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Abstract 

Choosing to mate with an infected partner has several potential fitness costs, including disease transmission and infection-induced 
reductions in fecundity and parental care. By instead choosing a mate with no, or few, parasites, animals avoid these costs and may 
also obtain resistance genes for offspring. Within a population, then, the quality of sexually selected ornaments on which mate 
choice is based should correlate negatively with the number of parasites with which a host is infected (“parasite load”). However, 
the hundreds of tests of this prediction yield positive, negative, or no correlation between parasite load and ornament quality. Here, 
we use phylogenetically controlled meta-analysis of 424 correlations from 142 studies on a wide range of host and parasite taxa to 
evaluate explanations for this ambiguity. We found that ornament quality is weakly negatively correlated with parasite load overall, 
but the relationship is more strongly negative among ornaments that can dynamically change in quality, such as behavioral displays 
and skin pigmentation, and thus can accurately reflect current parasite load. The relationship was also more strongly negative among 
parasites that can transmit during sex. Thus, the direct benefit of avoiding parasite transmission may be a key driver of parasite-me-
diated sexual selection. No other moderators, including methodological details and whether males exhibit parental care, explained 
the substantial heterogeneity in our data set. We hope to stimulate research that more inclusively considers the many and varied 
ways in which parasites, sexual selection, and epidemiology intersect.

Keywords: sexual selection, epidemiology, host–parasite interactions, courtship behavior, sexual ornaments, meta-analysis

Lay Summary 

Researchers have long been fascinated by the idea that parasites might affect the mating decisions, and thus the evolutionary tra-
jectory, of their hosts. The role of parasites in the evolution of exaggerated sexually selected ornaments such as brightly colored skin 
or plumage has received particular attention: Perhaps choosers can use ornaments to selectively mate with individuals with no, or 
very few, parasites? We extracted data from the published literature testing this idea to evaluate (a) the generality of the pattern and 
(b) whether any factors affect the extent to which ornaments indicate parasite infection. Our data set, over six times larger than pre-
vious such data sets, encompasses hosts from across the animal kingdom (birds, fish, mammals, reptiles, amphibians, insects, and 
arachnids), infected with a diversity of parasites (including bacteria, viruses, fungi, protists, nematodes, helminths, and arthropods). 
We found that overall, individual hosts with higher quality ornaments are infected with fewer parasites, but only when ornament 
quality can change rapidly in response to host condition (like behavior and unlike antlers), or parasites can potentially transmit 
between mating partners. Together, these results indicate that choosers may be prioritizing the avoidance of potentially contagious 
partners in their mate choice decisions, and not partner genetic quality. Combined with the fact that there was a large amount of 
unexplained variation in our data set, we hope this finding stimulates a broader consideration of how mate choice decisions and 
epidemic dynamics interact.

Introduction
Mate choice can drive the evolutionary trajectory of individual 
species, the formation of new species, and their loss through 
hybridization: It has profound implications for animal evolution-
ary ecology (Rosenthal, 2018). Potential mates vary in quality and 
choosers benefit from choosing high-quality partners, which intu-
itively should include mates with no, or few, parasites. However, 
how parasites affect mate choice remains poorly understood 
(Balenger & Zuk, 2014). Several non-mutually exclusive hypoth-
eses have been proposed to explain why sexual ornaments might 

indicate the number of parasites with which a host is infected 
(“parasite load”; Table 1). By using such ornaments to avoid para-
sitized mates, choosers may obtain the indirect, genetic benefits 
of offspring better able to resist parasites (i.e., offspring better 
able to prevent the establishment or growth of parasite infection 
[Folstad & Karter, 1992; Hamilton & Zuk, 1982]). Avoiding para-
sitized mates may also yield the direct benefits of a reduced risk 
of infection (Able, 1996; Borgia & Collis, 1989, 1990; Loehle, 1997) 
or a more fecund (Fedorka, 2014), efficient parent (Clayton, 1991; 
Møller et al., 1999) for their offspring. While there is, therefore, 
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much conceptual support for the processes by which parasites 
may affect sexual selection, these may only operate in host–para-
site systems with particular attributes (Read, 1987; Read & Weary, 
1990), and there are important limitations on their empirical 
detection (Poulin & Vickery, 1993; Read, 1988, 1990).

Nevertheless, primary and meta-analytical research testing 
the hypothetical role of parasites in sexual selection has focused 
on the correlation between ornament quality and parasite load 
within populations, predicted to be negative by most hypotheses 
(Table 1; Dougherty, 2021a; Garamszegi, 2005; Hamilton & Poulin, 
1997; Hernández et al., 2021; Møller et al., 1999; Weaver et al., 2018; 
White, 2020). Such studies, while often finding a significantly neg-
ative overall correlation, highlight the variation in the strength 
and sign of the relationship (Dougherty, 2021a; Garamszegi, 2005; 
Hamilton & Poulin, 1997; Hernández et al., 2021; Møller et al., 
1999; Weaver et al., 2018; White, 2020). Relevant to the hypotheses 
in Table 1, Møller et al. (1999) found that correlations were more 
strongly negative among ectoparasites than endoparasites, but 
did not observe significant differences between systems with and 
without paternal care or between behavioral and morphological 
sexually selected ornaments.

We leverage the several hundred studies published since and 
apply phylogenetically controlled meta-analytical techniques 
to a data set almost seven times larger than that of Møller et 
al. (1999), to evaluate potential moderators of the relationship 
between parasite load and ornament quality. We control for 
host, parasite, and study characteristics and focus on ornament 
dynamism, the risk of parasite transmission during sex, and 
host paternal care: Together, these moderators discriminate 

between the prevailing hypotheses of parasite-mediated sexual 
selection (Table 1). Ornament dynamism ranges widely, from 
morphological structures that are fixed at sexual maturity, 
plumage that is renewed between breeding seasons, to court-
ship behavior that can vary over seconds or minutes. Most 
hypotheses assume that ornament quality provides choosers 
with information about a courter’s current or recent parasite 
infection (Able, 1996; Clayton, 1991; Fedorka, 2014; Hamilton & 
Zuk, 1982; Loehle, 1997; Møller et al., 1999). For this assumption 
to be met, ornament quality must be able to change in the short 
term in response to infection, and many sexually selected orna-
ments do reflect such changes in condition (Folstad & Karter, 
1992; Hill et al., 1999; Stephenson et al., 2020; Wingfield et al., 
1990). However, ornaments that are relatively static during sex-
ual maturity may better reveal a courter’s genetic and devel-
opmental quality, and may be harder to cheat as they often 
require longer-term investment (Hill et al., 1999; Stephenson 
et al., 2020). Additionally, as static ornaments are not affected 
by exposure to parasites, their ability to reliably signal courter 
quality is not vulnerable to stochastic variation in that expo-
sure—a key criticism of the concept of parasite-mediated sex-
ual selection (Poulin & Vickery, 1993). Despite these important 
differences, ornament dynamism is not often considered in 
studies of parasite-mediated sexual selection (but see Gilbert 
& Uetz, 2016; Hill et al., 1999; Stephenson et al., 2020), nor is 
it explicitly addressed in parasite-mediated sexual selection 
hypotheses. We also test how the correlation between orna-
ment quality and parasite load may be moderated by the risk 
of the parasite transmitting between partners during sex, and 

Table 1. Summary of hypotheses of parasite-mediated sexual selection and their assumptions.

Hypothesis, definition, and references Benefit to chooser Must these factors be present? Original formulation 
predicted negative correlation 

between ornament quality 
and parasite load? 

Ornament 
dynamism 

Transmission 
during sex 

Paternal 
care 

Hamilton–Zuk (Hamilton & Zuk, 1982): 
coevolutionary dynamics provide negative 
frequency-dependent selection for 
resistance genes, and thus genetically 
determined ability to maintain high-quality 
ornaments.

Indirect Yes?c No No Yes

Immunocompetence handicap (Folstad 
& Karter, 1992): the process outlined 
by Hamilton and Zuk may be mediated 
by testosterone, which promotes 
ornament development but has an 
immunocompetence cost.a

No No No Yes

Parental care—resource provisioning/
efficient parent (Clayton, 1991; Møller et 
al., 1999): uninfected mates provide more 
effective parental care.

Direct Yes No Yes Yes

Pathogen avoidance (Borgia & Collis, 1989, 
1990): ornaments—such as large white 
patches—aid in the assessment of parasite 
load.b

No Yes No No

Contagion indicator/transmission avoidance 
(Able, 1996; Loehle, 1997): ornaments 
honestly signal current parasite load, 
facilitating contagion avoidance.

Yes Yes No Yes

Fertility assurance (Fedorka, 2014): infection 
reduces fecundity. Yes No No Yes

aWe additionally expect host taxon to be important to this hypothesis, as invertebrates do not produce testosterone.
bWe expect this hypothesis to only be supported in systems in which the parasite is visible externally, so parasite type (endoparasite vs. ectoparasite) should be 
important here.
cHamilton and Zuk do not explicitly consider ornament dynamism, but the ornaments they suggest to be important at the intraspecific level are all dynamic to 
some extent (blood color, plumage “shabbiness,” skin pigmentation, behavioral displays, urine odor). While it is feasible that static ornament quality is affected 
by parasite infection of the bearer as a juvenile, Hamilton and Zuk suggest that such infections would not be involved in the co-adaptational cycles assumed by 
their hypothesis.
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whether hosts have paternal care: Both moderators have long 
been central to the theory of parasite-mediated sexual selec-
tion, and a significant effect of either would indicate the impor-
tance of direct benefits to choosers (Table 1).

Methods
Throughout we follow the recent extension to the PRISMA report-
ing guidelines for ecology and evolutionary biology (O’Dea et 
al., 2021). See Supporting Information for a completed PRISMA 
checklist.

Literature searches
We searched for published, peer-reviewed papers using three 
approaches. First, on or before 5 December 2020, we performed 
informal literature searches using a range of online databases. 
Second, we obtained all relevant papers included in the reviews 
by Møller et al. (1999); Garamszegi (2005), and Dougherty (2021a). 
Third, we searched Web of Science on 9 April 2021, using the fol-
lowing keywords: “TS=(infect* OR parasit*) AND TS=(ornament OR 
secondary sex* charact* OR sex* display OR court*) NOT TS=(human OR 
plant),” and added all papers citing Møller et al. (1999) on 10 April 
2021. We imported these records into the online tool Rayyan, 
removed duplicates, and screened the abstracts and titles against 
our inclusion criteria (Supplementary Figure S1). We then read all 
relevant articles in full. To be included in the analysis, a study had 
to (a) present data for sexually mature individuals of a non-hu-
man animal species, (b) report within-species variation in a mor-
phological, behavioral, or extended ornament, (c) report some 
measure of parasite load for the same host individuals, and (d) 
provide sufficient statistical information for an effect size to be 
calculated (see Supporting Information).

While parasite-mediated sexual selection hypotheses tend to 
focus on elaborate male morphological ornaments, such as plum-
age or bright skin patches, we expand the scope of our data set by 
(a) considering display behaviors (following Møller et al., 1999) and 
extended ornaments such as the bowers of bowerbirds because 
these potentially honestly indicate courter condition or quality 
(Borgia et al., 2004; Doucet & Montgomerie, 2003a; Dougherty, 
2021a) and (b) considering female ornamentation because mating 
preferences in relation to partner condition and quality are seen 
in both sexes (Amundsen, 2000; Bonduriansky, 2001; Kraaijeveld 
et al., 2007; Rosenthal, 2018). Indeed, while male ornaments tend 
to be more elaborate and conspicuous (Andersson, 1994), a recent 
meta-analysis of mutually ornamented birds found that orna-
ments are equally strongly associated with indicators of body 
condition in both sexes (Nolazco et al., 2022). While most stud-
ies quantified ornament quality and parasite load at the same 
time, we included studies where parasite load and ornament 
quality were measured at different times (Dawson & Bortolotti, 
2006; Hill & Farmer, 2005; Lindström & Lundström, 2000; López, 
1998; Stephenson et al., 2020). As with other reviews of this topic, 
we did not consider sexually selected weapons in our analysis 
(McCullough et al., 2016).

Effect sizes
We used Pearson’s correlation (r) between parasite load and 
ornament quality as the effect size (see Supporting Information 
for extraction methods). We chose the correlation coefficient, 
instead of the slope of the relationship, as our effect size because 
it is a better metric of how useful ornament quality may be as 
an indicator (i.e., a shallow slope with strong correlation means 
ornament quality is still a reliable indicator of parasite load, but 

a weak correlation suggests a chooser could easily make a mis-
take). Here, a positive correlation means that individuals with 
higher parasite loads have higher quality ornaments, and a nega-
tive correlation (such as that predicted by most hypotheses (Table 
1)) means that individuals with higher parasite loads have lower 
quality ornaments. Studies often report nonsignificant results 
without reporting directional information. Such data are tradi-
tionally excluded from meta-analysis, resulting in a bias against 
the inclusion of nonsignificant results. We found 61 such esti-
mates in our literature search and included them as “direction-
less” estimates in our analysis by assigning them a correlation of 
zero (Dougherty, 2021b, 2021a; Harts et al., 2016).

We considered as higher quality ornaments: (a) morphological 
traits that are larger or more symmetrical; (b) colored plumage 
or skin patches that are larger, brighter, more saturated, more 
reflective, or more symmetrical; (c) extended ornaments that are 
present (e.g., males with or without bowers [Borgia & Collis, 1990]) 
or larger; and (d) sexual displays that are initiated sooner, last 
longer, or are more energetic. For roughly half of our effect sizes, 
we found published evidence that our estimate of quality did 
correspond to ornament attractiveness to the intended receiver 
(see “ornament mate choice” in the Moderators section). For the 
others, we acknowledge that our human estimates of ornament 
quality may not correspond to ornament attractiveness. With this 
caveat in mind, we use “quality” to refer to these characteristics of 
the included ornaments hereafter.

Our analysis included data from 142 studies (Adamo et al., 
2014; Aguilar et al., 2007; An & Waldman, 2016; Baeta et al., 2008; 
Barber, 2002; Biard et al., 2010; Blanco et al., 1999; Borgia & Collis, 
1989; Borgia et al., 2004; Bortolotti et al., 2009; Bosholn et al., 
2016; Brønseth & Folstad, 1997; Buchanan et al., 1999; Buchholz, 
1995; Candolin & Voigt, 2001; Chappell et al., 1997; Chemnitz 
et al., 2015; Clayton, 2015; Cook et al., 2013; Córdoba-Aguilar, 
2002; Córdoba-Aguilar et al., 2003; Costa & Macedo, 2005; Dale 
et al., 1996; Darolovà et al., 1997; De Lisle & Rowe, 2015; Doucet 
& Montgomerie, 2003b, 2003c; Dufour & Weatherhead, 1998; 
Dufva & Allander, 1995; Edler & Friedl, 2010; Edler et al., 2004; 
Engen & Folstad, 1999; Fenoglio et al., 2004; Figuerola et al., 2003; 
Fitzgerald et al., 1994; Folstad et al., 1994, 1996; Garamszegi, 2005; 
Garamszegi et al., 2005; Gibson, 2015; Gilbert & Uetz, 2016; Gilbert 
et al., 2016; Greenspan et al., 2016; Gunderson et al., 2009; Harper, 
1999; Hatchwell et al., 2001; Hausfater et al., 2015; Henschen et 
al., 2017; Hill & Brawner, 1998; Höglund et al., 1992; Hõrak et al., 
2001, 2004; Houde & Torio, 1992; Hund et al., 2021; Kekäläinen 
et al., 2011, 2014; Kennedy et al., 1987; Kopena et al., 2020; 
Korpimäki et al., 1995; Kortet & Taskinen, 2004; Kose & Møller, 
1999; Kose et al., 1999; Lagesen & Folstad, 1998; Lai et al., 2016; 
Lindström & Lundström, 2000; Llanos-Garrido et al., 2017; López, 
1998; Madelaire et al., 2013; Magalhães et al., 2014; Markusson 
& Folstad, 1997; Martín et al., 2008; Martínez-Padilla et al., 2007; 
McGraw & Hill, 2000; McLennan & Shires, 1995; Megía-Palma et 
al., 2016; Merilä et al., 1999; Merrill et al., 2015; Milinski & Bakker, 
1990; Møller, 1990, 1991a, 1991b, 2000, 2002; Møller et al., 1999; 
Molnár et al., 2012; Moreno-Rueda, 2005; Mougeot et al., 2005, 
2007, 2009a, 2009b, 2010, 2016; Müller & Ward, 2010; Mulvey & 
Aho, 1993; Nordeide et al., 2008; Ottová et al., 2005; Pélabon et al., 
2005; Pérez-Tris et al., 2002; Petrie et al., 1996; Pfennig & Tinsley, 
2002; Piersma et al., 2001; Potti & Merino, 1996; Pröhl et al., 2013; 
Pruett-Jones et al., 2015; Redpath et al., 2000; Rodrigo et al., 2016; 
Roulin et al., 2001; Saino & Møller, 1994, 1996; Saino et al., 1995; 
Schall, 1986; Schall & Dearing, 1987; Setchell et al., 2006; Seutin, 
1994; Shawkey et al., 2007, 2009; Simmons, 1994; Siva-Jothy, 2000; 
Skarstein & Folstad, 1996; Skarstein et al., 2005; Stephenson et 
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al., 2020; Sundberg, 1995; Surmacki et al., 2015; Taggart & Schultz, 
2017; Taylor et al., 1998; Thompson et al., 1997; Trigo & Mota, 
2016; Tripet & Richner, 1999; Václav et al., 2007; Vergara et al., 
2012; Votýpka et al., 2003; Warner & Schultz, 1992; Weatherhead 
et al., 1993; Wedekind, 1992; Weiss, 2006; Wiehn et al., 2010; Yang 
et al., 2013; Zirpoli et al., 2013; Zuk, 1987; Zuk et al., 1998).

Moderators
We collected data on 12 categorical variables that we expected 
might moderate the correlation between parasite load and orna-
ment quality:

1. Host taxon. We categorized hosts into seven taxonomic 
groupings: arachnids, insects, fish, amphibians, reptiles, 
birds, and mammals. A stronger relationship between 
ornament quality and parasite load among vertebrates 
would support the immunocompetence handicap hypoth-
esis (Folstad & Karter, 1992).

2. Host sex. We predicted that the relationship between orna-
ment quality and parasite load would be stronger for males 
because males tend to have more elaborate ornaments 
than females (Andersson, 1994).

3. Host paternal care (males only). For each host species, we 
determined whether males contributed to parental care 
(biparental or paternal care species) or not (maternal 
or no care species). We predicted that the relationship 
between male ornament quality and parasite load would 
be strongest for species with paternal care, as in these spe-
cies females may face both direct and indirect costs from 
choosing highly parasitized mates.

4. Parasite taxon. We categorized parasites into one of 10 
taxonomic groups: viruses, bacteria, fungi, protists, nem-
atodes, platyhelminthes, acanthocephalans, cnidarians, 
bivalve mollusks, and arthropods (including mites, ticks, 
lice, and parasitic flies). We had no clear prediction for this 
moderator.

5. Parasite type (morphological traits only). We considered par-
asites found inside the host body or cells (endoparasites, 
including viruses that infect blood cells) and parasites that 
live on the exterior of the host body (ectoparasites). We pre-
dicted that ectoparasites would be more strongly related to 
morphological ornament quality as they have the potential 
to directly degrade morphological ornaments (especially 
plumage; Table 1).

6. Parasite sexual transmission risk. We classified parasites 
according to the extent to which transmission between 

hosts during sexual interactions is likely. We considered 
sexual transmission to be a low risk for parasites that are 
exclusively transmitted by vectors, parasites that shed 
noninfective life stages, parasites that only parasitize juve-
nile hosts, and parasites that have obligately multihost 
lifecycles (though we acknowledge that in territorial breed-
ers, choosers of mates infected with such parasites may 
be at increased risk of infection [Hund et al., 2021; Zelmer 
et al., 1999]). We considered sexual transmission to be a 
medium risk for parasites that transmit via the water col-
umn, host feces, or shared space. We considered sexual 
transmission to be a high risk for parasites that transmit 
via host–host physical contact, those that actively transmit 
between hosts in proximity, and blood parasites that trans-
mit during sex. We predicted that the relationship between 
ornament quality and parasite load would be strongest for 
parasites with a high risk of sexual transmission, as here 
choosers may benefit both directly and indirectly from 
avoiding parasitized partners.

7. Ornament evidence for mate choice. We considered an orna-
ment to be implicated in mate choice if the study authors 
supported this assertion with empirical data within the 
study in question, or from another peer-reviewed publi-
cation. We predicted that ornaments that have a demon-
strated role in mate choice should show a stronger 
relationship with parasite load than those without but 
acknowledge that absence of evidence is not evidence of 
absence.

8. Ornament dynamism score. We scored the extent of orna-
ment dynamism using a 3-point scale (Table 2). We pre-
dicted that the relationship between current parasite load 
and ornament quality should be strongest for the most 
dynamic ornaments.

9. Ornament dynamism. Because the number of data points 
we obtained for the 0 category of the dynamism score was 
relatively small, we created a binary variable by consider-
ing traits in category 2 as dynamic, and those in categories 
0 and 1 as not dynamic (Table 2). We predicted that the 
relationship between current parasite load and ornament 
quality should be stronger for dynamic ornaments.

10. Parasite measurement. We compared studies that used con-
tinuous or categorical measure of parasite counts (inten-
sity), compared hosts with or without parasites (presence/
absence), or compared hosts between different experimen-
tal treatments (experimental group). We had no clear pre-
diction for this moderator.

Table 2. Classification scheme for ornament dynamism.

Dynamism score Examples of ornaments Binary category 

0: Develop once and are fixed throughout sexual 
maturity

•  Fixed morphological traits (e.g., comb size in fowl)
•  Feather and skin coloration that is stable at maturity

Static

1: Change gradually after sexual maturity, but little 
within a breeding season

•  Morphological traits that change between breeding seasons (e.g., 
reindeer antlers)

•  Feather color area
•  Size of plumage

2: Typically vary within a breeding season, including 
on the scale of minutes

•  Morphological traits which change within a breeding season (e.g., 
primate sexual swellings)

•  Feather coloration/UV reflectance (often relies on preening, and 
may be directly impacted by parasites)

•  Skin pigmentation
•  Pheromone composition
•  Behavior
•  Extended traits (e.g., nests and bowers of birds)

Dynamic
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11. Uninfected hosts present. We recorded whether the corre-
lation was calculated including individuals that were 
uninfected. We predicted that the relationship between 
ornament quality and parasite load would be strongest for 
studies that included some uninfected hosts in the anal-
ysis, as the absolute range in parasite load and ornament 
quality may be larger in these samples.

12. Study type. We considered three types of study: obser-
vational studies that quantify the parasite load of wild-
caught animals, experimental studies that manipulate 
host–parasite load by adding or removing parasites, and 
experimental studies in which individuals are experimen-
tally infected and then parasite load is measured at some 
point in the future (“resistance” studies). We predicted that 
the relationship between ornament quality and parasite 
load would be strongest for studies that experimentally 
manipulate parasite load because these control for varia-
tion in exposure.

Statistical analysis
We used three data sets to address our questions and assess the 
robustness of our results. The first included all correlations (full 
data set, k = 424). We used the second, which included only cor-
relations with directional information (k = 363), to test the sensi-
tivity of our results to the inclusion of directionless estimates. We 
used the third, which included only correlations considering male 
morphological traits, and where parasite load and ornaments 
were measured at the same time (k = 259), to test the sensitivity 
of the results to our broad inclusion criteria (see Supplementary 
Figure S2).

In order to account for nonindependence of correlations from 
closely related host species, we constructed a supertree for the 
host species in the data set using the Open Tree of Life database 
(Hinchliff et al., 2015), combining available phylogenetic and tax-
onomic information (Hadfield & Nakagawa, 2010). Trees were cre-
ated using the Rotl v3.0.12 (Michonneau et al., 2016) and Ape v5.6 
(Paradis et al., 2004) R packages. Given the absence of accurate 
branch length data, branch lengths were first set to one and then 
made ultrametric using Grafen’s method (Grafen, 1989). When 
analyzing a subset of the data, we used an appropriately pruned 
tree. Supplementary Figure S3 shows the ultrametric tree for the 
full data set.

All statistical analyses were performed using R v.4.1.2 (R Core 
Team, 2020) and the package Metafor v.3.4 (Viechtbauer, 2010). 
To determine the overall correlation between ornament quality 
and parasite load, we ran a multilevel random-effects model 
with host phylogeny, host species, study, and an observation-level 
identifier (“observation ID”) as random factors, using the rma.mv 
function in Metafor. Host phylogeny was incorporated into the 
model using a correlation matrix, assuming that traits evolve via 
Brownian motion. Study was included as a random factor because 
we obtained more than one correlation from most studies (mean 
= 2.9, range = 2–21). We ran this model separately for the three 
data sets. We ran an additional model using the full data set, in 
which we added a random factor (“experiment ID”) to account for 
the potential nonindependence of correlations measured using 
the same set of host individuals (Noble et al., 2017). We converted 
this factor into a within-study covariance matrix, assuming esti-
mates using the same host individuals have a correlation of 0.5.

We used meta-regression models to examine the effect of our 
moderator variables on the average correlation (Nakagawa & 
Santos, 2012), using the rma.mv function in Metafor. Each model 
included host phylogeny, host species, study, and observation ID 

as random factors as before, but now also included as fixed fac-
tors one of the 12 categorical moderator variables. We tested post 
hoc for an interaction between ornament dynamism and sexual 
transmission risk using a model with these two factors, and their 
interaction, included as fixed factors. To test whether the aver-
age correlation significantly differed between moderator catego-
ries, we used the QM statistic, with a significant value indicating 
that the moderator accounts for a significant proportion of the 
between-study heterogeneity (Koricheva et al., 2013). We calcu-
lated the amount of variance explained by the fixed effect (mar-
ginal R2) for each model using the orchaRd R package (Nakagawa 
et al., 2021). We additionally ran these models with the intercept 
term dropped to obtain estimates of the average correlation for 
each categorical moderator level (in effect running a separate 
meta-analysis for each moderator level: Supplementary Table 
S1). To improve our ability to detect biologically relevant differ-
ences, we excluded any trait categories with ten or fewer data 
points when performing meta-regressions. Finally, we tested 
for two types of publication bias in the data set (see Supporting 
Information).

Results
We tested whether ornament quality reliably indicates parasite 
load by assembling 424 correlations from 142 studies, 83 host 
species, and 10,663 host individuals (Figures 1 and 2A). Overall, 
individual hosts with higher parasite loads had lower quality 
ornaments (mean r = −.084, 95% CI = −0.143 to −0.023, k = 424; 
Figure 2B, Supplementary Table S3). The overall result remained 
unchanged after removing directionless estimates (mean r = 
−.083, 95% CI = −0.152 to −0.013, k = 363) and after incorporat-
ing a covariance matrix to account for the potential for estimates 
from the same host individuals to be correlated (mean r = −.089, 
95% CI = −0.148 to −0.030, k = 424), but not after simultaneously 
removing correlations from females, non-morphological traits, 
and cases where parasites and ornaments were measured at dif-
ferent times (mean r = −.07, 95% CI = −0.143 to 0.004, k = 259). 
Because this subset represents a substantial reduction in sample 
size, we evaluated whether the loss of statistical power explains 
the difference in results by randomly removing 165 effect sizes 
and re-running the analysis. Among 1,000 such re-analyses, the 
p value was greater than .05 in 35.8% of cases (Supplementary 
Figure S4), and the overall mean correlation between parasite load 
and ornament quality was −0.083 (bootstrapped 95% CI: −0.119 to 
−0.017). The full data set was characterized by high heterogeneity 
(total I2 = 82.5%). Partitioning of this heterogeneity indicated that 
a negligible amount of variation was attributable to phylogenetic 
relatedness (0%), while 21.4%, 25.6%, and 35.5% were attributable 
to species-level, study-level, and observation-level differences, 
respectively.

Next, we tested whether variation in the correlation between 
parasite load and host ornament quality could be explained by 
the moderator variables highlighted in Table 1. The relationship 
between parasite load and host ornament quality depended on 
ornament dynamism when considered as a binary factor (QM 1 = 
5.37, p = .02, marginal r2 = 0.021, k = 424), but not as a 3-point 
dynamism score (Dynamism score; QM 2 = 5.42, p = .07, marginal 
r2 = 0.021, k = 424): Dynamic ornament quality was significantly 
associated with lower parasite load, whereas static ornament 
quality was not (Figure 3). The relationship between parasite load 
and host ornament quality depended on the risk of sexual trans-
mission of parasites (QM 2 = 10.87, p = .004, marginal r2 = 0.07, k = 
397): Parasites with a medium or high risk of sexual transmission 
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were significantly associated with lower quality ornaments, 
whereas parasites with no risk of sexual transmission were not 
(Figure 4). There was no significant interaction between ornament 
dynamism (as a binary trait) and the risk of sexual transmission 
(QM 2 = 0.32, p = 0.85, k = 397). The relationship between parasite 
load and ornament quality was not significantly moderated by 
a range of ecological, biological, or methodological variables 
(Supplementary Tables S1 and S2). We also found little evidence 
for publication bias: The relationship between parasite load and 

host ornamentation was not related to study publication year (β 
= 0.003, 95% CI = −0.003 to 0.009) or sample size (β = 0.002, 95% CI 
= −0.011 to 0.017; Supplementary Table S1).

Discussion
Overall, we found a weak but significantly negative correlation 
between individual parasite load and ornament quality across 424 
effect sizes, with no signs of publication bias (Figure 2). Our effect 

Figure 1. Summary of the host (A) and parasite (B) taxa, host sex and parasite type (C), and the type of ornament (D) represented in our data set. 
Histograms (A, B, D) and pie charts (C) of the number of correlations in our data set corresponding to each host (A) and parasite (B) taxon, each host 
sex and parasite type (C), and type of ornament (D).

Figure 2. Across taxa, there is a significantly negative correlation between parasite load and ornament quality. (A) Phylogeny of hosts in our data set: 
insects and arachnids, fish, amphibians, reptiles, birds, and mammals. (B) Funnel plot of the correlation between ornament quality and parasite load 
plotted against the inverse standard error (larger values represent studies with larger sample sizes) for the full data set (k = 424). The filled point and 
dashed vertical line show the meta-analytic mean, with corresponding 95% confidence interval (error bars) and 95% pseudo-confidence region (dotted 
lines).
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size is similar to that found by the second largest meta-analysis 
on this topic (Møller et al., 1999; k = 62, r = −.123, 95% CI = −0.152 
to −0.095), while meta-analyses using 8–30 estimates have found 

larger effect sizes (Garamszegi, 2005; Hamilton & Poulin, 1997; 
Weaver et al., 2018). There was a large amount of heterogeneity in 
the data set, significant portions of which were explained by two 
of our focal moderators. We found that the quality of dynamic 
ornaments was negatively correlated with parasite load, whereas 
the overall correlation among static ornaments was not signif-
icantly different from 0 (Figure 3). Additionally, the correlation 
between ornament quality and parasite load was only signifi-
cantly negative among parasites that could transmit during sex 
(Figure 4). We found no evidence that male engagement in paren-
tal care, host taxon, or whether parasites were ectoparasitic or 
endoparasitic explained variation in this relationship. Together, 
these results suggest that parasites mediate sexual selection 
through the direct benefits to the chooser and help to discrimi-
nate between the hypotheses listed in Table 1. Importantly, while 
these results represent the most comprehensive evaluation to 
date of a key prediction of many parasite-mediated sexual selec-
tion hypotheses, we must acknowledge an important caveat. We 
follow the authors of most included studies and use “ornament 
quality,” estimated by human observers, as a proxy for “ornament 
attractiveness” to the target audience of choosers. Whether the 
ornament had been demonstrated as important in mate choice 
did not moderate our result, but our results may still be an unre-
liable estimate of how actual mate attractiveness correlates with 
parasite load. With this caveat in mind, we discuss our results and 

Figure 3. The quality of dynamic ornaments is more negatively correlated with parasite load than that of non-dynamic, or static, ornaments. We 
considered dynamism on a binary scale (A) and on a 3-point scale (B; see Table 2). Open points are scaled according to study variance (precision). 
Filled points represent the meta-analytic means for each category, and bars show the 95% confidence interval. k = number of effect sizes for each 
category.

Figure 4. Ornament quality and parasite load were more negatively 
correlated among parasites that could transmit during sex. Open 
points are scaled according to study variance (precision). Filled points 
represent the meta-analytic means for each category, and bars show the 
95% confidence interval. k = number of effect sizes for each category.
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their implications for our understanding of the role of parasites 
in sexual selection. We suggest explanations for, and potential 
future research directions to tackle, the remaining heterogeneity.

We found that the overall correlation between parasite load 
and ornament quality was significantly, but weakly, negative. 
Several non-mutually exclusive processes may obscure the 
hypothesized correlation between ornament quality and parasite 
load and contribute to the heterogeneity in our data set. First, 
perhaps focal parasites are not virulent enough to warrant dis-
crimination against infected mates (Hawley et al., 2021; Hund et 
al., 2021; Knell, 1999; Read, 1988), or the host’s maintenance of 
high-quality ornaments despite infection represents successful 
manipulation by the parasite to maintain transmission opportu-
nities (Abbot & Dill, 2001; Adamo et al., 2014; Burand et al., 2005; 
Heil, 2016). Virulence is incredibly challenging to quantify in nat-
ural communities (Walsman et al., 2022); these data are available 
for few if any of the parasites in our data set. Second, because 
parasites are typically aggregated among hosts in a population 
(Shaw et al., 1998), when courters are uninfected, choosers can-
not know if this is because they are genetically resistant or not yet 
exposed (Endler & Lyles, 1989; Poulin & Vickery, 1993; Read, 1990). 
However, if such variation in exposure obscures the correlation 
between parasite load and ornament quality, we would antic-
ipate stronger negative correlations among experimental (i.e., 
those that manipulate exposure) than observational studies, as 
in Møller et al.(1999), and the inclusion of uninfected individuals 
in observational studies to moderate the correlation. We found 
no support for either prediction. Finally, a lack of correlation may 
result from a decoupling of variation in genetic resistance from 
variation in parasite load or variation in ornament quality from 
variation in parasite load. For example, acute infections may 
change so rapidly that resistance, ornament quality, and load are 
decoupled (Fedorka, 2014; Read, 1988). That the correlation was 
only significantly negative among dynamic ornaments, that is, 
those that can change rapidly in response to short-term changes 
in courter condition, perhaps supports this idea. Furthermore, the 
significance of the overall correlation was particularly sensitive to 
the removal of asynchronous parasite load and ornament quality 
measurements (Supplementary Table S3), suggesting the timing 
of parasite infection and ornament development may be a key 
determinant of ornament reliability as a signal of parasite infec-
tion or resistance.

Other processes could drive a positive relationship between 
parasite load and ornament quality, and approximately 35% 
of the effect sizes we extracted from the literature were pos-
itive (147 of 424; vs. 51% negative). First, courters may “termi-
nally invest”: individuals at a high risk of death may benefit 
from maximizing their short-term reproductive success at the 
expense of survival (Clutton-Brock, 1984; Duffield et al., 2017). 
However, a recent meta-analysis found little evidence for ter-
minal investment in sexual signaling behavior across animals 
(Dougherty, 2021a). Second, sexually transmitted parasites 
could manipulate their hosts to invest more into ornaments 
to increase their own transmission, but this idea has again 
received little support (Dougherty, 2021a; Poulin, 2010). Finally, 
in some systems, hosts may choose mates based not on para-
site resistance but tolerance (Pfennig & Tinsley, 2002), which is 
the ability to minimize the per-parasite fitness cost of infection, 
rather than limiting parasite numbers (Råberg et al., 2007). This 
idea has received little explicit attention, perhaps due to the 
challenge of collecting host fitness and parasite load data in 
natural populations, but several authors have noted that higher 
quality mates may have more parasites (Endler & Lyles, 1989; 

Foo et al., 2017; Getty, 2002). Such sexual selection for tolerance 
could overwhelm the negative frequency-dependent selection 
on resistance proposed by Hamilton and Zuk (1982), as toler-
ance is expected to spread in a positive-feedback manner (Roy 
& Kirchner, 2000).

We found that ornament dynamism was an important mod-
erator of the correlation between ornament quality and parasite 
load, in support of several hypotheses for the role of parasites 
in sexual selection (Table 1). However, static ornaments reliably 
indicated infection load in the two experimental studies that 
explicitly compared the correlation between parasite load and 
the quality of both static and dynamic ornaments (Gilbert & Uetz, 
2016; Stephenson et al., 2020). One explanation for the lack of 
significantly negative correlation with static ornaments among 
our mostly observational effect sizes could be epidemiological: If 
parasites can transmit through sexual contact but the ornament 
is static, the sexiest mates may become the most infected by vir-
tue of their high contact rate (Hawley et al., 2011; Knell, 1999), but 
their ornaments would by definition not reflect their high para-
site load. If they maintain high contact rates, such mates may 
become “sexy superspreaders.” Our ornament dynamism result 
again underscores the overlooked importance of timing, both 
of parasite infection and the courter’s investment in ornament 
quality, to signal reliability.

The risk of parasite transmission during sex was the strongest 
moderator we identified, which supports hypotheses invoking the 
direct benefit of avoiding infection (Able, 1996; Borgia & Collis, 
1989, 1990; Loehle, 1997). However, we did not find a significant 
interaction between dynamism and sexual transmission, sug-
gesting that dynamic ornaments can also indicate a host’s load of 
parasites that cannot transmit during sex. While our analysis may 
lack the power to detect such an interaction, these best available 
data therefore suggest that parasites that cannot transmit during 
sex still impact sexual selection, thus perhaps highlighting the 
importance of indirect benefits to choosers (Read, 1988). The rela-
tive importance of direct and indirect benefits of mating decisions 
to the process of sexual selection has received substantial theo-
retical (Fry, 2022) and empirical (Achorn & Rosenthal, 2020; Kelly 
& Adam-Granger, 2020; Madjidian et al., 2020) testing, with over-
all mixed results. Intriguingly, and in accordance with our results, 
the importance of the indirect genetic benefit of offspring para-
site resistance appears to be consistently supported as a driver of 
sexual selection (Achorn & Rosenthal, 2020; Cally et al., 2019; Joye 
& Kawecki, 2019; Prokop et al., 2012).

Our finding that only parasites that can transmit during sex 
appear to mediate sexual selection may seem counter to previ-
ous findings: Many suggest that sexually transmitted parasites 
are least likely to mediate sexual selection, since host and para-
site interests align to conceal the infection to maximize mating 
or transmission success (Ewald, 1995; Heil, 2016; Knell, 1999). The 
resulting selection against virulence should also reduce selection 
for discrimination against infected mates (Fedorka, 2014; Hawley 
et al., 2021; Knell, 1999; Read, 1988). The apparent discrepancy 
between our results and these well-established ideas may be 
because we included all parasites that could potentially transmit 
during sex (Collier et al., 2022). Most of these primarily trans-
mit through space sharing or nonsexual contact between hosts, 
which could serve to relax selection against virulence and thus 
maintain the correlation between the load of these parasites and 
their host’s ornament quality. Indeed, we found that parasites 
we classified as posing a medium risk of transmission during sex 
tended to have a more negative correlation with ornament qual-
ity than those posing a high risk.

D
ow

nloaded from
 https://academ

ic.oup.com
/evlett/article/7/3/176/7150364 by Lib4R

I Eaw
ag user on 08 June 2023

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad017#supplementary-data


184 | Dougherty et al.

In conclusion, our result that ornament dynamism and the 
risk of transmission during sex significantly modify the correla-
tion between ornament quality and parasite load suggests that 
the direct benefits of avoiding parasitized mates predominantly 
underlie the role of parasites in sexual selection. However, there 
is much left to uncover. For example, data on the heritability of 
parasite resistance are becoming more available and may reveal 
conditions under which indirect benefits are more important 
(Balenger & Zuk, 2014). Additionally, our results indicate that 
the timing, relative to ornament development, and dynamism 
of infection may be a crucial, overlooked, direction for future 
research. Overall, we suggest that our ability to explain the het-
erogeneity in the sign and strength of the correlation between 
ornament quality and parasite load, exemplified by our data 
set, has been hampered by the overwhelming research focus 
on a few of the hypotheses in Table 1. We hope to stimulate 
research that more inclusively considers the many and varied 
ways in which parasites, sexual selection, and epidemiology 
intersect.
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