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Memory and rejuvenation effects in the magnetic response of off-equilibrium spin glasses have
been widely regarded as the doorway into the experimental exploration of ultrametricity and tem-
perature chaos (maybe the most exotic features in glassy free-energy landscapes). Unfortunately,
despite more than twenty years of theoretical efforts following the experimental discovery of memory
and rejuvenation, these effects have thus far been impossible to simulate reliably. Yet, three recent
developments convinced us to accept this challenge: first, the custom-built Janus II supercomputer
makes it possible to carry out “numerical experiments” in which the very same quantities that can
be measured in single crystals of CuMn are computed from the simulation, allowing for parallel
analysis of the simulation/experiment data. Second, Janus II simulations have taught us how nu-
merical and experimental length scales should be compared. Third, we have recently understood
how temperature chaos materializes in aging dynamics. All three aspects have proved crucial for
reliably reproducing rejuvenation and memory effects on the computer. Our analysis shows that (at
least) three different length scales play a key role in aging dynamics, while essentially all theoret-
ical analyses of the aging dynamics emphasize the presence and the crucial role of a single glassy
correlation length.

The remarkable off-equilibrium behavior of glass
formers at low temperatures has been described with
terms such as aging [1] or memory and rejuvena-
tion [2–5], which seem more suitable for living be-
ings than for inert chunks of matter. In this context,
spin glasses (which are disordered magnetic alloys, see,
e.g., [6]) enjoy a privileged status. On the experimen-
tal side, their magnetic response can be studied with
great accuracy using a superconducting quantum in-
terference device (SQUID). Rejuvenation and mem-
ory (see the description below) are, furthermore, re-
markably strong in spin glasses, probably because of
the large correlation length ξ of the coherent spin do-
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mains. The values of ξ reached in single-crystal sam-
ples [7–10] is much larger than in other glass-forming
materials (for instance, the ξ measured in supercooled
glycerol or propylene carbonate [11] is smaller by a fac-
tor ∼ 100). On the other hand, spin-glass theory [12]
has proved applicable to distant fields that also fea-
ture rugged free-energy landscapes, such as combina-
torial optimization, machine learning, biology, finan-
cial markets or social dynamics.

It is worth stressing that the main part of spin-
glass experimental studies is carried out under off-
equilibrium conditions [14]. In the simplest setting,
the so-called zero-field-cooling (ZFC) protocol, the
system is initially at equilibrium at some very high
temperature. Eventually the spin glass is abruptly
cooled to the working temperature T < Tg and re-
laxes for a waiting time tw (Tg is the glass tempera-
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FIG. 1. The zero-field-cooling (ZFC) numerical experiment measuring rejuvenation and memory. The
starting random spin configuration is placed instantaneously at the working temperature and it relaxes for a time tw
without a field. At time tw, a magnetic field H = 0.01 is applied and the magnetic density, MZFC(t, tw;H), is recorded.
Left panels show the relaxation function SZFC(t, tw;H), Eq. (1), for the native runs at the warmer, T1 = 0.9, and colder,
T2 = 0.5, temperatures (both below the glass temperature Tg = 1.102(3) [13]) (Aging case). The physically interesting
peak of SZFC(t, tw;H) defines teff

H ' tw (the peak at short times, t ∼ 210, does not change with the waiting time which
makes this peak uninteresting for us, see Methods). In our protocol (schematized by the green arrows), after a waiting
time t↓w = 231.25, the temperature is abruptly dropped from the initial temperature T1 = 0.9 to the colder temperature
T2 = 0.5. Then, the system relaxes at T2 for an additional time, after which the magnetic field is switched on and
the function SZFC(t, tw;H) shown in the bottom-center panel is measured. Waiting times for these jump runs are
reported in the legend; the rejuvenation effect is clearly visible, since teff

H � t↓w and similar to the time tw spent at T2 (we
use tw for the time spent at the last temperature in a given protocol). Finally, after the waiting time t↑w = 2t↓w = 232.25

[i.e., the system has spent half of its life at the initial temperature T1 and half at the colder temperature T2 without a
field], the spin glass is suddenly heated back to T1. We let the system relax for a short time, tw = 210 � t↓w, after which
the magnetic field is switched on. The SZFC(t, tw;H) measured after the jump back and shown in the top-right panel
has a peak very similar to the one before the first jump (see top-left panel), evincing the memory of the aging at the
initial temperature T1, notwithstanding the rejuvenation observed when staying at the lower temperature T2. In Tab. I
we report the effective times, teff

H=0.01 (i.e., the time at which the aging peak is found). In all cases, error bars are one
standard deviation.

ture, while tw ranges from minutes to several hours).
At time tw a magnetic field H is switched on and
the growing magnetization MZFC(t, tw) is recorded at
later times t+tw. MZFC(t, tw) has turned out to have a

significant dependence on tw for as long as researchers
have had the patience to wait. The relaxation rate

SZFC(t, tw;H) =
1

H

dMZFC(t, tw;H)

d log t
(1)
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peaks at a time teff
H roughly equal to tw (see, e.g.,

Refs. [9, 10] for experimental results). The only rele-
vant time scale that can be identified is the glass’s age,
namely tw (hence the term aging). The left panels in
Fig. 1 show our results for this comparatively simple
fixed-temperature protocol, which will be named na-
tive hereafter. The native setup is used as a standard
for comparison.

The quest for rejuvenation and memory.

An even more interesting behavior appears when
temperature is made to vary with time. In fact,
we shall consider here only the simplest protocol for
which rejuvenation and memory have been experimen-
tally found [15] (see our temperature-time scheme in
the central part of Fig. 1). After a relaxation of dura-
tion t↓w, the temperature is lowered abruptly from the
initial temperature T1 < Tg to a lower temperature T2

(the choice of T2 turns out to be critical, see below).
The system is again let to relax at temperature T2 for
an additional time tw, after which a magnetic field is
switched on and the relaxation function SZFC is mea-
sured at times t↓w + tw + t. Surprisingly enough, one
finds that the initial relaxation at T1 has been essen-
tially forgotten: the long-time peak of SZFC is found
at times teff

H ∼ tw, which can be substantially shorter
than t↓w. This is the rejuvenation effect, which was ex-
perimentally found more than 20 years ago and which
we are reporting in the bottom-central panel of Fig. 1
for the first time in a simulation.

Yet, rejuvenation is not the end of the story. After a
total time of t↑w = 2t↓w, half of it spent at T1 and half at
T2, the system is suddenly heated back to the original
temperature T1, where it is left to relax for a time
tw � t↓w, after which the magnetic field is switched on
and the relaxation function measured. The SZFC is
found to peak again at time ∼ t↓w, as if the excursion
to temperature T2 never happened (Fig. 1, top-right
panel). This is the memory effect, which at first sight
seems quite contradictory with the rejuvenation effect.

The physical origin of memory and rejuvenation
in spin glasses has not been identified yet. Then,
it is perhaps unsurprising that all past attempts
to reproduce these effects in computer simulations
have failed [16–21], which has even raised ques-
tions about the validity of the standard model of
finite-dimensional spin glasses, the Edwards-Anderson
model [22, 23]. Fortunately, the Janus II dedicated su-
percomputer [24] has changed this situation, attaining
realistic time and length scales and allowing for the
first time a thorough examination of spin-glass dy-
namics both in the vicinity of the critical temperature
Tg and in the low-temperature regime.

The spin-glass dynamics at T < Tg consists in the
growth of (glassy) magnetic domains of linear size
ξ(tw) [25–27] (we shall later refer to this length as
ξmicro). The non-equilibrium nature of the process is
evident in the growth of ξ(tw) as tw varies, which is
never-ending and extremely slow. In fact, the lower

the temperature, the more sluggish the growth of
ξ(tw) is, see, e.g., Refs. [7, 28]. Janus II has reached
unprecedentedly large values of ξmicro(tw), enabling
safe extrapolations from the numerical time scale of
tenths of a second (when ξ ∼ 20 a0, where a0 is the
typical spin-spin distance) to the experimental scale of
hours [7, 28] (when ξ ∼ 200 a0). This special-purpose
computer has also made it possible to simulate [29]
the experimental protocol for extracting the spin-glass
coherence length from the Zeeman effect [26], thus
showing the consistency between the Zeeman method
and the microscopic approach. Janus II allowed us
to perform computer experiments with a native (i.e.,
fixed-temperature or aging) protocol and make a di-
rect comparison of the SZFC (1) obtained in the sim-
ulation with that from real experiments on a single
crystal of CuMn [9, 10, 30]. The Edwards-Anderson
model and CuMn turned out to be governed by the
same scaling laws, where ξ is the all-important scal-
ing variable. This agreement between simulations and
experiment, however, was established only for native
protocols. We need to understand what happens when
temperature is varied.

Experimentalists are prone to attribute the rejuve-
nation effect to temperature chaos (see, e.g., Ref. [15];
explanations not invoking temperature chaos have
been also proposed [31, 32]). Temperature chaos [33–
35] is an equilibrium notion stating that spin config-
urations typical from the Boltzmann distribution at
temperature T1 would be very atypical for tempera-
ture T2, no matter how close T1 and T2 are (provided
that T1, T2 < Tg). Temperature chaos could explain
why the relaxation at temperature T1 seems useless
at T2 (i.e., rejuvenation). Yet, even in the mean-field
approximation, showing that temperature chaos is re-
ally present in equilibrium has been a hard task since
it is a weak effect [36, 37]. Furthermore, extending
the equilibrium concept of temperature chaos to the
experimentally relevant context of off-equilibrium dy-
namics is a very recent achievement [38].

Dynamic temperature chaos is spatially extremely
heterogeneous (see Fig. 2). To measure it we choose
many spheres of linear size R in random positions
within the sample. We compare within each sphere
spin configurations obtained at temperature T1 and
time tT1

w with configurations from temperature T2

and time tT2
w (the simplifying choice ξ(tT1

w , T1) =
ξ(tT2

w , T2) = ξ(tw) was made in [38]). The comparison
is quantitative, through the computation of a correla-
tion coefficient XT1,T2

, see Methods. Many of those
spheres turn out to have very weak temperature chaos
[XT1,T2

≈ 1]. Yet, with low probability, one picks
a chaotic sphere with a significantly smaller XT1,T2 .
In fact, the analysis in [38] identifies a crossover
length scale ξ∗(T1, T2): for ξ(tw)� ξ∗(T1, T2) chaotic
spheres are very rare but for ξ(tw) � ξ∗(T1, T2)
chaotic spheres become fairly typical. A scaling law
was also found: ξ∗(T1, T2) ∝ (T1 − T2)−1/ζNE with
ζNE = 1.19(2).

Our last building block comes from the experiment
of Ref. [8], which identifies a minimal temperature
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Type T (History) + tw ξmicro(tw) ξZeeman(tw) ζ(tw, 2tw) log2 t
eff
H=0.01 tmax

native (aging) 0.9 231.25 16.63(5) 16.64(5) 29.66(2) 232

native (aging) 0.5 210 2.23926(2) 1.916(1) 9.813(1) 228

native (aging) 0.5 215.625 2.9090(4) 2.571(4) 15.377(2) 228

native (aging) 0.5 223.5 4.0865(15) 3.5175(2) 3.77(1) 22.942(4) 230

native (aging) 0.5 231.25 5.6167(4) 5.617(4) 5.30(4) 29.500(8) 232

jump (rejuv) 0.5 (231.25 atT =0.9) + 210 16.62(12) 2.43(2) 1.488(3) 19.016(7) 228

jump (rejuv) 0.5 (231.25 atT =0.9) + 215.625 16.68(12) 3.67(1) 1.869(2) 22.156(8) 228

jump (rejuv) 0.5 (231.25 atT =0.9) + 223.5 16.75(13) 4.83(8) 2.69(1) 26.699(9) 231

jump (rejuv) 0.5 (231.25 atT =0.9) + 231.25 16.81(13) 6.43(8) 3.958(9) 31.56(1) 233.5

native (aging) 0.7 210 2.6629(4) 2.054(1) 9.948(1) 228

native (aging) 0.7 215.625 3.8230(10) 2.931(4) 15.502(3) 228

native (aging) 0.7 223.5 6.1742(4) 5.50(1) 4.72(4) 23.042(6) 228

native (aging) 0.7 231.25 9.578(11) 9.578(1) 7.50(1) 30.39(1) 233

jump (rejuv) 0.7 (231.25 atT =0.9) + 210 16.62(12) 6.59(7) 1.652(3) 23.08(1) 228

jump (rejuv) 0.7 (231.25 atT =0.9) + 215.625 16.67(12) 7.61(8) 2.194(5) 24.48(1) 228

jump (rejuv) 0.7 (231.25 atT =0.9) + 223.5 16.76(12) 9.26(10) 3.43(4) 26.82(2) 228

jump (rejuv) 0.7 (231.25 atT =0.9) + 231.25 16.81(13) 12.12(1) 5.59(9) 29.40(2) 232

jump-back
(memory) 0.9

(
231.25atT =0.9
231.25atT =0.5

)
+210 16.81(13) 16.05(2) 1.812(3) 29.98(2) 232

TABLE I. Basic features of our simulations. The runs labelled as native are intended for the study of aging,
those labelled as jump are devoted to rejuvenation, while jump-back are for memory (see definitions, below). We have
simulated on the Janus II supercomputer the Edwards-Anderson model with nearest-neighbor couplings (J = ±1 with
50% probability), on simple-cubic lattices containing 1603 Ising spins s = ±1 (the lattice size is L = 160 a0) and endowed
with periodic boundary conditions. A particular set of couplings is termed sample. For every sample and every set
of parameters, we have simulated 512 independent trajectories (i.e., 512 replicas, see Methods). This table lists the
main parameters for each of our numerical simulations. Temperature-varying protocols, see the central part and the
top-right one of Fig. 1, are named respectively jump and jump-back protocols. In all cases, temperature T refers to the
temperature at which the relaxation function in Eq. (1) is computed. All temperatures considered are in the spin-glass
phase: T < Tg = 1.102(3) [13]. The waiting time is the time elapsed at the working temperature before the magnetic
field H is switched on. [For native, this consists of a time tw at the working temperature T ; for jump protocols, the
system stays for a time t↓w at the starting temperature T1 = 0.9, plus a time tw at T2; for jump-back protocols, the
system stays for a time t↓w at the starting temperature T1 = 0.9, plus a time t↑w at the cold temperature T2 = 0.5,
plus a short time t = 210 back at temperature T1]. The three length scales characterizing the dynamics, namely ξmicro,
ξZeeman, and ζ(t1 = tw, t2 = 2tw) are given in a0 = 1 units [as explained in Methods, ζ(t1, t2) is calculated in absence
of the external magnetic field, ξmicro is computed just before the magnetic field is switched on while ξZeeman reflects the
dependence on the magnetic field of the relaxation rate SZFC, see Eq. (1)]. We incur in a slight language abuse when
writing ζ(t1 = tw, t2 = 2tw), which is only accurate for native runs. For jump runs, it is t1 = t↓w + tw (t1 = t↓w + t↑w + tw
for jump-back protocols). In all cases, we have t2 = t1 + tw. Finally, we report tmax, our longest simulation time in the
presence of a field, and the effective time teff

H , the time of the aging peak of the relaxation function (as computed for field
H = 0.01, see Fig.1 and Methods). In all cases, error bars are one standard deviation.

jump ∆Tmin in a CuMn sample. Temperature chaos in
that sample turned out to be exceedingly weak when-
ever T1−T2 < ∆Tmin. It follows that, in a simulation,
chaotic spheres will be just too rare to significantly af-
fect the overall sample relaxation unless [39]

T1 − T2

Tg

∣∣∣∣
sim
≈ ∆Tmin

Tg

∣∣∣∣
CuMn

[
ξCuMn(tw)

ξmicro(tw)

]ζNE

, (2)

where the subindex micro stands for the ξ computed
in the numerical simulation (see Methods) while
Tg is the glass temperature, which is different for
the CuMn sample and for simulations. Plugging in
typical numbers (∆Tmin = 450 mK, Tg = 31.5 K,
ξCuMn(tw) ≈ 220 a0 and ξmicro(tw) ≈ 16.6 a0), we con-
clude from Eq. (2) that, given the correlation length
reached in our simulations, a successful simulation of
the rejuvenation effect should have T1 − T2 > 0.32Tg.

In this work we have considered two temperature

jumps, see Table I. The first jump, namely T1 =
0.9 → T2 = 0.5, meets the requirement for tempera-
ture chaos expressed in Eq. (2), while the second jump,
T1 = 0.9→ T2 = 0.7 is too small. Hence we expect to
find qualitative differences between the two.

Becoming quantitative: how many controlling
length scales?

Our discussion shall emphasize three different
length scales, focusing on their physical interpreta-
tion and their utility to rationalize the rejuvenation
and memory effects (many more details are provided
in Methods [40]). Only one of these scales, named
ξZeeman, can be experimentally accessed nowadays
(the other two lengths, however, provide invaluable
microscopic information):

• ξmicro is the size of the (glassy) domains within
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Rejuvenation Memory

FIG. 2. Temperature chaos is spatially heterogeneous when it is clearly present. The left panel refers to
the rejuvenation protocol and the right panel relates to the memory protocol. The 8000 randomly chosen spheres in
a sample of size L = 160 are depicted with a color code depending on 1 − X (X is the chaotic correlation parameter
as computed for spheres of radius R = 5 a0, see Methods). For visualization purposes, spheres are represented with a
radius 12(1−X), so that only fully chaotic spheres (i.e., X = 0) would have the largest size. In order to avoid cluttering,
we draw only spheres with X < 0.97. On the left, we calculate the chaotic correlation parameter X between the native
system at T = 0.5 (i.e., a fixed-temperature protocol: a completely disordered system is put at temperature T = 0.5 and
let to evolve at this temperature for a time tw = 231.25) and the jump system at the same temperature T = 0.5 (recall
the central part of Fig. 1: the jump system has spent the first half of its life, t↓w = 231.25, at the hot temperature T1 = 0.9
and the second half, tw = 231.25, at the cold temperature T = 0.5). Very strong chaotic heterogeneity is found. On the
right, we calculate the chaotic correlation parameter X between the native system at the hot temperature T = 0.9 and
the jump-back system at the same temperature T = 0.9 (the jump-back system has spent a time t↓w = 231.25 at the hot
temperature T1 = 0.9, a time t↑w − t↓w = 231.25 at the cold temperature T2 = 0.5, and then tw = 210 again at T1 = 0.9 —
see the temperature protocol of Fig. 1). After the cycle the system does not display chaotic heterogeneity since almost
every sphere has a large correlation parameter X, i.e., a strong memory (more examples can be found in Supplementary
Note V).

the sample (is the largest length scale at which
we can regard the system as ordered at time tw).

• ξZeeman is obtained by counting the number of
spins that react coherently to an externally ap-
plied field [26]. It provides a very direct quan-
tification of memory and rejuvenation.

• ζ(t1, t2) [41–43] is obtained from the compari-
son of the same system at the two times t1 < t2:
ζ characterizes the long-distances decay of the
pair-correlation function corresponding to the
set of spins taking opposite signs at times t1
and t2, see Methods [physically, ζ(t1, t2) is the
typical size of the regions where coherent rear-
rangements have occurred between times t1 and
t2, likely because of the on-going formation of a
new spin order at time t2].For fixed t1, ζ(t1, t2)
grows with t2 starting from ζ(t1, t2 = t1) = 0.

Previous analysis for native (i.e., fixed-
temperature) protocols tell us that ξZeeman follows
quite closely the behavior of the microscopic length
ξmicro [9, 10, 26, 29]. This is what we find in the top
panel of Fig. 3. There are two salient features in the
time growth of either ξZeeman or ξmicro(tw) at fixed
temperature [7, 28]: the growth slows down as ξmicro

increases [44] and the dynamics at lower temperatures
is enormously slower [45]. In fact, see Table I and
Ref. [28], at the largest temperature T = 0.9 it is
comparatively easy to reach a large ξmicro ≈ 16.6 a0

in a native protocol. Instead, for a similar simulation
time, the native protocol at T = 0.5 is limited to
ξmicro ≈ 5.6 a0. It is then unsurprising that, when the
temperature jumps from T1 = 0.9 to T2 = 0.5 or 0.7,
see Fig. 3–top, the size of the glassy domains is locked
to their value at jump time, namely ξmicro ≈ 16.6 a0:
the time needed for such a large domain to grow at
the lower temperature T2 far exceeds the scale of our
simulations. The importance of this locking was also
emphasized in Ref. [18].

While ξmicro is locked at the value it has at the
jump time, the behavior of ξZeeman is different in the
jump protocols. In the jump complying with Eq. (2),
T1 = 0.9 → T2 = 0.5, ξZeeman(tw) is quite similar to
the corresponding curve for the native run at T = 0.5.
From the point of view of the response to the magnetic
field, rejuvenation is almost complete for this temper-
ature jump, because the initial relaxation at T1 = 0.9
(almost) does not leave a measurable trace. Instead,
for the more modest jump T1 = 0.9 → T2 = 0.7,
rejuvenation is weaker and ξZeeman is sensibly larger
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than in the native runs (see Supplementary Note II
for more details).

Furthermore, it is also shown in Fig. 3–top that,
when the system jumps back to T1 = 0.9 (i.e. T1 =
0.9→ T2 = 0.5→ T1 = 0.9, recall the top-right panel
in Fig. 1), the response to the magnetic-field goes back
to normal: ξZeeman catches up with ξmicro after a ex-
tremely short transient. This is another manifestation
of the memory effect.

As for the third length scale, see Fig. 3–bottom and
Supplementary Note III, for all our jump protocols we
find ζ � ξmicro, which means that the configuration
right before the jump is only locally distorted by the
excursion to the low temperature T2 (in our opinion,
this fact provides a natural explanation for the mem-
ory effect). The inset in Fig. 3 shows that ζ is not
just a simple function of ξmicro and ξZeeman. The con-
sequences of this sophisticated behavior are discussed
below.

Dynamic temperature chaos and rejuvenation

At this point, the elephant in the room is clear:
what is the physical origin for rejuvenation and mem-
ory?

In order to answer the question, we need to com-
pare pairs of spin configurations. One of the config-
urations will be taken from the jump protocols. The
other configuration will come from the native runs at
temperatures T2 = 0.5 or T2 = 0.7. In an attempt
to make a fair comparison, we shall choose the native
configurations at T2 at their largest possible waiting
time. In fact, the magnetic domains will be substan-
tially smaller in the native protocol than they are in
the jump protocol (at T2 = 0.5, for instance, one has
to compare ξnativemicro ≈ 5.8 a0 with ξjump

micro ≈ 16.6 a0).
The main steps in the comparison were outlined

above (for a more paused exposition see Methods and
Ref. [38]). We pick at random in the sample spheres
of radius R. The results presented in this paper were
obtained with R = 5 a0 to make sure that the spheres
will have a chance to fit within the glassy domains of
the native runs (we have tried other values of R, find-
ing qualitatively similar results, see Supplementary
Note VI). The configurations from the two protocols
are compared by computing a correlation coefficient
X that takes into account only the spins contained in
the sphere. If X is significantly smaller than unity we
regard that particular sphere as chaotic, because typi-
cal configurations from the two protocols differ within
the sphere. To be precise, we compute the probabil-
ity distribution function F (X̃), namely the fraction of
the spheres with a correlation coefficient X < X̃.

Our results shown in Fig. 4–bottom for the jump
protocol T1 = 0.9 → T2 = 0.7 remind us of previous
studies [38]. The vast majority of the spheres have
a very large correlation coefficient, and truly chaotic
spheres are found only in the tail of the distribution
(probability 0.1% or smaller).

Interestingly enough, see the left panel in Fig. 2 and
Fig. 4–top, the situation is radically different for the
jump protocol T1 = 0.9→ T2 = 0.5, where the spheres
in percentile 10 of the distribution are as chaotic as the
most chaotic spheres we could find for the jump T1 =
0.9→ T2 = 0.7. In fact, to our knowledge, Fig. 4–top
reports the strongest temperature-chaos signal ever
observed in a simulation of glassy dynamics.

In order to convince ourselves that the extreme
chaos is not an artifact of the disparity in domain sizes,
we have tried a null experiment by simulating a model
where no temperature chaos is expected, namely the
link-diluted ferromagnetic Ising model (we have used
the results in Ref. [46] to match as closely as possi-
ble in the diluted ferromagnet the conditions in our
spin-glass simulations, with special care in matching
the size of the domains, see Methods). As expected,
see Fig. 4, the sphere distribution for the ferromagnet
is concentrated at correlation coefficient X ≈ 1. We
conclude that the spin-glass results in Fig. 4–top are
genuine evidence for dynamic temperature chaos.

It is also interesting that the distribution function in
Fig. 4–top barely depends on tw. This is another man-
ifestation of the dynamic lock-down when the temper-
ature jumps to the lower value.

The overall conclusions of this analysis are twofold.
First, the requirement expressed by Eq. (2), which is
based on CuMn experimental results [8], is sensible:
strong temperature chaos is found only when T1 − T2

is as large as Eq. (2) demands. Second, only when
temperature chaos is strong do our simulations find
strong rejuvenation (recall Fig. 3–top).

Where do we stand?

Our simulations depict a clear picture of the re-
juvenation and memory effects. Provided that the
temperature jump is large enough, see Eq. (2), the
spin-glass state that was forming at temperature T1 is
completely alien at temperature T2 (at least it looks
like an alien when compared with the native state that
grows directly at T2, see Fig. 2). In fact, the response
to the magnetic field (which is the quantity measured
in experiments [2–5, 7–10, 15]) is not qualitatively dif-
ferent in the alien state and in the native state that
grows from a fully disordered high-temperature state.
The system just dismisses the relaxation it achieved
at the higher temperature T1.

Paradoxically enough, the alien state is locked at
temperature T2: the microscopic rearrangement at T2,
see Fig. 3–bottom, takes place on too small length
scales to dissolve such foreign glassy domains. As a
consequence, when the temperature is taken back to
T1, the glassy domains characteristic of T1 are still
there. This seems to be the physical origin of the
memory effect. This reasoning is also consistent with
recent experiments that find that the memory effect
strongly depends on t↓w (i.e., the time spent in the
first stay at T1) [47]. Indeed, if t↓w is too small, the
memory effect almost disappears. Our interpretation
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FIG. 3. Aging dynamics is controlled by three length scales (at least). (See text and Methods for extended
discussion of these three length scales). The dashed lines and filled dots are for ξZeeman(tw, T ), the continuous lines and
empty dots are for ξmicro(tw, T ), and the continuous lines and empty squares are for ζ(t1, t2). On the top, for the native
protocols, ξZeeman(tw) follows quite closely the behavior of ξmicro(tw). For the jump protocol with T2 = 0.5, ξZeeman(tw)
is extremely similar to the corresponding curve for the native run [this T2 meets the chaos requirement expressed in
Eq. (2)], which means that the system responds to an external magnetic field as if rejuvenated, ξjump

Zeeman(tw)� ξjump
micro(tw).

When the system jumps back to T1 = 0.9 (i.e., T1 = 0.9→ T2 = 0.5→ T1 = 0.9), ξjump−back
Zeeman (tw) goes back to its original

value ξnative
micro (tw) after a extremely short time (memory). Instead, ξZeeman(tw) never becomes small for the jump protocols

with T2 = 0.7. On the bottom, the size of the regions undergoing coherent rearrangements when evolving from the
initial to the final time, ζ(t1, t2), is much smaller than ξmicro(tw) for all our jump protocols. The two times at which we
evaluate the coherence length, ζ(t1, t2), are t1 = tw and t2 = 2tw (see Table I for a detailed explanation). In all cases, ζ
is represented as a function of log2(t2− t1). See Supplementary Note III for more results on ζ(t1, t2). On the inset, we
compare the behavior of ζ(t1 = tw, t2 = 2tw) and ξZeeman(tw). For native runs, the two lengths are approximately equal.
Instead, for the jump protocols we show 1.8 ζ(t1 = tw, t2 = 2tw). Indeed, for T2 = 0.5 only, and using an appropriate
scaling factor of approximately 2, it is clear that ζjump(t1 = tw, t2 = 2tw) can be made to coincide with ξjump

Zeeman(tw)
(because these curves are approximately parallel in our logarithmic representation). For T2 = 0.7 instead, see the solid
red line in the inset, ζjump(t1 = tw, t2 = tw + tw) can be rescaled to coincide with ξZeeman(tw) from the native protocol
(dashed violet line), which differs from ξjump

Zeeman(tw) (dashed red line). The largest length in this set, ξZeeman(tw) ≈ 16,
corresponds to the jump-back protocol. Error bars are one standard deviation.

of this experimental finding is that the glassy domains
at T1 need to grow large enough as to remain mostly
unaltered at the lower temperature T2.

Looking back, we understand as well why rejuve-
nation has been so difficult to find in simulations:
the correlation lengths that could be reached prior to
the Janus family of supercomputers were rather lim-
ited (we are referring here to the ξmicro length scale).
Therefore, Eq. (2) would demand an exceedingly large
temperature jump T1−T2 if one wants to have a large
fraction of chaotic spheres of the relevant size.

An open question is whether or not the only
experimentally accessible coherence length, namely
ξZeeman(tw), relates to some correlation function under
all circumstances. Indeed, in the case of native pro-
tocols, ξZeeman(tw) behaves analogously to ξmicro(tw),
which we know how to obtain from a microscopic
correlation function. However, ξmicro(tw) is not a
valid proxy for ξZeeman(tw) in temperature-jump pro-
tocols. Fortunately, Fig. 3–inset, we achieve a step
forward in this respect (but only if temperature chaos
is strong enough). Indeed, if the condition in Eq. (2)
is met, we have found that it is possible to rescale
ζ(t1 = tw, t2 = tw + tw) in such a way that it co-
incides with ξZeeman(tw), with a scaling factor in the

range between 1 and 2. In other words, we are ex-
tending to jump protocols the main result of [29] [be-
cause ζ(t1 = tw, t2 = tw + tw) basically coincides with
ξmicro(tw) for native protocols]. Hence, our data sug-
gest that ζ may help us to bridge in a more com-
plete way the microscopic world, namely the correla-
tion functions that we compute in a simulation, with
the macroscopic world of the response to an external
field (that is quantified by ξZeeman).

Finally, we should also stress that the analysis of
the rejuvenation and memory effects requires consid-
ering at least three different length scales, namely
ξmicro(tw), ξZeeman(tw), and ζ(t1, t2), which can be
quite different from each other. Of course, one of the
three, the domain size ξmicro(tw), acts as a cut-off for
the other lengths. Yet we have seen that ξmicro(tw) is
not nearly enough to describe the variety of behaviors
that an aging system may present. In fact, ξmicro(tw)
has stayed essentially constant for all the jump sim-
ulations that we have considered here! Therefore, a
useful theory of aging dynamics cannot feature just a
single length scale. In this sense, we think that our
work poses a new and significant question for the dif-
ferent theories of aging dynamics.
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FIG. 4. Strong temperature chaos correlates with
full rejuvenation. The figure shows the fraction of the
spheres with radius R = 5 a0 that have a correlation pa-
rameterX smaller than X̃, F (X̃) (seeMethods; the pairs
of systems for which the correlation parameter X is com-
puted are listed in Table II). In the top panel, one of the
systems in the pair used to compute X is always taken
from the native protocol at T = 0.5 (T = 0.7 for the bot-
tom panel). In the cases reported in the top panel, the
partner in the pair that undergoes the temperature-jump
protocol experiences strong rejuvenation. Instead, recall
Fig. 3–top, rejuvenation is only partial for the cases re-
ported in the bottom panel. Interestingly enough, small
correlation parameters appear with high probability in the
top panel while they are very rare events in the bottom
panel. We also show a comparison with the diluted Ising
Model (our null experiment, see Methods), where tem-
perature chaos is not expected. Indeed, in the absence of
temperature chaos, the probability concentrates at X ≈ 1.
In all cases, error bars are one standard deviation.

System T Type Waiting time

A9 SG 0.9 native t↓w = 231.25

B9 SG 0.9 jump-back t↓w + t↑w + 210

A5 SG 0.5 native t↓w + 231.25

B5 SG 0.5 jump t↓w + 210

C5 SG 0.5 jump t↓w + 215.625

D5 SG 0.5 jump t↓w + 223.5

E5 SG 0.5 jump t↓w + 231.25

A7 SG 0.7 native t↓w + 231.25

B7 SG 0.7 jump t↓w + 210

C7 SG 0.7 jump t↓w + 215.625

D7 SG 0.7 jump t↓w + 223.5

E7 SG 0.7 jump t↓w + 231.25

A′5 DIM 0.5 native 76
B′5 DIM 0.5 jump 430 + 69
A′7 DIM 0.7 native 197
B′7 DIM 0.7 jump 430 + 165
A′9 DIM 0.9 native 430

TABLE II. Identifying parameters for each of the
numerical simulations appearing in Figure 4. Spin
glass (SG) protocols follow the notation in Figure 1. T is
the final temperature in the protocol. For the diluted Ising
Model (DIM; see Methods for the DIM temperature-
naming convention) we write explicitly t(1)

w + t
(2)
w for jump

protocols to stress that the time before the jump (at
T =0.9), t(1)

w , differs from the time t(2)
w at the final temper-

ature. We choose t(1)
w such that ξmicro coincides for both

protocols in the pairs (A5,A’5), (A7,A’7) and (A9,A’9).
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Appendix A: Methods

The layout of this note is as follows. In Sect. A 1 we
describe our simulations. In Sect. A 2 we define some
quantities characteristic of the ZFC protocol. In fact,
the magnetic field plays a crucial role in the determi-
nation of the Zeeman length scale, as we explain in
Sect. A 3. The other two spin-glass coherence lengths,
ξmicro and ζ, are computed as explained in Sect. A 4.
Finally, in Sect. A 5 we explain our computation of
the chaotic correlation parameter.

1. The models simulated

We performed massive simulations on the Janus
II supercomputer [24] to study the three-dimensional
Edwards-Anderson (EA) model on a cubic lattice with
periodic boundary conditions and size L = 160 (in
units of the lattice constant a0). The main parame-
ters describing our simulations are provided in Tab. I.

The N = L3 Ising spins, sx = ±1, interact with
their lattice nearest neighbors in presence of a mag-
netic field (H) through the Hamiltonian:

H = −
∑
〈x,y〉

Jxysxsy −H
∑
x

sx , (A1)

where the couplings are independent, identically dis-
tributed random variables: Jxy = ±1, with 50% prob-
ability. The couplings are chosen at simulation start,
and remain fixed (quenched disorder). A particular
choice of the couplings is termed a sample. In the ab-
sence of an external magnetic field H = 0, this model
undergoes a spin-glass transition at the critical tem-
perature Tg = 1.102(3) [13].

The off-equilibrium dynamics was simulated with a
Metropolis algorithm. The numerical time unit is the
lattice sweep, which roughly corresponds to 1 ps of
physical time.

In this work we have simulated NS = 4 samples us-
ing a lattice size of L = 160 a0. For each of these
samples and for each protocol (Tab. I in the main
text) we have simulated NR = 512 replicas (i.e., in-
dependent simulations carried out for a given sample,
following an identical protocol). We use replicas to

account for the thermal noise controlling the simu-
lation (each replica is controlled by an independent
realization of the thermal noise). The average over
the thermal noise will be represented as 〈· · · 〉. Only
afterwards, we shall perform the average over samples,
which will be indicated as 〈· · · 〉.

Some times, however, (most notably for the analysis
in Sect. A 3) final quantities are computed for a single
sample (this is, of course, the approach followed in
the laboratory). In these cases, the different samples
allow us to asses to which extent our results depend
on the disorder realization, see Supplementary Note I.

Besides, as a null experiment for temperature chaos,
we have studied the link-diluted Ising model (DIM),
also on cubic lattices of size L = 160 a0 with periodic
boundary conditions and using Metropolis dynamics.
Specifically, we used the Hamiltonian in Eq. (A1) but
with couplings Jxy = 1 (with 70% probability) or
Jxy = 0 (with 30% probability) and magnetic field
H = 0. Since all couplings are positive or zero, this is
a ferromagnetic system without frustration, for which
no temperature chaos is expected. The critical tem-
perature for the DIM is Tc = 3.0609(5) [46] (actually,
this is twice the value reported in [46] due to our use
of an Ising, rather than Potts, formulation). In fact,
with some abuse of language, in the main text we
refer to DIM temperatures as T = 0.9, T = 0.7 or
0.5 rather than to their actual values T = 0.9Tc/Tg,
T = 0.7Tc/Tg or 0.5Tc/Tg, where Tg is the critical
temperature for the EA model. We follow the very
same procedure, which is explained in Sect. A 4 a, to
compute the coherence length ξmicro for both the spin
glass and the DIM. We have chosen times for the DIM
such that ξmicro coincides with the corresponding spin-
glass value, namely ξmicro = 5.84 (protocol A’5 in Ta-
ble II in the main text), ξmicro = 10.11 (protocol A’7)
and ξmicro = 16.63 (protocol A’9). Of course, the nec-
essary times are extremely shorter for the DIM than
for the spin glass. Given that DIM simulations were
comparatively inexpensive, we simulated 16 samples
(each with 512 replicas) for this model.

2. Some zero-field-cooled observables

As explained in the main text, our simulations are
designed to mimic the experimental protocol named
zero-field cooling (ZFC). In ZFC protocols, a sample
initially in equilibrium at some very high temperature
is cooled below Tg, always being kept at zero magnetic
field. In the native protocols, the system is abruptly
taken to the measuring temperature, where it is let to
relax for a time tw. The cooling process (always with-
out a field) is more complex for our jump protocols,
as depicted in Fig. 1 in the main text.

For both protocols, native or jump, we let the sys-
tem relax for a time tw at the final, measuring tem-
perature. Then, the external magnetic field, H, is

http://dx.doi.org/ 10.1007/s10955-009-9727-z
http://dx.doi.org/10.1103/PhysRevLett.88.237201
http://dx.doi.org/10.1088/1742-5468/2007/05/P05001
http://dx.doi.org/ 10.1140/epjb/e2004-00141-x
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switched on and we record the magnetic density

MZFC(t, tw;H) =
1

N

∑
x

〈sx(t+ tw;H)〉 , (A2)

which grows with t from its initial value M = 0 at
t = 0. We also record the two-time autocorrelation
function,

CZFC(t, tw;H) =
1

N

∑
x

〈sx(tw; 0)sx(t+ tw;H)〉 .

(A3)
Note that CZFC is a monotonically decreasing function
of time and CZFC = 1 at t = 0.

3. Measurement of the Zeeman length through
the scaling law of the effective times

The method introduced in Ref. [26] to measure
the spin-glass coherence length experimentally has re-
cently been refined. Indeed, the scaling law intro-
duced in [9, 10] is a milestone for describing the mag-
netic response of a spin glass in both “lab experiments”
and “numerical experiments”. We shall name ξZeeman
the length scale extracted using these methods.

In experiments on a single-crystal CuMn sample,
the main quantity evaluated is the relaxation func-
tion SZFC(t, tw;H), which exhibits a local maximum
at time teff

H ≈ tw. Hence, one focuses on the H depen-
dence of teff

H . On the numerical side, we carry out mas-
sive numerical experiments spanning from picoseconds
to tenths of a second on Janus II, from which we can
also extract the teff

H . The numerical method proceeds
as follows (see [9, 10] for a full discussion). One first
changes variable by considering SZFC as a function of
C(t, tw;H), recall Eq. (A3), rather than time. The
peak is found at some Cpeak(tw). Finally, teff

H is found
by solving the equation C(teff

H , tw;H) = Cpeak(tw). A
crucial advantage is that this equation can also be
solved directly at H = 0.

The numerical SZFC(t, tw;H), however, shows two
peaks: a tw-independent peak at very short times, and
a second, physically interesting peak at t ∼ tw. Unfor-
tunately, in fixed-temperature simulations (i.e., native
protocols) with very short tw, the two peaks cannot
be resolved (see, for instance, bottom-left of Fig. 1).
We have not attempted to extract ξZeeman in native
runs where the two peaks cannot be resolved. How-
ever, for the shortest jump protocol with T2 = 0.5,
namely tw = 210, 215.625, we could borrow Cpeak from
the jump with the largest tw (unfortunately, the same
trick did not work for native runs, because important
consistency checks [30] were not passed in this case).

From a phenomenological point of view, the effec-
tive time teff

H can be associated with the height of the
largest free-energy barrier, ∆max, through the usual
Arrhenius law [26]

∆max = kBT (log teff
H − log τ0) , (A4)

where τ0 is a characteristic exchange time, τ0 ∼
~/kBTg. In an external magnetic field, the free-energy

barriers are lowered by the Zeeman energy EZ [26].
For small magnetic field, EZ behaves as:

EZ = ξ
D−θ/2
ZeemanχFCH

2 , (A5)

which defines ξZeeman. χFC is the field-cooled mag-
netic susceptibility per spin, ξD−θ/2Zeeman is the number of
correlated spins, D = 3 is the spatial dimension and
θ is the replicon exponent [29].

We slightly depart from the previous approach by
exploiting a scaling theory. We use the effective time
teff
H to reflect the total free-energy change at magnetic
fields H and H = 0+ [9, 10]:

log

[
teffH

teffH→0+

]
=
Ŝ

2T
ξ
D−θ/2
micro H2+

ξ
−θ/2
microG

(
T, ξ

D−θ/2
micro H2

)
, (A6)

where Ŝ is a constant coming from the fluctuation-
dissipation relations and G(x) is a scaling function
behaving as G(x) ∼ x2 for small x = ξ

D−θ/2
micro H2. For

small-enough magnetic fields [H ≤ 0.017], we can ne-
glect the O(H4) terms in Eq. (A6):

log

[
teffH

teffH→0+

]
= c2(tw;T )H2 , (A7)

where we have included all the constants in the
c2(tw;T ) coefficient.

Thus, fitting our data according to Eq. (A7), we can
define the Zeeman coherence length ξZeeman as

ξjump
Zeeman(tw, T1 → Tm) =[
c2(tw, T1 → Tm)

c2(t∗w, Tm)

]1/(D−θ/2)

ξmicro(t∗w;Tm), (A8)

ξnative
Zeeman(tw, Tm) =[
c2(tw, Tm)

c2(t∗w, Tm)

]1/(D−θ/2)

ξmicro(t∗w;Tm) . (A9)

where ξmicro(t∗w;Tm) plays the role of a reference
length [the reference length allows us to avoid the
precise determination of constants in Eq. (A7)]. The
refence time t∗w is the longest available waiting time
for our native runs at the measuring temperature Tm.
For the sake of clarity, we omit in Eqs. (A8) and (A9)
the explicit dependence of θ on ξmicro (which is dealt
with as explained in Ref. [7]).

4. Numerical coherence lengths ξmicro and ζ

In this paragraph, we shall consider two more length
scales. One of them, ξmicro, is computed from the
correlation function for the spin-glass order parame-
ter (hence, ξmicro tells us about the size of the glassy
domains). The second length scale, ζ(t1, t2), tells us
about how the system reorganizes itself when going
from the earlier time t1 to the later time t2.



12

a. The computation of ξmicro

For the reader’s convenience, let us recall the defi-
nition of the spatial autocorrelation function that we
use for computing ξmicro(tw) [41]

C4(r, t′;T ) = 〈q(a,b)(x, t′)q(a,b)(x + r, t′)〉T , (A10)

q(a,b)(x, t′) ≡ σ(a)(x, t′)σ(b)(x, t′), (A11)

where t′ = tw + t, the indices (a, b) label different real
replicas and 〈· · · 〉T stands for the average over the
thermal noise at temperature T .

The calculation of the correlation function is com-
putationally costly since we have NR(NR − 1)/2 pos-
sible choices of the pair of replicas. Fortunately, it
can be accelerated using the specific multispin coding
methods explained in Ref. [48].

Once we have C4(r, t′;T ), we compute the inte-
grals [27, 28, 41]:

Ik(t′;T ) =

∫ ∞
0

d3r rkC4

(
r = (r, 0, 0), t′;T

)
. (A12)

A coherence length can be computed as

ξk,k+1(t′, T ) =
Ik+1(t′, T )

Ik(t′, T )
. (A13)

We define ξmicro(t, tw;H) = ξ12(t, tw;H).

b. The ζ length scale

This length scale was studied in details in Ref. [41]
by refining earlier suggestions [42, 43].

Let us consider the thermal trajectory followed by
a given replica at the two times t1 < t2. Our basic
quantity will be the local correlation

cx(t1, t2) = sx(t2)sx(t1) . (A14)

Note that cx(t1, t2) = −1 if the spin at site x has
been flipped when going from time t1 to time t2 [oth-
erwise, cx(t1, t2) = 1]. Then, the two-time, two-site
correlation function is

C2+2(r, t1, t2) =
1

N

∑
x

[〈cx(t1, t2)cx+r(t1, t2)〉

− C2(t1, t2)] , (A15)

where

C(t1, t2) =
1

N

∑
x

〈cx(t1, t2)〉 . (A16)

The ideal ζ(t1, t2) is defined from the long-distance
decay of C2+2(r, t, tw):

C2+2(r, t1, t2) ∼ 1

rb
g(r/ζ(t1, t2)) , (A17)

where g is an unknown scaling function. We bypass
our lack of knowledge of g exactly as we solved this
problem for ξmicro: by using integral estimators, recall
Eq. (A13). Note that, by construction, ζ(t1, t2) tends
to zero when t2 approaches t1. Conversely, we expect
ζ(t1, t2) to grow with the later time t2.

As for the interpretation of the length scale ζ, an
analogy with the theory of liquids is of help. We name
a defect a site where cx(t1, t2) = −1. Let n(t1, t2) be
the density of defects [C(t1, t2) = 1−2n(t1, t2)] and let
g(r) be the pair-correlation function for defects: The
conditional probability for having a defect at site x+r,
given that a defect is present at site x, is n(t1, t2)g(r)
(so that, at long distances, g(r) tends to one). Given
these definitions, one easily finds that

C2+2(r, t1, t2) = 4n2(t1, t2) [g(r)− 1] . (A18)

In other words, ζ is the length scale on which defects
are correlated. Only when ζ(t2, t1) ≈ ξmicro(t1) does
the configuration at time t2 start to differ structurally
from the configuration at the earlier time t1.

Finally, let us mention that a length analogous to
ζ(t1, t2) can be obtained with the analysis tools of
temperature chaos, see Supplementary Note IV.

5. Computation of the chaotic parameter

As we explained in the main text, our goal here is to
introduce a correlation parameter that will allow us to
compare two different thermal protocols. This com-
parison should necessarily be local in space. We adapt
to that end the procedure introduced in Ref. [38].

Specifically, we select Nsph = 8000 spheres of radius
R randomly chosen inside the system and centered at
the central points of the elementary cells of the cu-
bic lattice. Now, let us consider two identical systems
that are subjected to two different thermal protocols,
which we may name protocols A1 and A2. Next one
performs a set of independent simulations (i.e., repli-
cas) for protocol A1, and another set of independent
simulations for protocol A2. Then, the correlation co-
efficient for protocols A1 and A2 as computed on the
k-th sphere of radius R is defined as

Xk,R
A1,A2

=
〈[qk,RA1,A2

]2〉T√
〈[qk,RA1,A1

]2〉T 〈[qk,RA2,A2
]2〉T

. (A19)

In the above expression, qk,RA1,A2
is the overlap between

two replicas σ and τ that have undergone thermal
protocols A1 and A2 respectively

qk,RA1,A2
=

1

Nr

∑
x∈Bk

R

sσ,A1
x sτ,A2

x , (A20)

where NR is the number of spins within the k-th
sphere BkR of radius R.

The interpretation of the chaotic parameter is very
similar to a correlation coefficient: if Xk,R

A1,A2
= 1, spin
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configurations from thermal protocols A1 and A2 are
completely indistinguishable inside the sphere BkR (ab-
sence of chaos). Instead, Xk,R

A1,A2
= 0 corresponds to

completely different configurations, which is an ex-
tremely chaotic situation.

The reader may notice from Eq. (A19) that the
computation of Xk,R

A1,A2
involves an exact thermal ex-

pectation value (which could be obtained in simula-
tions only if one had simulated an infinite number of
replicas). Unfortunately, we only have Nmax

R = 512
replicas at our disposal. Our choice has been to pro-
duce different estimates of Xk,R

A1,A2,NR
by varying NR.

Specifically, our procedure has been the following:

1. For each NR < Nmax
R we randomly order the

Nmax
R replicas and divide them in Nmax

R /NR
groups of NR replicas.

2. In this way, we get Nmax
R /NR independent esti-

mates of Xk,R
A1,A2,NR

.

3. In order to erase the effect of the initial per-
mutation of the Nmax

R replicas, we repeat this
procedure 10 times for all NR < Nmax

R .

In a nutshell, for every sphere of radius R we obtain
Nthermal(NR) estimates of Xk,r

A1,A2,NR
where

Nthermal(NR < Nmax
R ) = 10× Nmax

R
NR

, (A21)

or

Nthermal(NR = Nmax
R ) = 1 . (A22)

We average the Nthermal estimates of Xk,R
A1,A2,NR

for every NR and finally, in a complete analogy with
Ref. [38], we compute the extrapolation of the chaotic
parameter to an infinite number of replicas by means
of a simple linear extrapolation

Xk,R
A1,A2,NR

= Xk,R
A1,A2,∞ +

Ak,RA1,A2

NR
, (A23)

whereXk,R
A1,A2,∞ is our best estimation of Xk,R

A1,A2
.

More complicated extrapolations do not seem to
present advantages (see SI in [38]).

Finally, in order to explore the statistical informa-
tion carried by the Nsph = 8000 spheres, we define the
distribution function

F (X̃, A1, A2, R) = Probability[Xk,R
A1,A2

< X̃] . (A24)

Some examples of this distribution function are dis-
played in Fig. 4 in the main text.
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