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Abstract. The heterogeneous chemistry of atmospheric
aerosols involves multiphase chemical kinetics that can be
described by kinetic multi-layer models (KMs) that explic-
itly resolve mass transport and chemical reactions. However,
KMs are computationally too expensive to be used as sub-
modules in large-scale atmospheric models, and the com-
putational costs also limit their utility in inverse-modeling
approaches commonly used to infer aerosol kinetic param-
eters from laboratory studies. In this study, we show how
machine learning methods can generate inexpensive surro-
gate models for the kinetic multi-layer model of aerosol sur-
face and bulk chemistry (KM-SUB) to predict reaction times
in multiphase chemical systems. We apply and compare two
common and openly available methods for the generation of
surrogate models, polynomial chaos expansion (PCE) with
UQLab and neural networks (NNs) through the Python pack-
age Keras. We show that the PCE method is well suited
to determining global sensitivity indices of the KMs, and
we demonstrate how inverse-modeling applications can be
enabled or accelerated with NN-suggested sampling. These
qualities make them suitable supporting tools for laboratory
work in the interpretation of data and the design of future
experiments. Overall, the KM surrogate models investigated
in this study are fast, accurate, and robust, which suggests

their applicability as sub-modules in large-scale atmospheric
models.

1 Introduction

An accurate description of the heterogeneous chemistry of at-
mospheric particles requires explicit coupling of mass trans-
port with chemical reactions (Poschl et al., 2007; Kolb et al.,
2010; Shiraiwa et al., 2014). Especially for particles contain-
ing secondary organic matter, field and laboratory experi-
ments during the last decade showed severe transport limi-
tations that affect chemical reactivity (Shiraiwa et al., 2011;
Kuwata and Martin, 2012; Berkemeier et al., 2016). While
the elementary processes are well understood, kinetic multi-
layer models (KMs) describing mass transport and chemical
reactions at the gas—particle interface and throughout the par-
ticle bulk are computationally expensive due to the need for
spatial resolution within the particles (Poschl et al., 2007,
Shiraiwa et al., 2012; Roldin et al., 2014; Berkemeier et al.,
2017; Semeniuk and Dastoor, 2020; Dou et al., 2021). For
use in global or regional models, the KMs would have to
be evaluated for every grid cell, time step, and particle class
(size and composition). This computational volume makes
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the application of KM extremely costly, if not outright im-
possible.

A second complicating factor for KMs is the multitude of
chemical and physical input parameters, such as transport pa-
rameters or chemical reaction rate coefficients, which are of-
ten poorly constrained or unknown. Thus, in a laboratory set-
ting, KMs are often used in an inverse-modeling approach, in
which model parameters are deduced or constrained with ex-
perimental data using global optimization (Berkemeier et al.,
2017; Tikkanen et al., 2019; Berkemeier et al., 2021; Wei
et al., 2021; Milsom et al., 2022). However, due to the inher-
ently coupled nature of the underlying physical and chemi-
cal processes, input parameters are often ill constrained; i.e.,
their numerical value cannot be uniquely determined (Berke-
meier et al., 2017). This is particularly problematic when
extrapolating the KMs to conditions outside the calibration
range, where the calculation outcome can depend strongly
on previously insensitive and thus unconstrained parameters
(or combinations of parameters). Fit ensembles, i.e., arrays
of multiple solutions from repeated execution of a global op-
timization algorithm, can be utilized to propagate the uncer-
tainty of the global fit to conditions outside the calibration
range (Berkemeier et al., 2021). Solving the inverse problem
is a complex task that becomes computationally more ex-
pensive with an increasing number of uncertain model input
parameters, often requiring > 10° model simulations (Xu
et al., 2018). In some cases, this can be prohibitively expen-
sive to do with a full model, and the problem is exacerbated
when acquiring or evaluating fit ensembles.

Computationally inexpensive surrogate models can re-
place KMs in specialized tasks and help solve the issue of
computational cost. These surrogate models are trained on a
dataset consisting of a wide range of kinetic input parameters
and the associated calculated outputs until they reproduce the
KM output with the desired accuracy. Surrogate-based op-
timization methods are an active field of research (Booker
et al., 1999; Vu et al., 2017; Xu et al., 2018). Some stud-
ies use an iterative approach, wherein the surrogate model
is used to constrain the likely parameter space, and the full
model is run within this likely parameter space to refine the
surrogate model. Here, we illustrate the generation of surro-
gate models by introducing two suitable machine learning
methods, namely artificial neural networks (NNs) through
the Python package Keras (Gulli and Pal, 2017) and polyno-
mial chaos expansion (PCE) with UQLab (Marelli and Su-
dret, 2014).

Artificial NNs represent a group of common machine
learning algorithms. Their functionality is inspired by bio-
logical brains, where complex computational processes are
based on comparably simple interactions of large numbers of
interconnected nodes or neurons (Krése and van der Smagt,
1996). Neural networks are commonly organized in layers,
where an individual neuron obtains signals from neurons in
the previous layer and maps them to a single new signal that
is passed to neurons of the following layer (Almeida, 2001;
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Popescu et al., 2009). By systematic variation of the numer-
ical weights of individual neuron operations, the so-called
training, an NN can increase its predictive accuracy. The ex-
act mathematical operations that are performed by neurons
in specific layers and the arrangement of such layers (archi-
tecture of the NN) are determined by so-called hyperparame-
ters. Hyperparameters can be adapted to obtain an NN that is
specialized for a specific task, input data structure, or output
type (Bishop, 1994; Sadeeq and Abdulazeez, 2020).

In the atmospheric sciences, NNs are used for air qual-
ity prediction, function approximation, and pattern recog-
nition tasks (Gardner and Dorling, 1998), but their appli-
cation as surrogate models for computationally expensive
KMs is less well researched. Recently, popular applications
of machine learning in atmospheric chemistry and physics
include quantitative structure—activity relationship (QSAR)
models that map molecular structures to compound proper-
ties as an alternative to time-consuming laboratory experi-
ments or quantum mechanical calculations (Lu et al., 2021;
Lumiaro et al., 2021; Galeazzo and Shiraiwa, 2022; Kriiger
et al., 2022; Xia et al., 2022). Holena et al. (2010) used sur-
rogate models in computationally costly evolutionary opti-
mization and successfully enhanced this approach with the
application of NNs. Tripathy and Bilionis (2018) used an NN
to create surrogate models for expensive high-dimensional
uncertainty quantification. Other recent applications of NNs
as surrogate models address chemical and process engineer-
ing (Cavalcanti et al., 2021; Esche et al., 2022) or materials
science (Allotey et al., 2021). Machine-learning-based surro-
gate models have also found application as modules in geo-
scientific models, including large-scale atmospheric chem-
istry, transport, and climate models, to reduce computational
cost in very demanding tasks such as atmospheric convec-
tion (O’Gorman and Dwyer, 2018), gas-phase and heteroge-
neous chemistry (Keller and Evans, 2019; Kelp et al., 2020;
Sturm and Wexler, 2022), or aerosol and cloud microphysics
(Rasp et al., 2018; Harder et al., 2022). These surrogate mod-
els function either as parameterizations for subgrid processes
or replace the chemical integrator.

The second method applied in this work is polynomial
chaos expansion (PCE), a method commonly used for un-
certainty quantification (Sudret, 2008). In the PCE approach,
the full model is represented as a series of suitably built, mul-
tivariate, and orthonormal polynomial functions (Marelli and
Sudret, 2014). Surrogate models using PCE methods have
been developed mainly within engineering fields (Ghanem
and Spanos, 2003; Sudret, 2008). Several recent environ-
mental chemistry investigations have applied PCE surrogate
modeling, particularly because of its suitability for global
sensitivity analysis problems (Thackray et al., 2015; Fein-
berg et al., 2020). The goal of global sensitivity analysis is to
apportion the uncertainty in model output into contributions
from the uncertainties of different model input variables, ad-
ditionally considering interacting effects between input pa-
rameter uncertainties (Saltelli et al., 2008). The results from
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the sensitivity analysis indicate which are the most influen-
tial input parameters that should be further constrained and
may therefore be a useful tool in designing or prioritizing
laboratory experiments.

2 Methods

The surrogate-modeling workflow employed in this study is
shown in Fig. 1. To acquire a fast-computing surrogate model
for the computationally expensive KMs, training data are
first acquired by sampling outputs of the full model from the
possible model parameter space. The surrogate models are
trained with Keras and UQLab on this data and are validated
by comparison with a test dataset of full model output.

2.1 Kinetic multi-layer model KM-SUB

In this study, we employ the kinetic multi-layer model of
aerosol surface and bulk chemistry (KM-SUB; Shiraiwa
et al., 2010), but the statistical methods could be used with
any process model. KM-SUB describes mass transport and
chemical reaction at the surface and in the bulk of aerosol
particles by solving a set of ordinary differential equations.
The model explicitly treats gas diffusion, surface and bulk ac-
commodation of gas molecules, surface—bulk exchange, and
bulk diffusion, as well as chemical reaction at the surface and
in the bulk of aerosol particles. For a schematic depiction of
the processes and compartments of KM-SUB, see Fig. B1.

For the model calculations in this study, we chose a gen-
eral model scenario of a single volatile reactant X (e.g., OH,
03, NO3) reacting with a single non-volatile reactant Y at
the surface and in the bulk of the aerosol particle. The input
parameters of KM-SUB resulting from this scenario include
initial concentrations, reaction rate coefficients, and diffusion
coefficients (Table 1). The outputs of KM-SUB are concen-
tration profiles over space and time, but in this study, we sum-
marized KM-SUB output as the total number of Y in a single
aerosol particle at time ¢ (Ny ;). To minimize data storage re-
quirements, we reduce the full KM-SUB time series to three
output values, the time required to reach 90 %, 50 % (i.e., the
chemical half-life), and 10 % of Ny ¢ by interpolation of the
primary model output. The inputs and outputs of KM-SUB
are then log-transformed. For the NN application, all input
parameters and model outputs are additionally normalized to
the interval [0 : 1]. Outputs are normalized by dividing by the
longest time recorded to reach 10 % of Ny o.

For each input parameter of KM-SUB, individual parame-
ter boundaries are defined, representing a wide array of reac-
tants and scenarios that can be found in either the atmosphere
or in laboratory experiments (Table 1). As these ranges cover
orders of magnitude, they are assumed to follow log-uniform
probability distributions. The parameter space includes lig-
uid to semisolid particles (as expressed by the reactant diffu-
sivities) from 50 nm to 100 um in size. Reaction rate coeffi-
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cients range from reactivity close to the diffusion limit, typi-
cal for the OH radical (1 x 101 cm3 s~ 1), down to reactions
that are 9 orders of magnitude slower, and they may be asso-
ciated with reactions involving ozone. The volatile reactant X
is given a large variability in terms of partitioning properties
(as expressed by surface accommodation coefficient cts o and
desorption lifetime 74) and solubility properties (as expressed
by the Henry’s law coefficient), each varying over several or-
ders of magnitude. The initial concentration of non-volatile
reactant Y ranges from 10Y9 to 2 x 10?! cm_3, which, for an
organic substance with a molar mass of 250 gmol ™!, corre-
sponds roughly to a molar fraction from 0.5 % in relation to
pure particles. The concentration of X in the gas phase is
held constant over a simulation and is varied between sim-
ulations from a few parts per billion (10'! molec.cm™3) to
about 200 parts per million (5 x 10" molec. cm™). For the
explicit treatment of gas diffusion, we assume a temperature
of 298 K and a fixed diffusion coefficient of 0.14 cm? s !

2.2 Acquisition of training data

The KM is used to generate a training dataset for the sur-
rogate models by randomly sampling parameters in log-
uniform space within their associated boundaries. The num-
ber of KM samples obtained in this study is about 4.3 x 10°
and required supercomputing. A random set of 1000 sam-
ples is removed from the dataset and withheld from model
training for the visualization and validation of fully trained
surrogate models. We refer to this set of data as test data.

As not only the computational effort of sampling training
data but also the time required for surrogate-model creation
increases with the size of the training dataset, the surrogate-
model performance is tested on different fractions of the total
training dataset in order to find an optimal or sufficient com-
putational expense for a given application (Table 2). Note
that the PCE method is only applied to the first nine fractions
(50-20000) due to the computational expense of the method
at higher training-set sizes.

2.3 Neural network (NN)

The neural network architecture employed in this study is a
multi-layer perceptron (MLP), in which nodes are organized
in consecutive layers. MLPs are characterized by a chosen
number of so-called hidden layers that connect the visible
input and output layers. Each node in a layer is connected
with each node in the previous and following layers (fully
connected layers). We test MLPs consisting of up to five hid-
den layers with variable numbers of neurons to determine a
network architecture that suits the specified task. A detailed
mathematical description of MLP functionality and architec-
ture is given in Appendix A1l. The processes of hyperparame-
ter tuning, tested ranges, and suggested values for individual
hyperparameters are described in Appendix A2. We apply 5-
fold cross-validation to avoid over-fitting of the trained mod-
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Figure 1. Workflow chart for the surrogate-modeling process employed in this study. The possible or desired model parameter space (gray) is
sampled with the slow-computing full model (blue) to acquire training data consisting of model input—output pairs. Training data are used for
training of a fast-computing surrogate model (red). Surrogate models are validated by comparison of full-model output and surrogate-model

output.

Table 1. KM-SUB input parameters with lower and upper boundaries and fit parameters to the laboratory dataset.

Parameter Lower boundary ~ Upper boundary  Description

ksIR 1.0x 10715 1.0x 1078 Rate coefficient of X+Y surface reaction (cm? s~ 1)

kBR 1.0 x 10720 1.0x 10~ Rate coefficient of X+Y bulk reaction (cm3 s_l)

Dy x 1.0x 10711 1.0x 107 Bulk diffusion coefficient of X (cm2 s~ 1)

Dyy 1.0 x 10712 1.0 x 107° Bulk diffusion coefficient of Y (cm? s~ 1)

Hep x 5.0x 1070 5.0x 1073 Henry’s law solubility coefficient of X (mol cm™3 atm™—!)
Td,X 1.0x 1077 1.0x 1072 Desorption lifetime of X (s)

as5.0,X 1.0x 1074 1 Surface accommodation coefficient of X on an adsorbate-free surface (unitless)
™ 2.5%107° 1.0x 1073 Particle radius (cm)

[Xlg0 1.0 x 1011 1.0 x 1015 Initial gas-phase number concentration of X (cm73)
[Ylb0 1.0 x 1019 2.0 x 102! Initial bulk number concentration of Y (cm™3)

els during hyperparameter tuning (Stone, 1974; Wong and
Yeh, 2020).

2.4 Polynomial chaos expansion (PCE)

The PCE surrogate-modeling approach will be briefly sum-
marized here. For more technical descriptions, the reader can
refer to Sudret (2008) and Le Gratiet et al. (2017). The prin-
ciple behind PCE is that the model output Z is decomposed
into an infinite series as follows (Ghanem and Spanos, 2003):

Z= ) yaVa(X), (1

aecNM

where M is the number of model input variables, « is a multi-
index that defines the variable components of the polyno-
mials, y, refers to coefficients, and v, refers to orthonor-
mal polynomials of either one input variable (representing
first-order effects) or multiple input variables (representing
interacting effects). The type of orthonormal polynomial in
Eq. (1) depends on the probability distribution of the input
parameters, with uniform probability distributions being rep-
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resented by Legendre polynomials and Gaussian probabil-
ity distributions being represented by Hermite polynomials
(Xiu and Karniadakis, 2002). In practice, Eq. (1) is truncated
by restricting the maximum degree of the polynomials. We
calculate PCE coefficients (y,) using the implementation of
least-angle regression (Blatman and Sudret, 2010) from the
open-source MATLAB-based software UQLab (Marelli and
Sudret, 2014). This software allows degree-adaptive calcu-
lation of the PCE, meaning that PCE models can be con-
structed from degree 1 to a maximum selected degree, which
we set to 14. If the cross-validation error of the model does
not decrease over two steps in degree, the algorithm stops,
and the PCE with the lowest cross-validation error is se-
lected. All PCEs calculated for this study are equal to or be-
low degree 7 (Table Al).

2.5 Global sensitivity analysis
In global sensitivity analysis, Sobol’ indices describe the

contribution of uncertainty from each input parameter and
interactions between input parameters (Sobol’, 2001). The
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variance D of the model output Z is decomposed into partial
variances as follows:

2. Dy

M
D=Var(Z) =) D+
i=1 l<i<j<M

+ higher order terms, 2)

i.e., the sum of first-order partial variances (D;), second or-
der partial variances (D;;), and higher order terms. Sobol’ in-
dices (S) are calculated by normalizing the partial variances
by the total variances, e.g., S; = % for the first-order con-

tribution of ith input parameter and S;; = % for the contri-
bution of the interaction between the ith and jth input pa-
rameters to the model uncertainty. In order to summarize the
overall influence of a specific input parameter, including in-
teractions, a total Sobol’ index (SZ.T) can be calculated:

M
S,'T:Si+ZSij+ZZSijk+.--+Siji..M~ 3
J#i ./#—i]/;zi'
j

Given the similarities between the PCE and Sobol’ decom-
positions, the Sobol’ sensitivity indices can be calculated an-
alytically from the PCE coefficients rather than with Monte
Carlo sampling (Sudret, 2008). This eliminates a potentially
computationally expensive step of the sensitivity analysis
process using other surrogate models.

2.6 Acquisition of fit ensembles

With the trained NN model, we illustrate and test the appli-
cation of surrogate models in inverse-modeling approaches
with KM-SUB. Six sets of experimental data of the well-
studied oleic acid ozonolysis heterogeneous reaction system
(Hearn and Smith, 2004; Ziemann, 2005; Gallimore et al.,
2017; Berkemeier et al., 2021) are used to determine Kinetic
parameter sets that minimize the mean squared (absolute)
logarithmic error (MSLE) between model and experiments.
More details about the specific optimization problem can be
found in Appendix B.

1 L1 5
MSLE= -3~ (ogi(zij) — logio(ij)*, )
i=1"" j=1

where N is the number of experimental datasets, n is the
number of data points in each set, z;; is the model output,
and y;; is the value for experiment i and data point j. As
this optimization problem does not offer a unique solution
(Berkemeier et al., 2021), the aim is not to find a best-fitting
parameter set but rather to find a fit ensemble, i.e., an ar-
ray of parameter sets that all yield a sufficient agreement
of the associated KM-SUB outputs with the experimental
data. The fit ensemble then not only represents the ranges
to which kinetic input parameters could be constrained but is
also a means of assessing the uncertainty associated with the
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KM-SUB model fit when extrapolating the model to environ-
mental conditions outside the calibration range (Berkemeier
et al., 2021). For both purposes, the number of model fits in
the ensemble must be sufficiently large to fully grasp the re-
maining model flexibility. The process of determining such
a large set of fits can be computationally expensive. A sur-
rogate model can either fully replace the KM or assist in the
fitting process by suggesting sampling points.

In this study, we evaluate the benefits of surrogate-model-
supported sampling by comparing the distribution of KM-
SUB output MSLE for three different sampling approaches
within the parameter boundaries presented in Table 1. These
approaches are

— random log-uniform sampling,

— Metropolis—Hastings algorithm (MHA)-directed sam-
pling,

— NN-suggested sampling.

We choose an MSLE of 0.016 as representing suffi-
cient agreement between model and experiment. For NN-
suggested sampling, we perform a random log-uniform
screening of the NN surrogate model in batches of 10000
samples until we find 5000 NN-suggested fits with MSLE
< 0.016; we then feed these pre-sampled parameter sets into
KM-SUB. We refer to KM-SUB outputs with an MSLE be-
low 0.016 as fits.

As a directed-sampling approach, we apply the
Metropolis—Hastings algorithm (MHA), a common Markov
chain Monte Carlo method to sample multivariate dis-
tributions with high numbers of dimensions (Chib and
Greenberg, 1995; Robert and Casella, 1999). We determine
the maximum step size of the MHA by basic testing on
smaller subsets, and we find that a step size of 0.1 is a good
compromise between a high acceptance ratio and sufficient
exploration of the entire parameter space. Here, step size is
defined as the maximal parameter variation as a fraction of
the total logarithmic parameter space. For comparability of
the aggregate computational effort, each sampling is per-
formed on an 11th Generation Intel(R) Core(TM) i5-1145G7
CPU with 2.6 GHz.

2.7 Hardware and software tools

Training-data acquisition with KM-SUB was performed in
MATLAB on the high-performance computing system Cobra
at the Max Planck Computing and Data Facility (MPCDF).
Model training of the NN was performed in Python 3.6 using
the packages Keras 2.3.0 (Chollet et al., 2015), TensorFlow
1.14.0 (Abadi et al., 2015), scikit-learn 0.22.1 (Pedregosa
et al., 2011), NumPy 1.18.1 (Harris et al., 2020), and pan-
das 0.25.3 (McKinney et al., 2010). Each model training was
conducted on one NVIDIA GeForce GTX 1080 Ti on the
high-performance computing cluster Mogon of the Johannes
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m Keras NN method (500 000 samples, R?=0.995)
= UQlab PCE method (20 000 samples, R?=0.991)

log10 of chemical halflife (s), PCE and NN result

I I I I I I
-2 0 2 4 6 8 10
log10 of chemical half-life (s), KM-SUB result

Figure 2. Comparison of the two surrogate models predicting the
chemical half-life for heterogeneous chemistry on aerosol particles
for a wide range of KM-SUB output (N = 1000 — test dataset not
part of the training dataset). The surrogate models were trained on
20000 (PCE) and 500000 (NN) KM-SUB data samples, respec-
tively. Training times of models with this complexity fall below an
upper feasibility range on a personal computer within a few days of
time. The inset shows a magnified section and spans from chemical
half-lives of 103 s (= 15 min) to 10%s (& 3h), a common range for
laboratory experiments.

Gutenberg University Mainz. For the PCE and sensitivity
analysis, we use the MATLAB-based software UQLab 1.3
(Marelli and Sudret, 2014), which provides a framework for
surrogate modeling and uncertainty quantification. We per-
formed PCE calculations on ETH Zurich’s high-performance
computing cluster Euler, using four CPUs per PCE calcula-
tion and up to 45 GB of memory for the largest sample size
(20000).

To determine training times of the NN and PCE models,
the required time for sample loading and file writing is disre-
garded, and only the true training time is reported. For the
PCE method, the time to reach 90 %, 50 %, and 10 % of
the initial amount of Y, Ny o, is calculated by three sepa-
rate models, and training times are added to yield a com-
bined training time for each training sample size. For the NN
method, one model can be set to return multiple values as
output; thus, a single model is used for each dataset to pre-
dict all three output values collectively.

Geosci. Model Dev., 16, 2037-2054, 2023
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3 Results and discussion
3.1 Surrogate-model training, accuracy, and speed

Neural networks (NNs) and polynomial chaos expansion
(PCE) are used to emulate the reaction time of a multiphase
chemical system in KM-SUB. Table 2 displays the test set
errors and training times of surrogate models with the NN
and PCE methods as a function of training-dataset size. The
best surrogate models achieve mean square errors (MSEs)
for logarithmic reaction times of 0.0049 for the NN method
and 0.0137 for the PCE method. This corresponds to corre-
lation coefficients R? of 0.995 and 0.991, respectively. Fig-
ure 2 shows that these optimal versions for both surrogate
models track the chemical half-life in the test dataset re-
markably well. The MSE of test predictions is very similar
between both approaches for the same training-dataset size.
Error variance of the five cross-validation NN models for the
unseen test data is very low at 2.98 x 107°, indicating little to
no over-fitting. We found no significant correlations between
surrogate-model error and the values of the 10 model input
parameters (Fig. S1 in the Supplement).

For dataset sizes above 2000, the PCE model requires
much more training time than the NN model. However, note
that these training times of individual NN models disregard
the necessity of hyperparameter tuning. While hyperparam-
eter tuning is not required in an already established appli-
cation, the total computation times of NN surrogate-model
training and hyperparameter tuning can be 2 orders of mag-
nitude larger, depending on the extent of the hyperparameter
tuning that is performed. Hence, the use of an NN method
is advisable when a large amount of training data are easily
available and when model accuracy is of high importance.

The PCE method, on the other hand, is limited in terms
of training-dataset size (< 20000) as a result of the calcula-
tion time and memory requirements in MATLAB. The PCE
method is thus a good choice if the training dataset is small or
if its acquisition is time limiting and when time-consuming
hyperparameter tuning is not desired.

Both surrogate models calculate new output data orders of
magnitude faster than the full model, KM-SUB. The compu-
tation time of KM-SUB lies on the order of a few seconds per
model run, while both the PCE and NN methods can generate
large arrays of 10000 individual surrogate-model solutions
in under 1 s.

3.2 Prediction of chemical loss and half-life

Figure 3 visualizes the accuracy of the surrogate models
(training-set sizes 20000 for PCE method and 500 000 for
NN method) by generating five concentration—time curves
from various input parameter combinations and comparing
them to the full KM-SUB model. Input parameter sets were
arbitrarily selected from the test set so that the results were
spaced out homogeneously across KM-SUB chemical half-
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Table 2. Training times of surrogate models with the NN and PCE method.

Training data MSE of NN test NN training MSE of PCE test  PCE training
set size predictions time (s) predictions time (s)
50 1.03 2 1.44 3
100 0.718 2 0.328 3
200 0.398 3 0.313 4
500 0.172 7 0.196 5
1000 0.144 14 0.132 20
2000 0.104 28 0.078 144
5000 0.049 102 0.039 4232
1 x 104 0.025 67 0.022 3.28 x 104
2 x 10% 0.014 260 0014  2.17x10°
5x 104 0.010 326
1x10° 8.6 x 1073 657
2x10° 6.7 x 1073 961
5x10° 49x1073 3250
1x10° 6.6 x 1073 4097
2 x 100 73 %1073 6477
43 % 10° 59x1073 1.64x10%

lives. We see that, over the wide range, both surrogate mod-
els closely represent the KM output, with the NN method
slightly outperforming the PCE method as result of the larger
training-set size.

Note that both methods are able to produce relatively good
surrogate models (MSE = 0.1) from only 1000 training-data
samples (Table 2), which, depending on the user’s applica-
tion, may already be accurate enough. We conclude that KM-
SUB is a rather well-behaved model and that it is suitable for
these surrogate-modeling techniques.

3.3 Global sensitivity analysis with surrogate models

An advantage of using a PCE surrogate model is that the
Sobol’ sensitivity indices can be extracted analytically (Su-
dret, 2008). We present the global sensitivity analysis for
the 50 % lifetime (i.e., the chemical half-life) PCE model in
Fig. 4. We can differentiate between first-order effects of a
model input parameter, wherein the parameter alone influ-
ences the output, and interaction effects, wherein combina-
tions of parameter values influence the output. In Fig. 4, first-
order effects dominate the total effect, accounting for 88 %
of the model variance. Using the total Sobol’ indices (ST
as a metric, we can assess the overall influence of individ-
ual model parameters on the uncertainty of the model out-
put. The input parameters with the largest influence on the
chemical half-life of Y are the initial gas-phase concentra-
tion of X ([X]g,0, ST =0.36) and the radius of the particle
(ps ST =0.22). Certain parameters have a very low influ-
ence (ST < 0.05) on the chemical half-life, including the ac-
commodation coefficient (o 0 x), the initial concentration of
Y ([YIbp), and the bulk diffusion coefficient of Y (Dypy).
This means that variations in these parameters will, in many
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cases, not have a large effect on the chemical half-life, in-
dicating that it will be difficult to constrain these parame-
ters with measurements. Sensitivity analysis is thus a useful
tool to understand model behavior and to identify parameters
which have the largest influence on model output.

It has to be noted that a low global sensitivity across the
entire input parameter space does exclude the possibility that
pockets in the parameter space exist where either of these
parameters are very influential. Constraining the input pa-
rameter space to smaller subsets can constrain the model to
special kinetic regimes or limiting cases that exhibit charac-
teristic profiles of parameter sensitivity (Berkemeier et al.,
2013).

In most laboratory experiments, the particle radius and the
initial concentration of X are known values. By fixing these
parameters in the sensitivity analysis, a substantial fraction
of the model variance is eliminated, and other unknown pa-
rameters account for a more significant fraction of the over-
all model variance. To demonstrate how the importance of
parameters varies over different experimental conditions, we
conducted sensitivity analyses by sampling the PCE surro-
gate model for specified values of [X]g0 and rp (Fig. 5a).
Certain input parameters are consistently important across
the range of experimental conditions, e.g., oxidant diffusiv-
ity (Dp,x) and solubility (Hcp x). Other parameters, including
kpr and t4x, have varying influences depending on the ex-
perimental conditions. For example, at a high [X], o and for
large rp, the total Sobol’ index of 74x is 0.14. Accordingly,
the upper panel of Fig. 5b shows that the chemical half-life of
Y only decreases slightly with increasing 74 x. In contrast, at
low [X]g,0 and for small rp, the total Sobol’ index increases
to 0.31. In the lower panel of Fig. 5b, the chemical half-life of
Y shows a stronger dependence on 74 x. This can be under-

Geosci. Model Dev., 16, 2037-2054, 2023



2044 T. Berkemeier et al.: Accelerating Kinetic models through machine learning

1.0
o
&L
=
< 08
2
.g 0.6
B e
@
< 047 M6/— KM-SUB model
o ® PCE surrogate model
B @ NN surrogate model
N 0.2+
[0
£ °
2

10° 10' 10° 10° 10* 10° 10°
time t, (s)

Figure 3. Comparison of time-dependent output of the surrogate models (PCE method — blue markers; NN method — red markers) with KM-
SUB model output (solid black lines) for five arbitrarily chosen KM-SUB runs spanning seconds to weeks of reaction time. The surrogate
models’ predicted time for depletion of 10 %, 50 %, and 90 % of reactant Y in the aerosol phase. KM-SUB output at these three stages is

highlighted with open black markers.

0.4
— @ First-order effect
3 Interaction effect
0.3 1
x
[0
©
£
= 0.2
o
Q
o
n
N H H
‘ Q 5 =

[X]go o DbX de

Hep x kSLR kBR 50 [Y]bO DbY

Figure 4. Results of global sensitivity analysis showing Sobol’ sen-
sitivity indices for the chemical half-life PCE model.

stood because, for small particles, surface processes are more
important, and the surface concentration of X depends on its
lifetime for desorption, especially at low gas-phase concen-
trations. This information could be potentially useful for an
experimental researcher, as it shows that experiments at low
[X]g,0 and small r, could be more helpful for constraining
74,x than experiments under other experimental conditions.

These calculations would have been very time consuming
when carried out with the full KM. Hence, the combination
of surrogate modeling and sensitivity analysis is a helpful
yet underutilized tool for designing experiments that are best
suited to constraining certain model parameters.

3.4 NN-supported global optimization

Utilizing the NN surrogate model, we illustrate the acceler-
ated acquisition of parameter sets associated with KM-SUB

Geosci. Model Dev., 16, 2037-2054, 2023

outputs in good agreement with experimental data, which
is the key step in inverse-modeling and optimization ap-
proaches. While uncertainty is introduced by surrogate mod-
els, their predictions can be obtained orders of magnitude
faster than regular KM-SUB calculations. The uncertainty
introduced by the NN method can be minimized by addi-
tional sampling of a much smaller number of parameter sets
with the KM. Re-sampling of NN-suggested solutions with
the KM can avoid collection of false-positive fits (i.e., meet-
ing the conditions for a fit in the NN model but not in KM-
SUB), and sampling in close vicinity of NN-suggested so-
Iutions might avoid false-negative fits (i.e., not meeting the
conditions for a fit in the NN model but in KM-SUB).

We perform random parameter sampling in log-uniform
space using the boundaries presented in Table 1, and we find
about 5000 NN-suggested fits in 1.84 x 107 parameter sets
(0.027 % acceptance), requiring a total of 13847s (< 4h).
A comparable calculation with KM-SUB would take years
on a desktop computer or days on a supercomputer. In con-
trast, re-sampling of the NN-suggested fits with KM-SUB
to avoid false-positive fits is time-consuming but feasible.
The time required for sampling 5000 kinetic parameter sets
(i.e., 5000 x 6 runs in KM-SUB) on a desktop computer
ranges from 51646s (= 14h) for NN-suggested sampling
to 103530 (= 29 h) for random log-uniform sampling. The
differences may be a result of the fraction of parameter sets
where differential equation calculations of the KM require a
very long time to terminate. They are often associated with
very long reaction times and thus with large MSLE:s.

Figure 6 shows the distributions of KM-SUB out-
put MSLE for three different sampling methods: log-
uniform random sampling, MHA-directed sampling, and
NN-suggested sampling (Sect. 2.6). The NN-suggested sam-
pling method greatly outperforms both random and MHA-

https://doi.org/10.5194/gmd-16-2037-2023
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Figure 6. Distribution of KM-SUB output MSLEs for three differ-
ent sampling methods in comparison with six sets of experimen-
tal data, as described in Sect. 2.6. The dashed vertical line repre-
sents the threshold used for the acquisition of NN-suggested fits
(MSLE < 0.016). The maximum step size for the MHA-directed
sampling is 0.1.

directed sampling. The number (fraction) of KM-SUB out-
puts with an MSLE < 0.016 is 1602 (32.04 %) for NN-
suggested sampling, 21 (0.42 %) for directed KM-SUB sam-
pling, and 3 (0.06 %) for random sampling.

Figure 7 compares the fitting parameter space of 5000
fits obtained with KM-SUB (panel a) and the NN surrogate
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model (panel b), exemplary for four kinetic parameters in a
so-called scatter plot matrix. The off-diagonal elements in
each matrix show bivariate scatter plots (top right) or density
plots (bottom left) depicting the relationship of two kinetic
parameters within the fit ensemble. The diagonal elements
are histograms showing frequency distributions of the indi-
vidual parameters. The two scatter plot matrices show a clear
resemblance in terms of the fit parameter spaces between the
surrogate model and the original KM. Much like the scat-
ter plots of the original-model fits, the scatter plots of the
surrogate-model fits can be used to identify areas that will
not produce a fit to experimental data. For example, there are
no fits with a slow surface reaction rate coefficient (ksy r) and
a high oxidant solubility (Hcp x). However, some features in
the scatter plots of the surrogate model deviate from those in
the scatter plots of the original KM. We can visually iden-
tify areas in the scatter plots that indicate false-positive fits,
i.e., areas that are only occupied in the plots for the surro-
gate model. An absence of density in other areas, compared
to the plots for the original model, suggests the existence of
false-negative fits.

Whether it is worthwhile to train a surrogate model for a
given optimization task depends strongly on the complexity
of the KM and the difficulty of the optimization problem.
For every application, there is a break-even point where the
computational expense of training a surrogate model is com-
pensated for by the acceleration of the optimization task(s).

Geosci. Model Dev., 16, 2037-2054, 2023



2046 T. Berkemeier et al.: Accelerating Kinetic models through machine learning

PR

kBR

=14 ‘
=16

U
5
s

-16 -14 -12 -10 -8 -20 —16 -12 -12 -10 -8 -6 -4 -12 -10 -8
kSLR kBR Db.X Db‘Y

(= J

-16 -14 -12 -10 -8 -20 -16

IkSLR kBR Db.X Db,Y

-12 -12 -10 -8 -6 -4 -12 -10 -8 -6

Figure 7. Scatter plot matrices of the fitting parameter space of 5000 fits to six experimental datasets of the ozonolysis of oleic acid aerosols
(Appendix B) obtained with (a) KM-SUB and (b) the NN surrogate model. Shown are four out of seven optimized kinetic parameters. The
diagonal elements are histograms showing the distributions of the individual fit parameter densities. The off-diagonal elements are scatter
plots (top right) or densities (bottom left) of solutions for all possible combinations of two kinetic parameters. The KM-SUB fit ensemble
originates from the application of the MHA with a step size of 0.1 and the NN fit ensemble from log-uniform random sampling.

In this study, the computational effort required to obtain
the training data for the best-performing surrogate model
(500 000 KM-SUB sample runs) would only find ~ 350 fits
if we had directed this initial sampling effort into fit acquisi-
tion using only KM-SUB. This is due to the very low fraction
of fits (0.42 %) without the aid of surrogate models and be-
cause KM-SUB has to be evaluated six times, once for each
laboratory dataset. Thus, if the uniqueness of an optimization
result must be determined, large amounts of laboratory data
are available, or simply, if global optimization of the same
model is required on a regular basis, training of a surrogate
model for this task quickly becomes worthwhile.

4 Conclusions

In this study, we illustrate the application of artificial neu-
ral networks (NNs) and polynomial chaos expansion (PCE)
to generate fast surrogate models for computationally expen-
sive kinetic models (KMs). As a template KM, we use the ki-
netic multi-layer model of aerosol surface and bulk chemistry
(KM-SUB; Shiraiwa et al., 2010), but the presented meth-
ods can equally be applied to other process models. To re-
duce data storage requirements in sampling and to simplify
emulation, the complex model output of KM-SUB, i.e., the
concentration profiles of all reactants over space and time, is
reduced to the reaction time of the system to reach a certain
reaction progress, as this is a typical observable in labora-
tory experiments. We note that other derivatives of KM-SUB
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model output, such as the uptake coefficient of the reactant
gas to the aerosol surface, could be chosen depending on the
target application of the surrogate model. Emulation of the
entire KM-SUB output may be feasible and could be facil-
itated by data compression methods such as auto-encoders,
singular-value decomposition, or principal component anal-
ysis.

Our findings suggest that, after an initial investment of
computational effort for training-data sampling and model
training, both methods yield models with very good corre-
lations to KM-SUB outputs (R2 > 0.99). Furthermore, we
provide examples for the application of such surrogate mod-
els for inverse modeling and kinetic parameter optimization:
global sensitivity analysis with the PCE method and acceler-
ation of global optimization with the NN method. The results
indicate that surrogate models can aid in costly optimization
tasks or help to select environmental system parameters for
experiments that significantly constrain KM solution space
and thus global fit uncertainty.

It is important to note that errors of surrogate models are
not simply based on a random deviation of surrogate-model
predictions from the values of the original KM but on a di-
vergence of the predicted parameter hyper-surface in spe-
cific areas, for instance where training data are sparse. False-
positive fits, i.e., parameter sets with associated surrogate-
model predictions in better agreement with experimental data
as the delineated KM output, can simply be eliminated by re-
sampling the parameter sets in question with the KM (Fig. 6).
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On the other hand, false-negative fits and their implications
for inverse-modeling approaches are much more difficult to
address. While optimization hyper-surfaces can be scanned
relatively quickly with a surrogate model, this is not the case
for the much slower KM. Scatter plot matrices of the fitting
parameter space are a valid means of identifying areas that
are occupied by false-negative fits, but a proper comparison
(Fig. 7) requires computationally costly sampling with the
KM.

Another potential application of surrogate models for KM
is their utilization as modules in large-scale chemical trans-
port models. As such models often require many calls of the
respective module, direct use of models such as KM-SUB,
where calculation time is on the order of seconds, is not
feasible. Trained, predictive surrogate models, however, can
easily be integrated into existing modeling programs. This
potentially allows the coupling of small-scale kinetic pro-
cess models with large-scale chemical transport models for
the simulation of weather, pollution, and climate. Kelp et al.
(2022) recently demonstrated acceleration of a global model
with an online-learned NN as a chemistry module. The ma-
chine learning models presented in this study could be em-
bedded in existing FORTRAN code in a similar fashion.

Appendix A: Neural networks
A1l Neural network architecture

A multi-layer perceptron (MLP) represents a complex, non-
linear function that maps an input to an output vector. Each
individual node in an MLP represents a non-linear function,
mapping from the sum of its inputs to an output, which is
passed to the following interconnected nodes. Connections
between nodes are associated with weights that are optimized
during training in order to reduce model output error in com-
parison with the dataset values. For this purpose, an opti-
mization algorithm is used to minimize a previously defined
loss function based on the final model output. In their en-
tirety, these weights determine the output of the MLP based
on a specific input, and their adaptation, based on the train-
ing data, represents the learning process. The following equa-
tions show the principal mathematical functionality of neu-
rons in an MLP, as elaborated upon in Krose and van der
Smagt (1996):

sk(t) =Y wjk()y; (1) + Ox(t), (A1)
J

where sy (¢) is the effective input of a neuron k at time 7, w j;
is the weight between neuron j and k, and y;(¢) is the ac-
tivation of the previous neuron j. This equation represents
the input of a single computational node in the NN, which
is based on the activation of connected previous nodes and
the associated (trained or initialized) weights. & (t) repre-
sents an offset term. Of this so-called propagation rule, dif-
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Table Al. Employed polynomial degree of the three PCE models
(90 %, 50 %, and 10 % lifetime) as function of training-dataset size.

Dataset size PCE90% PCES50% PCE 10 %
Ny o Nyo Ny o
50 3 3 3
100 2 2 2
200 3 3 3
500 3 3 3
1000 4 4 4
2000 5 5 5
5000 7 6 6
10000 7 7 7
20000 7 7 7

ferent adaptations have been proposed (Feldman and Ballard,
1982).

et +1) = Fi(y (1), sx (1)) (A2)

This equation introduces the activation function of neuron k
(Fy) that maps the neuron input s (¢) and the current activa-
tion yx(¢) of the neuron to a new activation value. A common
type of the activation function is a sigmoid-like function, as
shown in the following equation:

i =F(s) = (A3)

1 + e—Sk :
The definition of the input and activation functions of neu-
rons determines the output of any NN given a specific input
and a set of weights. NN model training or learning describes
the process of iterative modification of weights in order to
shift the output in a desired way. In most cases, this desired
shift is a reduction of error towards the associated predictable
values in the underlying population associated with the train-
ing data. If the model is well fitted to the training data but
predicts further data of the same population with much larger
error, it is referred to as over-fitted. Over-fitting describes
overall ill generalization of an NN model. A common learn-
ing rule for nodes, the so-called perceptron learning rule, is
shown in the following equation:

w;i(t+1) =w; () + Aw; (1). (A4)

In order to adjust the weights, the output of the NN is
compared with the associated training-data values. If the pre-
diction is inaccurate, the modification Aw; is applied. For
this iterative adjustment to be target-oriented, an optimizer
is necessary to reduce the prediction error of the NN dur-
ing training. Different optimizers are commonly used in ma-
chine learning applications, such as simple gradient meth-
ods like stochastic gradient descent (SGD), where an esti-
mate of the gradient (the direction of the steepest descent)
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Table A2. Descriptions and tested ranges for neural network hyperparameters used in the Python package Keras, as well as the recommen-

dation based on our best-performing model.

Parameter Lower bound- Upper bound- Recommended Description
ary ary value
Number of 1 5 2 The number of hidden layers in the NN de-
hidden lay- termines network size and strongly impacts
ers (HL) computational cost
Activation “relu”, “elu”, or “sigmoid” All “relu” Activation function for the neurons in each
functions! of the hidden layers
Number of 4 40962 (4096, 4096) Also determines NN model size — large
neurons! numbers are associated with increased
computational cost and risk of over-fitting
Dropout 0.1 0.9 0.5 The model ignores this fraction of all
rate! weights in this HL during training3
Optimizer “Adam”, “Nadam”, “SGD”, or “Adam” Optimizer for training process
“RMSprop”
Batch size 4 128 16, depending on  The number of training samples handled by
learning rate? model in a batch
Epochs 4 60 32, until model Number of training epochs
loss converges
Learning 1073 10~! 0.0001 Extent of variation of weights in attempt to
rate decrease error
Decay 0 0.9 0 Decrease of learning rate throughout train-

ing epochs

! Must be set for each individual HL. 2 Larger numbers of neurons per layer lead to over-fitting and, with the hardware setup in this study, memory
limitations on the computational cluster. 3 A random fraction of weights obtained in previous training, determined in size by this parameter, is not
considered during the current training. This handicap or restriction ensures that the model is not capable of just saving or learning all the inputs and
associated outputs in the training dataset throughout multiple training epochs (as this would be over-fitting). ‘A larger batch size decreases training time

and requires higher learning rates.

along with a selected step size determines the variation of in-
put parameters in the current step. As information in a feed-
forward NN, like an MLP, is only passed in one direction, a
method called back propagation is used to determine the di-
rection and amount of weight adjustment in previous NN lay-
ers based on the error of the final prediction. More in-depth
explanations, definitions, and examples for back propaga-
tion and optimization throughout the learning process can be
found in Rumelhart et al. (1995) and Hecht-Nielsen (1992);
for further information regarding MLPs and NN in general,
see Almeida (2001) or Popescu et al. (2009).

A2 Hyperparameter tuning

Comprehensive hyperparameter tuning is conducted every
time a surrogate model is trained on different training data.
In this study, we focus on the investigation of dataset sizes
and training times. For this reason and because our appli-
cation of NN is not very common and only a small amount
of information regarding successful model architectures and
hyperparameters is available, only basic, plain network archi-

Geosci. Model Dev., 16, 2037-2054, 2023

tectures are tested (i.e., MLPs with up to five fully connected
hidden layers and up to 4096 neurons in each of the layers).
We perform hyperparameter tuning in three steps, aiming for
an optimization of number of layers, layer activation func-
tions, learning rate, and batch size in the first step; number
of neurons in each layer in the second step; and dropout rate
in the third step. For each step, we apply an adapted grid
search where multiple well-performing hyperparameter sets
from the previous step are extended by variation of the addi-
tionally optimized hyperparameter of the current step.

We performed relatively comprehensive hyperparameter
tuning with 60 to 120 hyperparameter sets for each data
subset, with each tested set resulting in five models for the
individual cross-validation folds. Sets of hyperparameters
that lead to well-performing models can, to some extent, be
adopted for approaches with similar preconditions regarding
the number of inputs and outputs or training-dataset size. For
a similar approach, we recommend a basic hyperparameter
tuning with at least 10 hyperparameter sets and 5-fold cross-
validation. The best models are selected by the average test
set error of the five models for each of the cross-validation
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folds using the mean squared error. The ranges of hyperpa-
rameters tested in this study are listed in Table A2 along with
the hyperparameter values of the best-performing models for
large datasets.

Besides NNs from the Keras package, other deep-learning
algorithms tested for this study are the random forest re-
gressor, the decision tree regressor, the SGD regressor, the
ridge regressor, least absolute shrinkage and selection oper-
ator (LASSO), logistic regression, and the MLP regressor,
provided by the Python library scikit-learn (Pedregosa et al.,
2011). As most of the tested algorithms did not perform very
well in basic tests, we focus on Keras as a common and ver-
satile tool for neural network application.

Appendix B: Oleic acid ozonolysis datasets

In Sect. 3.4, KM-SUB and the NN surrogate model are ap-
plied to six experimental datasets of the ozonolysis of oleic
acid aerosols — these are available in the literature (Hearn
and Smith, 2004; Ziemann, 2005; Gallimore et al., 2017;
Berkemeier et al., 2021). These datasets comprise flow tube,
environmental chamber, and single-particle levitation tech-
niques and are a subset of data investigated earlier by Berke-
meier et al. (2021), omitting the studies that investigated par-
ticles with a sodium chloride core or in which the particle
size was not measured. The experimental datasets are con-
verted to normalized concentrations (Ny; and Ny) and
are further simplified by fitting a mono-exponential decay
(A+ B -exp(—t1e-t)) and evaluating the reaction time at
which 10 %, 50 %, and 90 % of oleic acids are consumed.
Table B1 shows the environmental parameters (particle ra-
dius rp, ozone concentration [X]g 0, and initial oleic acid con-
centration [Y]p o), the derived reaction times, and the mono-
exponential fit parameters. The remaining seven KM-SUB
input parameters listed in Table 1 are optimized. Figure B2
shows all datasets alongside a fit ensemble of 50 KM-SUB
fits with a fit correlation MSLE of less than 0.016.
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Figure B1. Compartments and processes of the kinetic multi-layer
model of aerosol surface and bulk chemistry (KM-SUB).
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Table B1. Model parameters for the global optimization of six oleic acid ozonolysis datasets.

Dataset rp(em)  [Xlgo (em™)  [Ylho em™) 1109 (5) 1509 (5) fooe () A B Te
Berkemeier et al. (2021) 1x1073 1x 1013 1.89 x 102! 24166 15892 52791 0 1 436x107°
Ziemann (2005) 2x1073 7 x 1013 1.2 x 102! 2.85 18.8 * 0 1 3.69x1072
Hearn and Smith (2004) 4x1073 2.5x 1015 1.89 x 102! 0.196 1.29 428 0 1 0.538
Gallimore etal. 2017) - A 2.5x 1073 2x 1014 1.89 x 102! 1.91 12.6 417 0 1 552x1072
Gallimore et al. (2017)—=B 2.5 x 107> 3.25 x 1014 1.89 x 102! 1.12 7.39 246 0 1 938x1072
Gallimore et al. 2017)—~C 2.5 x 1073 5.51 x 1014 1.89 x 102! 11.2 3.37 0512 0 1 2.06x1071
* Too far outside data range.
(a) 10 Berkemeier et al. (2021) (b) 1045 Ziemann (2005) (c) 10 N\ Hearn and Smith (2004)
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Figure B2. Fit ensembles of KM-SUB (N = 50, colored lines) with MSLE < 0.016 to six literature datasets (black square markers) of oleic
acid aerosol ozonolysis displayed as normalized oleic acid concentrations (Ny,; /Ny o).

Appendix C: Abbreviations

KM Kinetic multi-layer model

KM-SUB  Kinetic multi-layer model of aerosol
surface and bulk chemistry

MHA Metropolis—Hastings algorithm

MLP Multi-layer perceptron

MSE Mean square error

MSLE Mean squared (absolute) logarithmic error

NN Neural network

PCE Polynomial chaos expansion
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