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Abstract
Due to our limited knowledge about complex environmental systems, our predictions of their behavior under different

scenarios or decision alternatives are subject to considerable uncertainty. As this uncertainty can often be relevant for

societal decisions, the consideration, quantification and communication of it is very important. Due to internal stochas-

ticity, often poorly known influence factors, and only partly known mechanisms, in many cases, a stochastic model is

needed to get an adequate description of uncertainty. As this implies the need to infer constant parameters, as well as the

time-course of stochastic model states, a very high-dimensional inference problem for model calibration has to be solved.

This is very challenging from a methodological and a numerical perspective. To illustrate aspects of this problem and show

options to successfully tackle it, we compare three numerical approaches: Hamiltonian Monte Carlo, Particle Markov

Chain Monte Carlo, and Conditional Ornstein-Uhlenbeck Sampling. As a case study, we select the analysis of hydrological

data with a stochastic hydrological model. We conclude that the performance of the investigated techniques is comparable

for the analyzed system, and that also generality and practical considerations may be taken into account to guide the choice

of which technique is more appropriate for a particular application.

Keywords Uncertainty quantification � Bayesian inference � Stochastic model � Hamiltonian Monte Carlo �
Particle Markov Chain Monte Carlo � Gibbs sampling � Calibration

1 Introduction

Scientists are interested in understanding the function and

behavior of environmental systems, and society needs the

prediction of their future behavior under given boundary

conditions, such as climate change and policy measures,

for decision support (Matthies et al. 2007; Reichert et al.

2015; Walling and Vaneeckhaute 2020). However, due to

our limited knowledge about the mechanics of complex

environmental systems, about their driving forces, and

about their intrinsic stochasticity, such predictions are

subject to considerable uncertainty (Refsgaard et al. 2007;

Beven 2018). This uncertainty combines epistemic uncer-

tainty, due to imperfect knowledge, and aleatory uncer-

tainty, due to inherent variability or stochasticity. Both

kinds of uncertainty can be described by probabilities, as

they finally lead to a lack of knowledge of the outcome

(Reichert et al. 2015; Halpern 2017). The formulation of

epistemic probabilities, as well as of mechanisms and

aleatory stochasticity, should be inter-subjective (Gillies

1991), e.g., should be elicited from a group of experts or
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should pass a peer review of experts in the field (Krueger

et al. 2012). An established approach to model uncertainty

is to describe the intrinsic variability of a system by making

the associated mechanistic model stochastic (Soize 2017;

Reichert 2020). However, this leads to internal, unknown

random variables that may be difficult to infer from data

that correspond to output variables of the model (Hartig

et al. 2011; Cranmer et al. 2020). This is particularly true

for dynamical models, as time-dependent stochastic inter-

nal states or parameters lead to a very high-dimensional

inference problem that is difficult to solve with numerical

algorithms (Reichert et al. 2021; Bacci et al. 2022). It is

the overarching goal of this paper to demonstrate and

compare some techniques that can be used to numerically

implement Bayesian inference for dynamical, stochastic

models, and to discuss their advantages and disadvantages

and how those depend on the specific modelling setup. To

do so, we build on the data and model of a previous study,

in which a stochastic process was used to describe the

rainfall dynamics in an urban hydrological catchment (Del

Giudice et al. 2016) (for clarity and to favor comparisons,

we maintain the nomenclature used therein). Indeed,

making selected model parameters or inputs stochastic,

time-dependent processes, is a technique to better consider

intrinsic uncertainty in hydrological models while still

exactly maintaining mass balances (Buser 2003; Tomassini

et al. 2009; Reichert and Mieleitner 2009; Reichert et al.

2021; Bacci et al. 2022). The approach of making param-

eters stochastic in addition to stochastic mass-balance

equations has also been suggested (Liu and West 2001; Liu

and Gupta 2007; Suweis et al. 2010), but that allows

fluctuations in mass-balances and not just in mass fluxes,

which violate mass conservation.

A prominent motivation to borrow our case study from

the hydrological literature, aside from our own familiarity

with it, is that hydrological systems are often described

with deterministic process models, where the effect of all

uncertainties on the output is accounted for by just one

additive lumped error term, potentially on a transformed

scale, and potentially accounting for autocorrelation

empirically (Sorooshian and Dracup 1980; Kuczera 1983;

Bates and Campbell 2001; Schoups and Vrugt 2010;

Ammann et al. 2019). While this approach is computa-

tionally efficient, it is not fully satisfying conceptually, as it

does only incompletely consider the uncertainty in internal

model states, and needs to impose the autocorrelation

generated by the internal mechanisms through an empirical

parameterization (Blöschl and Sivaplalan 1995; Kuczera

et al. 2006; Reichert et al. 2021).

There may be three main reasons why a large fraction of

hydrological modelling studies are still based on deter-

ministic hydrological process models. First, many hydrol-

ogists are familiar with this framework and may not see the

benefit of expanding it. Second, statistical inference with

stochastic process models is algorithmically and numeri-

cally much more demanding than when using deterministic

models with an additive stochastic error term. Third, it is

often not straightforward to choose a numerical technique

and find an implementation easily adaptable to a specific

hydrological problem of interest. Hence, by referring to a

hydrological case study, we take the opportunity to enrich

the discussion by leveraging on all these specific applica-

tion domain aspects.

Accordingly, we first describe three numerical tech-

niques that are well suited to perform Bayesian inference

with hydrological models with stochastic inputs and/or

parameters. Second, we conduct a comparative analysis of

the results and sampling efficiency for all of these tech-

niques, analyzing under which circumstances which tech-

nique may be most useful. Third, we provide the

implementation of all the methods as open source software

to facilitate their practical application, although the refer-

enced software tools stand at different levels of simplicity

of reuse and of numerical optimization. Thus, we refrain

from comparing pure computational requirements and

performances, although this aspect is qualitatively

discussed.

More specifically, the paper is structured as follows. In

Sect. 2 we review the general theory, and the three

numerical techniques that we use for calibration of the

selected case study, which are Hamiltonian Monte Carlo

(Duane et al. 1987; Neal 2011), Particle Markov Chain

Monte Carlo (Andrieu et al. 2010), and Conditional Orn-

stein-Uhlenbeck Sampling (Buser 2003; Tomassini et al.

2009). Consequently, in Sect. 3, we illustrate the case

study, that is, the hydrological system, the available data,

and the modeling choices that we make. Section 4 is

devoted to the application of the numerical techniques to

the calibration of the chosen stochastic hydrological model

to the available data, and to expose the relevant compar-

isons. Finally, in Sect. 5, we conclude with a summary of

the suitability of the different methods, recommendations,

and suggestions for further research.

2 Methods

2.1 Stochastic models

The inference methods compared in this paper apply to

dynamic, stochastic process models that: (i) have one or

multiple unobserved internal states nðtÞ that are modelled

as a (potentially multi-dimensional) random process; (ii)

present a set of observable variables y. Our model is then

defined by the joint probability density of the random

process n and model parameters h,
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fMðn; hÞ ¼ fNðnjhÞ � fHðhÞ; ð1aÞ

together with a function, yM, that describes how the

observable variables y depend on the internal state and

parameters:

y ¼ yMðn; hÞ: ð1bÞ

In these equations, fN is the probability density function of

the random process given the parameters and fH is the

probability density function of the parameters. The prob-

ability density of y, obtained by propagating the probability

density fM through the function yM, describes our knowl-

edge about the output of the process model.

To be able to generate realistic synthetic observations,

or to use real data to calibrate model parameters and infer

model states, we need to be able to express the probability

of obtaining any observable value yo for given model

output y, state n, and parameters h. In sufficiently general

terms, this can be expressed with an observational model

such as:

fYo
ðyo j y; n; hÞ: ð2Þ

The explicit definition of the observational model depends

on the application. For instance, particular cases of (2) are

(3a) and (3b) as follows. If the intended purpose of (2) is to

model the observational error of the measurement device,

then it is typically formulated in the form:

fYo
ðyo j y; n; hÞ ¼ f

ðaÞ
Yo

ðyo j y; hÞ: ð3aÞ

If instead the goal is to quantify how the uncertainty of the

internal state of the process model manifests on the

observable variables, then a model of the type:

fYo
ðyo j y; n; hÞ ¼ f

ðbÞ
Yo

ðyo j n; hÞ; ð3bÞ

can be more appropriate. Combinations of (3a) and (3b) are

possible when the observable variables are, e.g., multiple

and independent, yo ¼ ½yðaÞo ; y
ðbÞ
o �:

fYo
ðyo j y; n; hÞ ¼ f

ðaÞ
Yo

ðyðaÞo j y; hÞf ðbÞYo
ðyðbÞo j n; hÞ: ð3cÞ

We finally note that, to simplify the notation, in all our

equations the parameter vector h combines the parameters

of the system and observational models, as well as those of

the random process.

2.2 Bayesian inference

Bayesian inference provides us with the probabilistic

framework to infer both the time course of the stochastic

process nðtÞ and the values of the constant parameters h.
By using the definitions of the model structure given in

Sect. 2.1, we can formulate the joint probability density of

observations, states and model parameters:

fYo;N;Hðyo; n; hÞ ¼ fYo
ðyo j yMðn; hÞ; n; hÞ � fMðn; hÞ: ð4Þ

Given specific observations yo ¼ yobs, Bayes’ rule reads

from (4) and (1) as:

fpostðn; h j yobsÞ / fYo;N;Hðyobs; n; hÞ

¼ fYo

�
yobs j yMðn; hÞ; n; h

�
�

fNðn j hÞ � fHðhÞ:

ð5Þ

The probability distribution of y is again given by propa-

gating this posterior distribution through the function yM
given by Eq. (1b). In equation 5, probability densities

fNðnjhÞ and fHðhÞ are customarily called prior densities,

while those distributions that use the observed data such as

fYo

�
yobsjy; n; h

�
define the likelihood. Of note, in Sect. 3 we

decompose the likelihood for our hydrological case study

into two independent parts, one for the river discharge and

the other for the rainfall. Therefore, the explicit form of (5)

that we use is based on (3c):

fpostðn; h j yobsÞ / f
ðaÞ
Yo

ðyðaÞobs j yMðn; hÞ; hÞ�

f
ðbÞ
Yo

ðyðbÞobs j n; hÞ � fMðn; hÞ

¼ f
ðaÞ
Yo

ðyðaÞobs j yMðn; hÞ; hÞ � f
ðbÞ
Yo

ðyðbÞobs j n; hÞ�

fNðn j hÞ � fHðhÞ;
ð6Þ

with y
ðaÞ
obs and y

ðbÞ
obs being the discharge and rainfall data of

our specific application, respectively, and f
ðaÞ
Yo

and f
ðbÞ
Yo

the

respective observational models, see Sects. 3.2.1 and 3.2.2.

Importantly, the fact that f
ðbÞ
Yo

does not explicitly use the yðbÞ

component of the model output (rainfall) does not limit our

ability to infer yðbÞ thanks to relationship (1b), which is

made explicit by equation (9) in Sect. 3.1. Model structures

of the form (1) and (2), with corresponding inference

according to (5), appear in many applications, e.g., for

models with stochastic, time-dependent parameters Liu and

Gupta (2007); Tomassini et al. (2009); Reichert and

Mieleitner (2009); Leisenring and Moradkhani (2010);

Reichert et al. (2021); Bacci et al. (2022).

2.3 Numerical approaches to bayesian inference
for stochastic models

The very high-dimensionality of the posterior (5), resulting

from the time series n, makes Bayesian inference with

standard numerical algorithms, such as the Metropolis

algorithm, very inefficient and thus for practical reasons

(too slow convergence) not applicable.
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If forward simulations from the model are fast and we

are only interested in the marginal posterior for the

parameters h, we may resort to Approximate Bayesian

Computation (e.g. Beaumont et al. (2002); Lenormand

et al. (2013); Albert et al. (2015)), which is based on

comparing simulations with measurements in terms of a

small set of summary statistics that retain most of the h-
related information in yobs. However, in many cases we are

also interested in the posterior of the stochastic process n.

For instance, if n denotes a time-dependent parameter, its

inferred time-course can give us clues about how to

improve the model (Reichert and Mieleitner 2009; Bacci

et al. 2022). In our case study in Sect. 3, we are interested

in inferring the real rainfall from both rain and runoff

observations. In such cases, we have to solve a very high-

dimensional inference problem, jointly for h and n. Hence,

ABC would be too inefficient.

In what follows in this contribution, we restrict our

consideration to sampling techniques of the posterior. As

mentioned above, plain random-walk based sampling

algorithms are grossly inefficient in high-dimensional

spaces due to extremely low acceptance rates. Hence, we

compare three different remedies for this problem.

Hamiltonian Monte Carlo employs Hamiltonian dynamics

to achieve high acceptance rates even for large step sizes in

high-dimensional sampling spaces. Particle filters iterate

piece-wise forward simulations of the stochastic model

with observation-based importance sampling, thus con-

straining the sampling of the high-dimensional process n

by the data. Finally, Gibbs-sampling can be used to

increase the acceptance rate by sampling only a subset of

all the variables at a time. If the stochastic process that is

used in the model allows for bridge-sampling, i.e. sampling

sub-intervals of the time-interval with fixed end-points,

Gibbs sampling can be very efficient. This is the case for

the Ornstein-Uhlenbeck process that we use in our case

study. In the remainder of this section, we describe the

three different techniques in more detail.

2.3.1 Hamiltonian Monte Carlo (HMC)

HMC implements a dynamical system that integrates

Hamilton’s equations in some auxiliary time (not to be

confused with the time of the model) using a potential

energy surface given by the negative logarithm of the

posterior density. This ensures to obtain unbiased samples

from the posterior, and hence that the acceptance proba-

bility would be 1 in the absence of discretization errors. In

practice, however, it is not 1 due to the necessary dis-

cretization of the auxiliary time, which leads to an error

that is corrected by means of a Metropolis accept/reject

step at the end of each time integration of the system. Still,

HMC is much more efficient than random walk type

Metropolis algorithms (Duane et al. 1987; Neal 2011), and

allows sampling even very high dimensional spaces,

although it requires calculating the gradient of the target

distribution. In its simplest variant, the Hamiltonian reads

as Hðn; h; f; pÞ ¼ � ln fpostðn; h j yobsÞ þ
P

i f
2
i =ð2miÞþP

a p
2
a=ð2MaÞ, where the f and p are auxiliary degrees of

freedom interpreted as momenta conjugate to the configu-

rational variables n and h, respectively.1 The masses mi and

Ma are tuning parameters of the algorithm. Their choice

can partly be automatized. HMC generates samples from

exp½�Hðn; h; f; pÞ�, the marginalization of which w.r.t. the

momenta constitutes a sample from the posterior. Each

update step consist of a random draw of the momenta (from

a Gaussian), followed by an integration of Hamilton’s

equations in the auxiliary time. The sampling of the

momenta at the beginning of each step makes sure that all

energy shells are sampled.

HMC allows for a high acceptance rate and low auto-

correlation, at the computational cost of a fine discretiza-

tion and a long integration time, respectively. For auto-

matically finding the integration time interval, the so-called

No-U-Turn Sampler (NUTS) can be employed (Hoffman

and Gelman 2014). The tuning of the masses should be

driven by adapting the mass matrix to the curvature of the

energy landscape. A natural choice is the inverse of the

Fisher metric, which is however position-dependent and

renders the implementation significantly more difficult

(Girolami and Calderhead 2011). A simpler variant of this

idea of enhancing HMC by means of Riemann geometry

recently appeared in Hartmann et al. (2022).

The Hamiltonian dynamics that emerges from problems

of the kind considered here typically happens on very

different time-scales (again referring to the auxiliary time),

associated with the typically large and potentially very

different numbers of measurement time points on the one

hand, and discretization time points needed for the

stochastic process n on the other hand. Therefore, in this

work, we employ a time-scale separation based on Trotter’s

formula (Albert et al. 2016). We tune masses and inte-

gration time manually.

2.3.2 Particle Markov Chain Monte Carlo (PMCMC)

States of state-space or hidden Markov Models are often

inferred using the Ensemble Kalman Filter (EKF) (Evensen

2009). This approach has the advantage of being very

efficient, but the disadvantage of relying on linear

approximations the accuracy of which is difficult to assess.

Alternative approaches are particle filters or particle

smoothers, which filter the distribution of the states of the

model according to the data. An ensemble of model

1 For simplicity, we assume here a single scalar state variable nðtÞ.
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realizations, called ‘‘particles’’, is propagated through the

observations combining model propagation from one

observation to the next with resampling of the model states

using as weights the likelihood of the respective observa-

tion at each time point (Künsch 2001; Godsill et al. 2004;

Fearnhead and Künsch 2018; Van Leeuwen et al. 2019).

The difference between particle filters and smoothers is

that the former condition each state on current and past

observations, while the latter condition on the full time

series, including future observations. Particle Markov

Chain Monte Carlo techniques combine particle filtering or

smoothing for the states with Markov Chain Monte Carlo

(MCMC) for the constant parameters, either based on an

approximation to the marginal likelihood calculated from

the particle ensemble at each step of the Markov chain, or

by Gibbs sampling between states and parameters (Andrieu

and Roberts 2009; Andrieu et al. 2010; Kantas et al. 2015;

Kattwinkel and Reichert 2017; Sukys and Kattwinkel

2018).

2.3.3 Conditional Ornstein-Uhlenbeck sampling (COUS)

By using a potentially transformed Ornstein-Uhlenbeck

process to describe input or intrinsic stochasticity in the

model, we can profit from its structure. To reduce the

rejection rate when proposing a new realization of this

process, instead of proposing a new realization of the full

time series, we first divide the time domain into a random

set of sub-intervals. We then sequentially re-sample the

Ornstein-Uhlenbeck process just within one sub-interval at

a time, conditional on the values at the end points of the

interval to guarantee continuity of the process. The rejec-

tion rate can then be adapted by the selection of the number

of intervals. Using more (shorter) intervals decreases the

rejection rate at the expense of more simulations to be done

for covering the whole time domain. We combine this sub-

sampling strategy for the random process with Metropolis

or Metropolis-Hastings sampling of the constant parame-

ters in an overarching Gibbs sampling framework (Buser

2003; Tomassini et al. 2009; Reichert and Mieleitner 2009;

Reichert et al. 2021; Bacci et al. 2022). Figure 2 in

Reichert et al. (2021) illustrates the conditional proposals

in these sub-intervals and their acceptance or rejection. For

more details, see the original publications (Buser 2003;

Tomassini et al. 2009).

2.4 Implementation

HMC is implemented from scratch in C??14 using the

open-source ADEPT library (Automatic Differentiation

using Expression Templates, version 1.1) to calculate the

gradient of the Hamiltonian (Hogan 2014). The automatic

differentiation feature, in particular, allows us to

automatize the HMC algorithm to a large extent thus

making the HMC approach very general and suitable for a

broad range of applications. Indeed, only the Hamiltonian

needs to be modified according to the specific case study,

while the implementation of the algorithm remains essen-

tially unaltered.

All the modeling components required to perform

PMCMC for the chosen hydrological system are built

within the inference framework SPUX (Sukys and Kat-

twinkel 2018; Sukys and Bacci 2021). SPUX is a modular

framework for Bayesian inference written in Python. It

aims to enable uncertainty quantification for stochastic

models across different disciplines. Indeed, SPUX is not

tailored towards a specific application domain, and can be

coupled to models written in different programming lan-

guages. It is a hub for different numerical techniques,

including PMCMC and SABC (Albert et al. 2015), and can

easily leverage distributed memory systems for

parallelization.

COUS is implemented in the R package timedeppar

(https://cran.r-project.org/package=timedeppar) (Reichert

et al. 2021; Reichert 2022). The differential equations of

the hydrological model are integrated using the R package

deSolve http://cran.r-project.org/package=deSolve with

an implementation of the right-hand side of the differential

equations in C to improve efficiency. The short time series

of our case study allow us to integrate the whole time series

to evaluate the likelihood once part of the stochastic input

has been modified as described in Sect. 2.3.3. This makes

the interface to the simulation program particularly simple

as it just has to be able to process time series of inputs or

parameters. However, this procedure would scale poorly

with the length of the time series. The package

timedeppar (https://cran.r-roject.org/package=time

deppar) thus allows the user to store the internal state from

the previous simulation and only re-calculate and replace

the part of the time series that is (strongly) affected by the

modified input. For differential equation models as used in

our case study, this part starts with the start point of the

modification, and ends after some characteristic times of

the slowest time scale of the model after the end point of

the modification. The code published with (Reichert et al.

2021) demonstrates how this can be done.

2.5 Comparing efficiency

As the different numerical approaches are implemented on

different computing platforms, required CPU time is not

useful to compare the numerical effort. Similarly, we

cannot directly compare the chain lengths of the Markov

chains as the auto-correlation is different. To reduce bias in

our metrics, we thus calculate the ratio of the obtained

effective sample size and the number of posterior
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evaluations, called ‘‘function calls’’. This is still not com-

pletely unbiased, as HMC requires not just the evaluation

of the posterior, but also its gradient, and PMCMC, through

its iterative integration, has more overhead compared to

COUS or HMC which integrate the full time series at once.

Numerically, the effective sample size is calculated

using the implementation in the R (R Core Team 2020)

software package mcmcse (https://cran.r-project.org/pack

age=mcmcse) for both uni- and multi-variate cases (Vats

et al. 2019). The number of function calls Nfc that are

required to obtain the posterior samples for the three

techniques, HMC, PMCMC, and COUS are given by

NPMCMC
fc ¼ NMC � Np ð7aÞ

NCOUS
fc ¼ NMC � ðNi þ 1Þ ð7bÞ

NHMC
fc ¼ NMCð1þ LÞ; ð7cÞ

where NMC is the length of the Markov chain, Np is the

number of particles in PMCMC, Ni is the number of sub-

intervals in COUS, and L is the number of gradient-eval-

uations needed in HMC to obtain a sample point per energy

evaluation. Here, we use L ¼ 6 discretization steps for

Hamilton’s equations, and assume that gradient- and

energy-evaluations cost approximately the same.

3 Case study

Our case study is based on one of the events used for

describing sewer discharge under consideration of

stochastic rain input by Del Giudice et al. (2016). As we

focus on a single, short event, we can simplify the original

model by omitting the daily variation in the flow that was

used to model the dynamics of the outflow of the sewage

treatment plant. This setting is then well suited to compare

numerical approaches to Bayesian inference of states and

model parameters under the difficulty of inferring a

stochastic process (here rainfall), but still with

tractable computational requirements due to the short

duration of the event.

3.1 Hydrological model

The simplified model is given by the following mass-bal-

ance differential equation for the water stored in the sewer:

dSðtÞ
dt

¼ APðtÞ þ Qgw � QðtÞ with QðtÞ ¼ SðtÞ
K

;

ð8Þ

where t is time, S is water volume in the sewer, A is

catchment area, P is precipitation, Qgw is constant infil-

tration of groundwater, Q is discharge, and K is the mean

residence time of the water in the reservoir (see also

Table 1 for a list of all variables and their units).

The rainfall P is given by a transformation of the rainfall

potential, n, (Sigrist et al. 2012; Del Giudice et al. 2016):

PðtÞ ¼ r
�
nðtÞ

�
¼ k

�
nðtÞ � nr

�1þc
if nðtÞ[ nr

½1ex�0 if nðtÞ� nr

(

ð9Þ

which is assumed to follow the standardized Ornstein-

Uhlenbeck stochastic process (10):

nðtÞ j nðsÞ�N nðsÞ exp � t � s

s

� �
;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� exp �2
t � s

s

� �r �
;

ð10Þ

that is, a process that fulfills the stochastic differential

Eq. (11):

dnðtÞ ¼ � 1

s
nðtÞ þ

ffiffiffi
2

s

r

dWðtÞ ð11Þ

(see Table 1 for the meaning and units of the variables).

Stochasticity of rainfall is thus generated by the stochastic

Ornstein-Uhlenbeck process, whereas the skewed distri-

bution of rainfall and the finite probability of zero rain are

generated by the nonlinear, partly non-invertible transfor-

mation r given by Eq. (9).

3.2 Observation models

As we are inferring the stochastic process of the rainfall

potential as well as model parameters from rainfall and

discharge observations, we need observation models for

rainfall and discharge (see Eq. 3). Note that both of these

‘‘observation models’’ are partly lumped error models, as

they also have to consider any effects of structural weak-

nesses of our rain and hydrology descriptions. They are

only partly lumped, as parametric uncertainty as well as

input uncertainty are considered explicitly in addition to

the ‘‘observation error models’’.

3.2.1 Stream flow observation model

The model of observed discharge can be formulated as

conditional on the predicted discharge in the form of

Eq. (3a). It is convenient to formulate a normal and

homoscedastic error model on a transformed z-scale and

get the required skewness and heteroscedasticity by the

back-transformation to the discharge scale. We use the

transformation applied already in Del Giudice et al. (2016):

3046 Stochastic Environmental Research and Risk Assessment (2023) 37:3041–3061

123

https://cran.r-project.org/package=mcmcse
https://cran.r-project.org/package=mcmcse


z ¼ HðQÞ ¼ b log sinh
aþ Q

b

� �� �
: ð12Þ

The normally distributed error on this scale reads as (with

standard deviation rz):

f Zo
�
HðQoÞ j Q

�
¼ fNðHðQÞ;rzÞ

�
HðQoÞ

�
; ð13Þ

Transformation to discharge then leads to the probability

density for observed discharge:

f
ðaÞ
Qo
ðQo j QÞ ¼ fNðHðQÞ;rzÞ

�
HðQoÞ

� dH

dQ
ðQoÞ ð14Þ

with

dH

dQ
ðQoÞ ¼

1

tanh
�
ðaþ QoÞ=b

� :

The above formulation implies that multiple observations

are assumed independent, such that the joint likelihood

reads:

f
ðaÞ
Qo

ðQo j QÞ ¼
YNQ

i¼1

f
ðaÞ
Qo
ðQo ¼ Qoi j Q ¼ QiÞ; ð15Þ

where the index i indexes the times when there are runoff

observations Qoi, with Qi being the corresponding model

output.

3.2.2 Precipitation observation model

The observation model for rainfall, given the rainfall

potential nðtÞ, is formulated as a normal distribution in the

space of the rainfall potential centered at nðtÞ and with

standard deviation rn, and is denoted noðtÞ. This distribu-
tion is then transformed to rainfall observations by the

transformation (9): PoðtÞ ¼ r
�
noðtÞ

�
. This leads to an

observation model in the form of (3b). As n-values below
nr are transformed to zero by the transformation (9), the

probability of zero observed rain is given as

p
��

PoðtÞ j nðtÞ
�
¼ 0

�
¼ p

��
noðtÞ j nðtÞ

�
\nr

�
¼

¼
Z nr

�1
fNðnðtÞ;rnÞðn

0Þdn0 ¼ FNðnðtÞ;rnÞðnrÞ ;

ð16Þ

where fN and FN denote, respectively, the probability

density and cumulative distribution function of the normal

distribution with mean and standard deviation given in the

subscript. The probability density of the rainfall potential

corresponding to positive rain observations is given as:

f No

�
r�1ðPoðtÞÞ j nðtÞ

�
¼ fNðnðtÞ;rnÞ

�
r�1ðPoðtÞÞ

�
for PoðtÞ[ 0

ð17Þ

(note that the transformation r according to Eq. (9) is

invertible for P[ 0). Transforming this distribution to the

rain observations thus leads to:

f
ðbÞ
Po

�
PoðtÞ j nðtÞ

�
¼

fNðnðtÞ;rnÞ
�
r�1ðPoðtÞÞ

�

dr

dn

�
r�1ðPoðtÞÞ

� for PoðtÞ[ 0

ð18Þ

with

Table 1 Variables, units, and

descriptions. From top of the

table, the first group of variables

are the input, state and

parameters of the hydrological

model. The second group are

the parameters of the rainfall

and rain observation models.

The group at the bottom

encompasses the parameters

that are fixed to values taken

from Del Giudice et al. (2016)

Variable Unit Description

n Rainfall potential

P l/(s m2) Rainfall rate

S l Water volume in the reservoir

Q l/s Runoff rate (discharge)

K s Reservoir retention time

Qgw l/s Groundwater base flow

W – Wiener process (Brownian motion)

rz l/s Standard deviation of the discharge observation model

rn Standard deviation of the rainfall obs. model on the n scale

k l/(s m2) Scaling factor within rainfall transformation r

c – Exponential factor within rainfall transformation r

nr Domain split location within rainfall transformation r

a l/s Coefficient of the discharge observation model (25)

b l/s Coefficient of the discharge observation model (50)

s s Autocorrelation time of the OU process (636 s)

A m2 Catchment area (11815.8 m2)
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dr

dn
ðr�1ðPoðtÞÞ

�
¼ kð1þ cÞ

�
r�1ðPoðtÞÞ � nr

�c

¼ kð1þ cÞ PoðtÞ
k

� � c
1þc

:

As with the discharge, the joint likelihood is the indepen-

dent composition of the marginal likelihoods (16) and (18),

and writes:

f
ðbÞ
Po

�
Pojn

�
¼

YNP¼0

i¼1

p
��

PoðtiÞjnðtiÞ
�
¼ 0

� YNP[ 0

j¼1

f
ðbÞ
Po

�
PoðtjÞjnðtjÞ

�
;

ð19Þ

where the index i runs on the times when there is no

rainfall while j indexes when rain is observed.

3.3 Priors for inferred parameters

We list in Table 2 the prior assumptions for the parameters

of our models. The joint prior is obtained assuming that all

the listed marginal distributions are independent.

3.4 Dataset

To compare the different methods for stochastic model

calibration, we use two different datasets from the same

hydrological system, a small urban catchment located in

Adliswil, Zurich, Switzerland. They differ in the accuracy

of the rainfall measurements (Del Giudice et al. 2016). In

the accurate scenario, termed ‘‘scenario 1’’ (Sc1), precipi-

tation data results from the average rainfall measured at

two point-scale pluviometers, both located in the immedi-

ate vicinity of the catchment. Time resolution is 1 min.

Inaccurate ‘‘scenario 2’’ (Sc2) uses the rainfall recorded by

a pluviometer operated by the Swiss meteorological office

and located in Zurich Fluntern, which is about 6 km far

apart from the catchment of interest. Data are stored every

10 min. Wastewater flow is measured at the outlet of the

catchment with a time resolution of 4 min. These obser-

vations are the same for both scenarios. For this study, we

choose to focus on a storm event that took place on June 10

2013 from about 18:00 to 20:00.

4 Results and discussion

Since Scenario 2 is characterized by inaccurate rainfall

measurements, it is numerically the more challenging one,

and thus a stronger test of the different numerical approa-

ches compared in this paper. Hence, we base our exposition

primarily on this scenario. Nevertheless, we do the simu-

lations also for scenario Sc1 for further validation.

4.1 Scenario 2

4.1.1 Convergence of markov chains

To allow visual assessments of convergence for the tested

inference methods, we plot the Markov chains for all the

model parameters in Figs. 5, 6 and 7 in the Appendix.

Overall, we conclude that the chains converge for all

numerical approaches. For COUS, we run 4 independent

Markov chains, each of length 200k steps, subsample them

by a factor of 20 at run time to save storage space, and

retain only the second half to pragmatically avoid initial

state bias (Bacci et al. 2019). For HMC, we start from an

initial 75k-step long chain (which we then discard as burn-

in), and run 4 independent Markov chains each 100k-step

long. For both COUS and HMC, the chains appear to be

sufficiently long to ensure good mixing. For PMCMC, we

use 48 chains, each collecting 3000 samples (with a burn-in

of 1000 samples). Namely, to approximately obtain 105

samples also for PMCMC, we use a much larger number of

shorter chains. This is for three reasons. First, our PMCMC

software implementation is parallel in nature. Second,

differently from COUS, we use the EMCEE (Foreman-

Mackey et al. 2013) sampler (and not the standard MCMC

algorithm) to propagate the chains, which implies exchange

of information between them, and hence a larger swarm

has a positive effect on the speed of convergence. Third,

the filtering step poses a sizeable overhead for models that

run in the millisecond (or faster) timescales on a single

CPU, as it is for our hydrological model. Hence, collecting

many samples per chain is very time consuming, and this

justifies resorting to a larger ensemble of shorter, com-

municating parallel chains.

Table 2 Joint prior density is simply the product of univariate den-

sities for the different parameters listed. N(l,r) and LN(l,r) stand for

normal and lognormal distributions with mean l and standard devi-

ation r, respectively. [Note that the implementations of most log-

normal distributions require the parameters meanlog =

logðlÞ � logð1þ r2=l2Þ=2 and sigmalog =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þ r2=l2

p
)]

Variable Prior distribution (units in Table 1)

K LN (284.4, 57.6)

Qgw LN (6, 1)

rz LN (4.5, 0.45)

rn LN (0.65, 0.3)

S0 N (0, 5000) truncated to interval ½0;1Þ
k LN (0.1/60, 0.05/60)

nr N (0.5, 0.1)

c LN (0.5, 0.25)
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To corroborate our intuition from Figs. 5, 6 and 7

regarding the amount of mixing in parameters space, we

consider the average number of 25–75% crossings of the

individual components of the Markov chains (Table 5). We

define a 25–75% crossing as a transition from the lowest to

the uppermost quartile of the sampled space (or the other

way around). The average number of samples required to

obtain such a crossing is comparable for the three methods

(despite the thinning at run time that penalizes COUS in

this analysis), and it is much shorter than the combined

length of the chains.

In Fig. 8, we plot typical Markov chains for nðtÞ eval-

uated at two different time-points, with and without rain

observations. They appear to be well-mixed and show a

good agreement between the three methods. However, the

analogous plots for the rainfall in Fig. 9 exhibit some

differences in the sampling of extreme values, in particular

for PMCMC. For PMCMC, these differences might be

explained by occasional filter collapses (see Figure S1 in

the Supplementary Material) and by lack of smoothing in

post processing.

As an additional convergence test for the state variables,

we plot the 2.5-�97.5% envelopes of the stochastic

dynamics and associated rainfall extracted from 4 inde-

pendent and adjacent sampling blocks along a Markov

chain (Fig. 10). COUS appears to be the method with the

most consistent results. PMCMC shows the most rugged

behavior, albeit quite consistently across the blocks. HMC

shows a limited overlap only in the second half of the

dynamics of the stochastic process, when rainfall is absent.

However, since lack of overlap happens only at the lower

end, the rainfall dynamics does not show any lack of

homogeneity.

4.1.2 Marginal posteriors

We are interested in comparing the marginal posteriors of

model parameters, model states, and discharge at the outlet

of the catchment as obtained from the tested numerical

Fig. 1 Parameters marginal

posteriors, scenario 2. a
Marginal posterior for Qgw. b
Marginal posterior for c. c
Marginal posterior for rn. d
Marginal posterior for nr . e
Marginal posterior for S0. f
Marginal posterior for k. g
Marginal posterior for rz.
h Marginal posterior for K
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Fig. 2 Stochastic process and

rainfall posteriors, scenario 2. In

all panels, the gray area defines

the 2.5–97.5 percentile range. a
Posterior of the stochastic

process n for HMC. b Same as

(a) for PMCMC. c Same as

(a) for COUS. d Posterior of the

rainfall dynamics for HMC.

e Same as (d) for PMCMC.

f Same as (d) for COUS

Fig. 3 Posterior dynamics for

the outflow Q, scenario 2. In all

panels, the gray area defines the

2:5� 97:5 percentile range.

a Posterior of the discharge

Q for HMC. b Same as (a) for

PMCMC. c Same as (a) for

COUS
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approaches. We discuss these findings in the following

paragraphs.

Figure 1 shows the marginal posteriors of the model

parameters for all three methods based on the respective

sampling of the Markov chains, see Sect. 4.1.1. As it is

apparent, the results are hardly distinguishable from one

another, with empirical cumulative distributions differing

almost everywhere by less than 4–5%, see Figs. S2–S3.

These results also give us confidence in the numerical

implementations of the three methods. The similarity

between the marginal posteriors is indeed salient, even for

parameters that are notoriously difficult to infer for this

scenario, i.e., the ones related to the rainfall transformation

c, k, and nr, and to the input observational error, rn.
Noteworthy are also the 2D projections of the joint pos-

terior distribution shown in Figs. S4–S6. Those look very

similar across the methods, and also dissipate concerns

regarding possible correlations between parameters (which

might indicate an inadequate parameterization).

For what concerns model states, as already discussed in

Del Giudice et al. (2016), one key question is whether the

use of the catchment outlet as an additional ‘‘rain gauge’’

can correct for input errors. Figure 2 shows the inferred

marginal distributions of the time series of the stochastic

process representing the rainfall potential as well as the

corresponding rainfall intensity.

By visual inspection, the results look very similar across

the methods. They also show that our inference methods

are indeed able to correct for errors in the rain measure-

ments. Due to the aforementioned convergence issues and

lack of smoothing with PMCMC, the dynamics of the

inferred stochastic process (Fig. 2b) appears more spiky

than for HMC and COUS, albeit differences are not dra-

matic, and become even smaller when looking at the

rainfall dynamics (Figs. 2d, e and f).

To further quantify the similarity in the stochastic pro-

cess and rainfall dynamics across the methods, we calculate

the density of these variables by binning on fixed bins at

each time point when the selected dynamics has been

computed and stored from the model simulations. These

times are the same across all methods. We then take the

difference of these densities across the methods, see

Fig. S7 for the process n and Fig. S8 for the rainfall. These

differences are still at the resolution of the saved times and

fixed bins, and are then normalized by the total density,

which is invariant across time and method, due to the fixed

Fig. 4 Stochastic process and

rainfall posteriors, scenario 1. In

all panels, the gray area defines

the 2.5�97.5 percentile range. a
Posterior of the stochastic

process n for HMC. b Same as

(a) for PMCMC. c Same as

(a) for COUS. d Posterior of the

rainfall dynamics for HMC.

e Same as (d) for PMCMC.

f Same as (d) for COUS
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number of counts and the fixed bins, respectively. This

normalization also implies that the maximum theoretical

difference (100%) would correspond to a scenario where

all counts are concentrated in a bin for one method and that

the compared method would have no counts in that bin. We

note that the differences we obtain this way are generally

very small (5–10%).

Finally, we look at the results for the discharge Q at the

catchment outlet. We expect inference to be less difficult

for discharge, as the observations are accurate. This state-

ment is corroborated by the 2.5-�97.5% posterior intervals

of the dynamics of Q, which look very similar across the

methods, except for a few spikes for PMCMC, which could

likely be leveled out by particles smoothing rather than

filtering, see Fig. 3. Importantly, density analysis demon-

strates that differences are small, Figure S9.

4.1.3 Efficiency

Table 3 shows the mean number of posterior evaluations

(called number of function calls) per (multi- or uni-variate)

effective sample. All methods attain a similar range of this

metric, namely, between about 500 and 5500 function calls

are required to obtain an independent parameter sample

point. Two observations are worth discussing in more

detail. First, while HMC appears to outperform the other

two methods, the required differentiation of the energy

function is considerably more expensive than just its

evaluation, which is not reflected in Table 3. For our case

study and implementation, this makes ‘‘function calls’’ for

HMC about 5 times more time consuming than just the

plain evaluation of the posterior. While this factor is not

universal, it still would reduce the efficiency of HMC to

some degree for any implementation. Second, PMCMC

seems the method that offers the most homogeneous

effective sample size values for the individual parameters.

4.2 Scenario 1

Sc1 differs from Sc2 in that it offers more precise rainfall

observations for inference (see Sect. 3.4). The main con-

sequences are that the inferred stochastic process is

smoother and the rainfall is obviously more in compliance

with the observations used for the respective calibration,

compare Fig. 4 with Fig. 2.

As expected for all methods, the dynamics of the

stochastic process and rainfall seem robust and converged,

see Figure S10, and the larger availability of data has a

positive effect on filter collapses, compare Figure S11 with

Figure S1.

The inferred dynamics of the discharge shows small

uncertainty as well, with some rugged behavior from

PMCMC and stronger agreement between HMC and

COUS, Figure S12.

The Markov chains do not raise any concern regarding

convergence, see Figs. S13–S15, and the marginal poste-

riors of the parameters are in good agreement across the

approaches, see Figs. S16–S18. However, it is noticeable

that the initial volume of water in the reservoir, S0, is more

uncertain for PMCMC in Sc1 than in Sc2. It is unclear why

this is the case, although it is likely that the more precise

estimation of the rainfall makes the model less sensitive to

this parameter. However, we should also note that 2D

projections of the parameters joint posterior show a weaker

correlation between S0 and K for PMCMC, see Figs. S19–

S21, the consequence of which is in fact the larger spread

of S0 values.

Performance metrics related to sampling, such as the

number of Markov chains inter-quartile trips, Table 6, and

the number of function calls per effective sample, Table 7,

are in agreement with what already shown for Sc2.

Namely, PMCMC with the EMCEE sampler appears to be

the method with the most consistent statistics, with per-

formance being comparable across all methods.

5 Summary and conclusions

Table 4 compares conceptual aspects and numerical effi-

ciency of the three algorithms. Together with the numerical

results discussed in the previous section, we come to the

following conclusions.

• All three tested algorithms can successfully be applied

to our inference problem of inferring the stochastic

rainfall process jointly with constant model parameters.

They lead, up to small numerical inaccuracies, to the

same results, consistently and robustly. Besides this

proof of concept, this is also a very strong indication for

correct implementations, which is an often overlooked

challenge in complex inference problems. Multiple,

independent implementations are extremely helpful to

identify implementation problems.

• There is a clear trade-off between implementation effort

(smallest for COUS, largest for HMC) and universality

(largest for PMCMC and HMC, smallest for COUS),

see Table 4.

• The numerical efficiency of the alternative approaches

is much more difficult to compare, as it depends

strongly on the inference problem and relevant imple-

mentation, on the tuning parameters of the inference

algorithms, and on the possible parallelization

scheme of the dedicated software, which is most natural

for PMCMC, as it requires the use of an ensemble of

communicating particles by design. For our case study,
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there is not a dramatic difference in effective sample

size per evaluation of the posterior, with a small

advantage for HMC over COUS, and with PMCM

trailing the other two methods by a factor of 1.5–2.5.

However, especially for HMC, the comparison in

Table 3 does not fully reflect computational time due

to the fact that the computation of the gradients is likely

to always be more expensive than the evaluation of the

energy. Yet, these results indicate another trade-off

between implementation effort and efficiency.

Overall, we recommend a step-by-step process to select the

inference algorithm.

1. First, the applicability of the algorithms has to be

checked (see Table 4). Among the investigated algo-

rithms, we have to go for PMCMC if the states of the

stochastic processes are discrete (e.g., numbers of

organisms in ecological models). If we need a high

flexibility in the stochastic processes, we can choose

among HMC and PMCMC. Finally, if it suffices to use

poentially transformed Ornstein-Uhlenbeck processes,

we can choose among all three algorithms.

2. If we still have remaining choices, we can consider

implementation aspects. In most cases, coupling the

model to COUS will be fastest to implement, as this

only requires the simulation program to accept a

prescribed (by the inference algorithm) time series of

model parameters or input (which will be realizations

of the Ornstein-Uhlenbeck stochastic processes).

PMCMC requires piece-by-piece evaluation of the

model time series, which should also not require a very

high implementation effort. However, the need to

resample the particles according to the likelihood of

the observations might not be straightforward, and can

easily become the bottleneck of numerical perfor-

mances with fast models. Finally, HMC will require a

re-implementation of the model on a platform that

allows for automatic differentiation, unless the model

is already implemented on such a platform, or will

require the implementation of the differentiation of the

energy function and relevant time-integration, which

might be difficult.

3. Third, if there are still remaining choices, efficiency

can be considered, which in most cases will favor

HMC.

Appendix

See Figs. 5, 6, 7, 8, 9 and 10 and See Tables 5, 6 and 7
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Fig. 5 Markov chains and

marginal posteriors for HMC,

scenario 2.
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Fig. 6 Markov chains and

marginal posteriors for

PMCMC, scenario 2.
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Fig. 7 Markov chains and

marginal posteriors for COUS,

scenario 2 (subsampled by a

factor of 20).
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Fig. 8 Stochastic process at

fixed times for equally spaced

accepted parameters samples,

scenario 2. (a)–(f) are for times

when no data is observed. (g)–

(l) are for times when rainfall is

observed

Fig. 9 Rainfall at fixed times for

equally spaced accepted

parameters samples, scenario 2.

(a)–(f) are for times when no

data is observed. (g)–(l) are for

times when rainfall is observed
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Table 3 Mean number of function calls per effective sample, scenario

2. Either multi-variate estimation of the required mean number of

posterior evaluations per effective sample (first row), or uni-variate

estimation (per parameter) of the same metric

HMC PMCM COUS

Multivariate 1315 2777 1818

Uni-variate

S0 671 5469 1697

K 925 5644 1827

Qgw 1616 4841 1145

rz 1563 5608 1215

rn 1313 5194 1895

nr 2245 5181 2341

c 517 5710 1279

k 1505 5677 5650

Fig. 10 Process and rain

overlaps for adjacent sampling

blocks along one Markov chain,

scenario 2. (a) Posterior blocks
of the stochastic process n for

HMC. (b) Same as (a) for

PMCMC. (c) Same as (a) for

COUS. (d) Posterior blocks of
the rainfall dynamics for HMC.

(e) Same as (d) for PMCMC. (f)
Same as (d) for COUS
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supplementary material available at https://doi.org/10.1007/s00477-
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Table 5 Mean number of posterior samples to achieve an inter-

quartile crossings per method and parameter for the MC sampling,
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