loreau et al. 
2003), tend to lead to lower species richness. As such, at high rate of species dispersal 
and in smaller metacommunities, smaller networks lost species faster at a higher mutu-
alistic threshold than larger networks. In such mutualistic metacommunities species were 
modelled to be obligate mutualists, which indicated that species were dependent solely 
on mutualistic interactions for maintaining positive growth rate. As species dispersal 
increased, a stronger average mutualistic interaction was required to maintain an over-
all positive growth rate locally. As a consequence, at very high dispersal rates patches 
became homogenized, particularly those that had a fewer number of patches, and hence, 
a much stronger mutualistic strength on average was required to maintain positive abun-
dance. This particular phenomenon did not become an issue for larger metacommunities, 
for instance a metacommunity with more than five habitat patches and for larger networks 
(Loreau et al. 2003). Larger networks, in addition, harbored higher number of species and 
as such network collapse occurred at a much lower mutualistic threshold strength than 
smaller networks. Results, therefore, indicate that in order to preserve biodiversity, it is 
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thus imperative to take into account both the sizes of communities (topological features) as 
well as the spatial scale of species interactions (Thompson and Gonzalez 2017).

Much work had been done in identifying statistical signals that could forecast unwanted 
critical transitions. These statistical signals are phenomenological in nature and could be 
easily identified from state-based time series data such as abundance or biomass (Dakos 
et al. 2012a, b; Scheffer et al. 2012; Clements and Ozgul 2016; Baruah et al. 2019). How-
ever, such signals and their efficacy have been questioned recently both in numerical simu-
lations studies (Hastings and Wysham 2010; Clements et  al. 2015a; Baruah et  al. 2020) 
and experimental studies (Wilkinson et  al. 2018; Baruah et  al. 2021). Their has been a 
few application on multi-species communities (Dakos 2017; Patterson et al. 2021; Baruah 
2022; Baruah et al. 2022). Here, I evaluated how the efficacy of commonly used statisti-
cal signals measured at the species level (autocorrelation at first-lag, standard deviation), 
community level (patch variability, spatial variability) and at the metacommunity level 
(regional variability) perform in forecasting collapses in relation to network topology and 
spatial scale of interactions. Interestingly, species level metrics had a positive relationship 
with network architecture such as nestedness, but was not impacted by either dispersal rate 
of species or the size of the metacommunity (Fig. S4). Community and metacommunity-
based signals such as local temporal variability, spatial variability also increased as mutu-
alistic strength decreased. Smaller networks in metacommunities collapsed earlier and such 
networks also exhibited weaker increases in spatial variability across different species dis-
persal rates (Fig. 3A). This indicated that spatial variability performed poorly in forecast-
ing the collapse of smaller networks. Local temporal patch variability, however, exhibited 
an opposite but less steep increase of a pattern. Thus, when global changes weaken mutu-
alistic interactions thereby leading to loss of biodiversity, indicators measured at the com-
munity and metacommunity level could potentially inform instability. However, smaller 
networks could exhibit less strong signals in contrast to larger networks across a range of 
metacommunity sizes. This analysis indicated that these indicators and their performance 
when estimated at the community or metacommunity level would be slightly dependent on 
species dispersal, network architecture, and how large the metacommunity was.

Changes in the environment can weaken species interactions to the point of biodiversity 
collapse. Recovering lost ecosystem functions and processes is not easy as demographic 
information of species are also lost as biodiversity collapses (Scheffer 2009; Link and Wat-
son 2019). In addition, most ecological systems can exhibit a phenomenon called hyster-
esis whereby even if the original stable environmental conditions are reverted, the ecologi-
cal system might still not recover. There are tools that have been thus develop to forecast 
such unwanted transitions (Wissel 1984; Dakos et al. 2012a). When an ecological network 
collapses both at the local as well as at the spatial scale, signals of global meta-network 
instability could also be manifested in species in an ecological community. It is relatively 
unknown, however, which species could exhibit signals of instability, but see (Dakos 2017; 
Patterson et al. 2021; Baruah 2022; Baruah et al. 2022). Here, the strength at which species 
collapsed was dependent on species degree in a non-linear way. The relationship between 
species degree and mutualistic threshold strength at which species of a network collapsed 
was negative exponential. This result meant that species having a higher degree of interac-
tions were more resistant to changes in mutualistic interaction strength than species with 
lower number of interactions. However, the difference in mutualistic strength at which, say, 
species with degree three collapsed and a species with degree eight collapsed was negli-
gible (Fig. 4A). Only species that have the fewest number of interactions (less than three) 
collapsed at a much lower mutualistic strength. In addition, the species that exhibited 
strong increases in standard deviation as networks collapsed, were the ones which had on 
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average a larger number of interactions (Fig. 4B). The relationship between species degree 
and strength of species SD was non-linear, indicating that species with moderate to high 
number of interactions would show the strongest increase as networks collapsed. Species 
that had a relatively larger number of mutualistic interactions, benefited from higher posi-
tive growth rate which resulted in stronger increases in standard deviation as networks col-
lapsed than those species that had fewer interactions. However, as shown in Dakos and 
Bascompte (2014), and also here, species that have fewer interactions would collapse ear-
lier and might not exhibit as strong an increase in standard deviation as networks collapsed. 
This indicates that, although, one could potentially label species that have higher number 
of interactions as “indicator species”, that, however, would not help in informing instabil-
ity of “specialist species” as they generally collapsed much earlier (Fig. 4A). Nevertheless, 
these results indicate that standard deviation measured at the species level could poten-
tially increase as mutualistic interactions weaken and more so for species with a moderate 
to high number of interactions. Autocorrelation at first-lag also increased as interactions 
weakened, but its relation with species degree was unclear.

Our ability to detect an impending transition is dependent on monitoring dynamics at 
the vicinity of the transition. However, monitoring population dynamics required intense 
temporal as well as spatial sampling and could potentially impact forecasting of transi-
tions (Arkilanian et  al. 2020; Bruel and White 2021). Many other factors could also 
impact prediction of such transitions including but not limited to long transients and 
stochasticity (Hastings and Wysham 2010; Hastings et al. 2018). There has been quite 
a debate on the appropriate set of methods or tools that could be used to predict future 
biodiversity states. Studies have indicated that in addition to monitoring dynamics of 
species abundance, phenotypic traits should be monitored as well. Including information 
from phenotypic dynamics such as body size could improve forecasts of biodiversity 
collapse (Clements and Ozgul 2016), although such an accurate forecast of biodiversity 
collapse is dependent on the type of environmental perturbation and the type of interac-
tions prevalent in the community (Baruah 2022; Baruah et al. 2022). When changes in 
the environment impact communities both locally and spatially alike, ecological net-
works could suddenly collapse. However, when such networks collapses depends on the 
average rate of species dispersal, with higher species dispersal and smaller metacommu-
nities causing meta-networks to collapse at a much higher mutualistic strength. In addi-
tion, collapses of mutualistic meta-networks was also dependent largely on the topology 
of the network, with smaller networks collapsing at a higher mutualistic strength than 
larger networks. These results are pertinent for conservation efforts particularly because 
it points to the fact that ecological networks at smaller metacommunities are as vulner-
able or if not more than meta-networks at a much larger spatial scale. When assessing 
whether communities are vulnerable to changes in the environment, the results from this 
research indicates that it is very pertinent to look at factors beyond species demographic 
rates, that includes the scale of spatial interactions, and topology of local ecological 
communities.
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