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A B S T R A C T   

Background: Changes in climate and anthropogenic activities have made water salinization a significant threat 
worldwide, affecting biodiversity, crop productivity and contributing to water insecurity. The Horn of Africa, 
which includes eastern Ethiopia, northeast Kenya, Eritrea, Djibouti, and Somalia, has natural characteristics that 
favor high groundwater salinity. Excess salinity has been linked to infrastructure and health problems, including 
increased infant mortality. This region has suffered successive droughts that have limited the availability of safe 
drinking water resources, leading to a humanitarian crisis for which little spatially explicit information about 
groundwater salinity is available. 
Methods: Machine learning (random forest) is used to make spatial predictions of salinity levels at three electrical 
conductivity (EC) thresholds using data from 8646 boreholes and wells along with environmental predictor 
variables. Attention is paid to understanding the input data, balancing classes, performing many iterations, 
specifying cut-off values, employing spatial cross-validation, and identifying spatial uncertainties. 
Results: Estimates are made for this transboundary region of the population potentially exposed to hazardous 
salinity levels. The findings indicate that about 11.6 million people (~7% of the total population), including 
400,000 infants and half a million pregnant women, rely on groundwater for drinking and live in areas of high 
groundwater salinity (EC > 1500 µS/cm). Somalia is the most affected and has the largest number of people 
potentially exposed. Around 50% of the Somali population (5 million people) may be exposed to unsafe salinity 
levels in their drinking water. In only five of Somalia’s 18 regions are less than 50% of infants potentially exposed 
to unsafe salinity levels. The main drivers of high salinity include precipitation, groundwater recharge, evapo
ration, ocean proximity, and fractured rocks. The combined overall accuracy and area under the curve of 
multiple runs is ~ 82%. 
Conclusions: The modelled groundwater salinity maps for three different salinity thresholds in the Horn of Africa 
highlight the uneven spatial distribution of salinity in the studied countries and the large area affected, which is 
mainly arid flat lowlands. The results of this study provide the first detailed mapping of groundwater salinity in 
the region, providing essential information for water and health scientists along with decision-makers to identify 
and prioritize areas and populations in need of assistance.   

1. Introduction 

Due to increasing human demands on the environment and climatic 
changes, water salinization is a threat faced by many countries around 
the world (Thorslund and van Vliet, 2020; van Engelen et al., 2022). 
Countries in arid and semiarid regions with decreasing runoff are 
particularly at risk (IPCC, 2007). Eighteen of the 20 poorest countries in 
the world are found in arid and semiarid areas and are particularly prone 
to increased aridity and periods of drought (World-Bank, 2018). Natural 

geological conditions, seawater intrusion, changes in precipitation and 
evaporation, overexploitation of groundwater, and poor irrigation 
practices contribute to increasing water salinity worldwide (Amer and 
Vengosh, 2001; Barica, 1972; Damania et al., 2019; IPCC, 2022a; Russ 
et al., 2020). This affects the availability of fresh water for biodiversity, 
human consumption, and crop productivity, thereby contributing to 
water insecurity. High salinity in water also increases soil salinization 
and, consequently, desertification. 

The Horn of Africa, which includes Djibouti, Eritrea, Ethiopia, Kenya 
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and Somalia, has natural characteristics that favor high salinity in 
groundwater. It is estimated that 80% of the population in the region 
depends on groundwater (UNICEF, 2020) and that only 19% of 
groundwater sources have salinity levels below ~ 800 μS/cm of elec
trical conductivity (EC), which is generally considered safe for human 
consumption (WHO, 2004). Numerous authors have pointed to high 
salinity as one of the leading causes for the closure or abandonment of 
wells in the Horn of Africa, as it can cause groundwater to become un
suitable for human consumption (FAO-SWALIM, 2013; Gurmessa et al., 
2021; Gurmessa and Taye, 2021; Pavelic et al., 2012). The World Health 
Organization (WHO) provides a guideline value for palatability but does 
not have a health-based standard for salinity. Nevertheless, the WHO 
encourages countries where salinity concentration is high to identify the 
components of salinity and to consult local authorities for guidance 
(WHO, 2003). Considering Australia and India, which are challenged 
with high salinity, the EC of drinking water should not exceed ~ 800 or 
~ 700 μS/cm EC, respectively (BIS, 2012; NHMRC and NRMMC, 
(2011)). In the Horn of Africa, standards have been adapted to take into 
consideration the high salinity levels. In Kenya, governmental guide
lines require EC in drinking water to not exceed ~ 2000 μS/cm (WAS
REB, 2008); in Ethiopia, it should not exceed ~ 1500 μS/cm (ESA, 
2013). While the Somali government proposed a drinking water 
guideline of EC 3500 µS/cm in 1985 based on a study conducted in the 
Bay region, known as the Water Development Agency (WDA) standard 
(MoEWR, 1985). Subsequently, the 2004 Somali National Water Policy 
advised the use of recognized international drinking water quality 
standards, such as those of the WHO (MoEWR, 2002). However, it ap
pears that the WDA guidelines may still be relevant, as few drinking 
water sources meet the WHO standards (Gurmessa et al., 2021). Putting 
these values into context, Freeze and Cherry (1979) described water as 
brackish between 1500 and 15,000 μS/cm EC, and the WHO classifies 
the palatability of drinking water as unacceptable above 1500 µS/cm 
(WHO, 2011), while the FAO does not recommend the use of water for 
irrigation or human consumption above 3000 µS/cm (Abrol et al., 
1988). For reference, seawater has an average value of ~ 50,000 µS/cm. 

Many recent studies have indicated a link between excess salinity in 
drinking water and hypertension, cardiovascular diseases, kidney mal
function, skin diseases, and diarrhea (Hallenbeck et al., 1981; IPCC, 
2022a; Khan J et al., (2020); Naser et al., 2022, 2017; Radwanur et al., 
2017; Rosinger et al., 2021; Shammi et al., 2019). Damania et al. (2019) 
highlight that exposure to high levels of salinity in drinking water is 
most dangerous during pregnancy and childhood. During pregnancy, 
high salinity consumption has been linked to preeclampsia, gestational 
hypertension, and miscarriage (Khan et al., 2014, 2011; Nahian et al., 
2018; Pinchoff et al., 2019; Scheelbeek et al., 2016). It has also been 
identified as a cause of high neonatal and infant mortality (Dasgupta 
et al., 2016; Joseph et al., 2019; Naser et al., 2020). 

High salinity levels can also be harmful to a region’s agriculture. For 
example, salinity greater than 2800 μS/cm may severely restrict horti
culture (Abrol et al., 1988; UNESCO, 2002). Consequently, 
groundwater-dependent agriculture is restricted to ~ 8% of the territory 
in the low-lying areas of the Horn of Africa (FAO, 2013), where most of 
the territory and population (80%) is dedicated to the farming of goats, 
camels, cattle, and sheep (Muthusi et al., 2007). Such livestock generally 
tolerates high salinity levels and is able to thrive with EC levels of 6300 
μS/cm or more (depending on the species), with goats and sheep (the 
predominant livestock in the area) tolerating more than 10,000 μS/cm 
(Basnyat, 2007; NRC, 1974). However, the more frequent and prolonged 
droughts affecting the region every 4–5 years in recent decades have 
worsened access to non-saline and non-brackish drinking water sources 
(FAO-SWALIM, 2021; Funk, 2020). This highlights the link between 
climate change and water quantity and quality. 

During periods of scarcity, the local population will use whatever 
water is available, regardless of its quality, putting their health at risk 
(Muthusi et al., 2007). The population of the five countries together in 
the Horn of Africa grew by 328% between 1980 and 2019, with 

urbanization putting further pressure on the already stressed aquifers 
used by cities (Nasreldin et al., 2016). This is especially concerning in an 
area with limited water infrastructure where 50% of the population is 
extremely poor (less than US$1.90 (2011 Purchasing Power Parity) per 
day per capita)(World-Bank, 2020, 2017). 

Although the availability of fresh water is well documented in the 
Horn of Africa, salinity levels are not (Muthusi et al., 2007), and there is 
no comprehensive understanding of the geographical distribution of 
water sources with safe salinity levels. In this study, we spatially predict 
salinity concentrations in groundwater at three thresholds to provide 
policy-relevant information according to different relevant water- 
quality standards. This is done using machine learning modeling with 
measurements of EC in groundwater and various predictor variables. In 
addition to examining the spatial distribution of groundwater salinity in 
the Horn of Africa, this study identifies the most vulnerable segments of 
the population: pregnant women and infants aged 0–12 months. In light 
of the increasing salinization of groundwater worldwide, the findings 
presented here may also be relevant elsewhere. 

2. Study area 

The Horn of Africa is located in East Africa (Lat. 17◦59′N–5◦50′S, 
Long. 51◦14′E–33◦06′E) and includes Djibouti, Eritrea, Ethiopia, Kenya 
and Somalia (Fig. 1). It borders the Gulf of Aden in the north and the 
Indian Ocean in the east, encompasses 3000 km of coastline, and covers 
an area of around 2,488,000 km2. 

This region is comprised mainly of arid and semiarid plateaus, plains, 
and highlands, with the Ogaden desert in the Somali region of Ethiopia 
and the Chalbi and Nyiri deserts in Kenya accounting for substantial 
parts of the territory. The mountainous areas of northern Somalia reach 
2460 m.a.s.l., while the mountains of Ethiopia along the Great Rift 
Valley reach well over 4000 m.a.s.l. The climate is harsh with extreme 
weather conditions, including drought, high average temperatures, and 
strong coastal winds. Temperatures can reach over 40 ◦C on the plains in 
summer and are cooler in mountainous areas, where average annual 
temperatures range between 6◦ and 17 ◦C. Rainfall varies from north to 
south, averaging less than 20 mm per year in the north of Somalia and 
reaching 2000 mm per year in the southwest highlands of Ethiopia and 
Kenya (Muchiri, 2007). Potential evapotranspiration is high, especially 
in low-elevation areas in the north where it reaches 3000 mm per year 
and exacerbates groundwater salinity (Muchiri, 2007; WASH, 2019). 

3. Methods 

3.1. Data preparation and predictors 

To predict the occurrence of salinity levels in this transboundary 
region, 8646 groundwater quality data points were compiled from 31 
different sources (Fig. 1) (Acacia, 2020b, 2020a; Addisu Deressa Geleta, 
2012; Adem, 2012; Ashun, 2014; Ayenew et al., 2009; Bairu et al., 2013; 
Blandenier, 2015; Bretzler et al., 2011; Brhane, 2016; Charity Water, 
2020; Demlie et al., 2008; Ezekiel et al., 2017; FAO-SWALIM, 2018; 
Gebrehiwot et al., 2011; Gulta Abdurahman and Moltot, 2018; Kan
g’ethe, (2015); Kanoti, 2021; Makokha K. Jacquelyne, 2017; Muraguri 
and A, 2013; Nasreldin et al., 2016; Owango Wadira, 2020; Rango et al., 
2010; Reimann et al., 2002; Rusiniak and Sekuła, 2021; Sottas, 2013; 
Tadesse, 2020, 2013; Tadesse et al., 2010; Tanui et al., 2020). A detailed 
list can be found in Table S1. Although most of these data were given as 
EC, a conversion factor of 0.7 EC (μS/cm)/ Total Dissolved Solids (TDS) 
(mg/L) was used where reported as TDS (Weert, 2009). Forty-one geo
spatial predictor variables of geology (Fig. S1), climate, topography, 
soil, and ecology were collected for their known or potential relation
ships with elevated groundwater salinity levels. Fig. S2 lists these vari
ables highlighting those finally selected. Since the scale of most of the 
predictor variables is 250 m, this common unit was used to grid the 
salinity data points. When there was more than one salinity 
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measurement in a pixel, the geometric mean was calculated. Although 
the salinity data come from different sources and generally do not report 
errors, the data were converted into binary format according to the three 
thresholds described below, whereby 1 represents values above the 
threshold and 0 represents values below the threshold. This trans
formation was carried out for each of the three EC thresholds: 800 μS/ 
cm, 1500 μS/cm, and 2500 μS/cm, thereby largely eliminating any in
consistencies associated with the salinity measurements. The data were 
then balanced in relation to the class with the lowest representation, 
thus avoiding biases caused by unbalanced classes. This involved 
randomly discarding the excess data of the majority class and doing so 
over many iterations such that all data were ultimately used. 

3.2. Modeling 

Groundwater salinity was modelled at multiple thresholds to provide 
policy-relevant information according to the different water quality 
standards available: 1500 μS/cm (TDS ~ 1000 mg/L), which is the WHO 
standard for palatable drinking water (WHO, 2011) and used by local 
authorities in Djibouti and Ethiopia to regulate drinking water (ESA, 

2013; MAEPE-RH, 2011); 800 μS/cm (TDS ~ 560 mg/L), which is the 
WHO standard for good-quality drinking water; 2500 μS/cm (TDS ~ 
1750 mg/L), which acknowledges that local populations may consume 
high-saline water when no other options are available (Muthusi et al., 
2007). However, values above 2000 μS/cm EC are considered unfit for 
human consumption (FAO-SWALIM, 2013). 

The widely used random forest machine-learning method was used 
(e.g. Akter et al., 2021; Mosavi et al., 2021), which is suited for complex 
classification problems based on a set of decision trees (Breiman, 2001). 
Unlike other methods, the random forest algorithm does not make prior 
assumptions about the relationships between the target and predictor 
variables. It offers good performance when complex non-linear re
lationships and a large number of predictor variables are involved. Tools 
are also available for interpreting the fitted model, such as the impor
tance of variables or partial dependence plots. 

Training/testing datasets were created using spatial-block cross 
validation based on the size and shape of the study area. This approach is 
particularly useful when data are not uniformly dispersed throughout 
the study area. The spatial blocks are split into k parts (folds) and data 
are assigned to the folds sequentially. The data of a given fold are set 

Fig. 1. Concentration ranges of measured salinity in groundwater. Data (n = 8646) are from the sources listed in the text and Table S1. An electrical conductivity 
(EC) of 800 µS/cm is the threshold for good quality water (WHO, 2004), 1500 µS/cm is the palatability threshold (WHO, 2011), and 2500 µS/cm is the highest value 
for which RF modeling is still feasible with respect to the distribution of available data. The histogram in the lower right shows the asymmetric distribution of EC 
measurements with three marked clusters: <800 µS/cm (39% of the data), 800–2500 µS/cm (33% of the data) and > 2500 µS/cm (28% of the data). 
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aside for use in validation, while the rest of the data are used for training 
a model. Then the whole process is iterated until all folds have been used 
for testing. The spatial block approach is used to avoid spatial biases 
produced in the data splitting and is widely used as a form of validation 
(see 3.4 Validation). To avoid any bias, 100 iterations with different 
randomly selected training/testing datasets were performed. One hun
dred iterations were employed, since the results indicated that the per
formance of 1000 iterations, when executed and averaged, produced 
model performance metrics that varied by less than 1% compared to the 
results obtained by running 100 iterations. In addition, to prevent the 
disparity in class frequencies from negatively influencing the model’s 
performance, the dataset was balanced at each iteration by randomly 
down-sampling the majority class in the training set to match the least 
frequent class. Then 1001 trees were grown to produce each model. 
Finally, the predictor variables were selected according to their contri
bution to overall model performance, retaining only those variables that 
had a mean decrease in accuracy > 0 on average across all iterations of 
the random forest model. Only 16 variables were retained that system
atically improved the predicted accuracy. 

To assess model performance, different metrics were used, including 
area under the curve (AUC), sensitivity, specificity, and false discovery 
rate (FDR). The AUC measures the area under the ROC curve, with 
values usually ranges from 0.5 (a guess) to 1 (perfect predictive accu
racy). The AUC information was complemented with sensitivity and 
specificity, which provide further information on the discrimination 
capability of the model. Sensitivity indicates the correctly predicted 
positive fraction, and specificity is the correctly predicted negative 
fraction. The FDR reports the rate among all positive predictions that are 
actually negative cases. 

3.3. Mapping 

Probability maps of groundwater salinity exceeding the considered 
thresholds were created using the mean of 100 model predictions. 
Multiple iterations avoid bias produced by the arbitrary selection of a 
particular combination of validation and training data points. Ground
water salinity hazard was labeled as high or low relative to the thresh
olds used. Since the distribution of modeled probabilities may vary 
based on the prevalence of cases in a given dataset, the probability cut- 
off was set between high/low hazard where sensitivity = specificity, 
which equally weights the model’s ability to correctly classify high and 
low salinity concentrations. This information was used to classify the 
salinity hazard in groundwater as high or low using the average prob
ability cut-off of the 100 iterations. Two additional maps were created 
that classify the salinity hazard in groundwater as high or low using the 
5th and 95th percentiles of the probability cut-off points of the 100 it
erations. Taken together, these maps present the most stable and reliable 
risk areas, as they are less sensitive to imbalanced data or any arbitrary 
selection of input data. 

The spatially uncertain areas were subsequently identified using the 
area of applicability (AOA) with the R package Caret Application for 
Spatio-Temporal (CAST) models (Meyer and Pebesma, 2021). The AOA 
is the area where the model can be applied with an expected average 
performance similar to that estimated with the training data. Conse
quently, areas outside the AOA present more uncertain predictions since 
they are outside the range of the training data. The estimation of the 
AOA is based on the threshold offered by a dissimilarity index (DI). The 
DI provides a unitless measure of how much each point outside the 
training data differs by considering the distances of predictor variables 
in a multidimensional space and weighting the predictor variables by 
their importance as derived by the random forest model. Thus, a new 
data point is outside the AOA when the DI exceeds a quantile of 0.95. 
Areas outside the AOA with less certainty were therefore removed from 
the risk maps to increase the clarity of the results. 

3.4. Validation 

By their nature, environmental spatial data in which geographically 
closer data are often more similar than distant data violate the 
assumption that data are independent and identically distributed, on 
which traditional forms of validation such as leave-one-out and K-fold 
are based. Thus, the use of conventional methods of validation in the 
spatial context can lead to overoptimistic estimates of prediction errors. 
To account for this, the model was evaluated with ten spatial blocks 
(each 420 × 420 km) using the R package blockCV (Valavi et al., 2019). 
Since data are rarely evenly dispersed over the model domain, to define 
the size and characteristics of the blocks, the package offers different 
alternatives to maximize the representativeness of the data and avoid 
blocks with little or no data. For instance, block assignments to folds can 
be implemented to achieve the most even distribution of data, resulting 
in a similar presence across classes. In turn, a semivariogram can be used 
to estimate a block size that minimizes spatial autocorrelation (SAC) 
among explanatory variables and presents sufficient representativeness 
across classes. Finally, the package enables the visualization of the 
blocks’ locations and the data distribution within them. 

3.5. Estimates of the exposed population 

The modeled high-salinity areas in the Horn of Africa were combined 
with population density maps for 2020 (WorldPop, 2018) to assess the 
population at risk. In addition to the total affected population, the 
numbers of at-risk pregnant women and infants aged 0–12 months were 
also identified. These estimates account for country-wide rates of 
household groundwater use in urban and rural areas, as provided by the 
WHO/UNICEF Joint Monitoring Programme (WHO/UNICEF Joint 
Monitoring Program (JMP), (2019)). Rural and urban areas were 
distinguished on the basis of global urbanization grids from the Euro
pean Commission’s Joint Research Centre (Pesaresi et al., 2019). The 
groundwater-consuming population was multiplied by the probability of 
salinity concentrations exceeding the thresholds considered. Estimates 
of the people at risk at the different salinity thresholds were then dis
aggregated to first-level administrative units in each country (e.g. 
provinces). 

4. Results 

4.1. Salinity hotspots 

The hazard maps derived from the random forest modeling are 
shown in Fig. 2. The affected area in the Horn of Africa is substantial, as 
elevated levels of groundwater salinity are prevalent across a majority of 
the region, with only 41% of the region having salinity levels <800 μS/ 
cm. Most of these areas are located in the western parts of Ethiopia and 
Kenya as well as in high-altitude areas. While 45% of the Horn of Africa 
has groundwater salinity levels > 1500 μS/cm, the largest salinity 
hazard area is found in Somalia, followed by Djibouti, Kenya and 
Ethiopia (Fig. S3). Areas with very high groundwater salinity (>2500 
μS/cm), corresponding to 21% of the Horn of Africa, include the Somali 
region of Ethiopia, the North Eastern, Coast and Eastern provinces of 
Kenya, and most of Somalia. 

Somalia is the most heavily affected country in the region in terms of 
groundwater salinity, where, based on the three thresholds considered, 
about 90% (86–94%) of the country’s total area is at risk, excluding only 
a few isolated places in the Awdal, Woqooyi Galbeed, and Middle Juba 
regions. Kenya has the second largest affected area, located mainly in 
the North Eastern, Coast and Eastern provinces. At the 800 μS/cm level, 
about 66% of Kenya is affected. In comparison, at the 1500 μS/cm 
threshold, the affected area of Kenya reduces sharply to 35%, while at 
the 2500 μS/cm threshold, only 32% of the country is affected. Ethiopia 
has the smallest affected area in the region, with about 44% of the 
country affected at > 800 μS/cm, decreasing to 26% at > 1500 μS/cm 
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and 16% at > 2500 μS/cm, which affects only the Somali region of the 
country. About 46% of Djibouti is affected by salinity at > 1500 μS/cm 
and 10% at > 2500 μS/cm. Estimates of salinity in Eritrea were not made 
due to too few data points available for this study, resulting in the model 
of Eritrea being hampered by high spatial uncertainty and low confi
dence in the predictions (Fig. S3). 

4.2. Population at risk 

Our estimates show that about 7.6, 11.6 and 17.9 million people in 
the Horn of Africa are exposed to salinity levels above 2500, 1500 and 
800 μS/cm, respectively (Table 1). These numbers correspond to 11%, 
7%, and 5% of the overall population, respectively. Breaking down the 

exposure by country, it is evident that some regions are much more 
strongly affected than others. With ~ 5 million people, Somalia has the 
highest number of people exposed to salinity at the 1500 μS/cm level, 
which is 48% of the country’s total population (Table S3). Due to 
generally high salinity levels in the country, the exposed population 
does not vary much when also considering the salinity thresholds of 
2500 μS/cm (about 40% of the country’s population) or 800 μS/cm 
(51% of the population). 

The proportion of people exposed to high salinity in the other 
countries of the region is smaller. In Kenya, ~3 million people are 
exposed to salinity levels above 1500 μS/cm (i.e., 6% of the total pop
ulation) (Fig. 3A), though the population is unevenly distributed with 
most of the exposed population concentrated in the North Eastern 

Fig. 2. Probability (hazard) map of groundwater salinity for the Horn of Africa. (A) The main map shows the probability of geospatially modelled groundwater 
salinity concentrations exceeding the EC thresholds of 1500 μS/cm in the Horn of Africa. (B) and (C) present EC of 800 μS/cm and 2500 μS/cm, respectively. (D) 
Binary maps and percentage of the area in the Horn of Africa affected by each of the three thresholds modeled, i.e. EC of 800 μS/cm, 1500 μS/cm and 2500 μS/cm. 
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Table 1 
Estimated population potentially affected by groundwater salinity concentrations above the 800 µS/cm, 1500 µS/cm and 2500 µS/cm thresholds. The ranges are 
derived from considering probability cut-off values at the 0.05 and 0.95 percentiles. Special attention is drawn to the number of pregnant women and infants affected.  

Fig. 3. Population by country potentially exposed to high groundwater salinity. (A) Population relying on groundwater in areas at risk of exposure to high salinity for 
the three thresholds considered: EC of 800 μS/cm, 1500 μS/cm, and 2500 μS/cm. (B) Proportions of the population potentially affected by groundwater salinity 
exceeding the three thresholds modeled. Error bars represent low and high estimates of the affected population (Methods). (C) and (D) Number of potentially affected 
pregnancies and infants, respectively. 
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province (38% of the total population). In Ethiopia, 2.6% of the total 
population is exposed to salinity levels above 1500 μS/cm (Fig. 3B), with 
the affected population at all salinity levels being almost exclusively 
located in the Somali region (35%). In three countries, the national 
exposure estimates are driven by a single region: the Somali region in 
Ethiopia, the North Eastern province in Kenya, and the Djibouti region 
in Djibouti. In Djibouti, ~300,000 people (34% of the total) are at risk at 
1500 μS/cm, but only 3% are at risk at the higher salinity level of 2500 
μS/cm (see Table S3 for more information). Population estimates were 
not made for Eritrea, as there is high spatial uncertainty in the pre
dictions here. 

4.3. Predictor variables 

The probability of groundwater salinity in the Horn of Africa 
exceeding 800 μS/cm, 1500 μS/cm, and 2500 μS/cm was modeled by 
initially considering a set of 41 geospatial variables. Of these, 16 vari
ables were retained and are plotted in Fig. 4 according to their relative 
importance. These variables represent climate, hydrology, topography, 
geology, and soil parameters. The interplay of these diverse factors in 
determining salinity levels in the area are reflected in the importance 
and PDPs of the individual variables. Variable importance for each of the 
three thresholds can be found in Figs. S4, S5, and S6. Partial dependence 
plots are provided in Figs. S7, S8 and S9, which depict the relationships 
between the predictor variables and salinity. 

4.4. Model performance 

No significant variation in model performance (e.g. AUC) or the 
spatial distribution of salinity was observed in the 100 different model 
runs for each threshold (Figs. S7–S9). Thus, the average AUC for all three 
thresholds was 0.82 with consistent ranges across all thresholds and 
iterations (800 μS/cm: 0.79–0.83; 1500 μS/cm: 0.81–0.83; and 2500 μS/ 
cm: 0.80–0.84). As expected when modeling with a balanced training 
dataset, sensitivity, specificity, precision, and balanced accuracy all had 
similar values at the optimal cut-off point and were around 0.80 which is 
similar to the AUC. 

5. Discussion 

5.1. Salinity mapping 

Prediction maps have been created of high groundwater salinity in 
the Horn of Africa at the levels of 800 μS/cm, 1500 μS/cm, and 2500 μS/ 

cm and represents the first detailed mapping of groundwater salinity in 
the region. To produce reliable and stable maps and metrics across all 
iterations, steps were taken to balance classes, perform many iterations, 
identify optimal cut-off values, and validate and identify uncertainties in 
the model. To avoid biases, the training data were balanced by randomly 
down-sampling the majority class in the training set to match the mi
nority class, randomly dividing the data into training and testing data
sets, and iterating each model 100 times. Block-based spatial cross 
validation was used to avoid spatial bias and provide a more realistic 
estimate of each model’s predictive performance. However, block-based 
spatial cross-validation comes with two major challenges: using data 
separated into blocks may inadvertently reduce the diversity of the data, 
and the method does not take into account the predictive ability of the 
model for combinations of predictor data that are similar to but spatially 
distant from the training data. These challenges can be addressed 
through the careful implementation of the blocks and performing mul
tiple iterations with these blocks. 

The diversity of input data largely influences the success of a pre
diction. However, groundwater sampling points are often clustered at 
locations of greater interest and do not necessarily represent large areas 
well. This poses a significant challenge for spatial prediction, as nearby 
points tend to have less diversity in the range of environmental variables 
and, therefore, less variability to model. Although there were no areas 
with strong data clustering patterns, the model’s applicability was 
estimated among clusters by comparing the values of the predictor data 
at the training data points with the rest of the region via the DI. Pre
dictions in areas with considerable dissimilarity to the training data 
were masked, which are found mostly along the western boundary of the 
region in upland and/or humid areas where there are few data, e.g. 
Eritrea, thus also identifying areas where the model produces reliable 
predictions (see Fig. 2). 

To ensure a sufficient quantity of data, we followed the strategy of 
collecting all data available. This approach is particularly effective for 
geogenic groundwater contaminants such as salinity, as binary con
centration levels typically remain consistent across expansive regions, 
owing to the fact that geological changes are slow processes. Specif
ically, the presence of gypsum deposits and fractured rocks related to 
ancient marine deposits are responsible for the salinity levels observed. 
Therefore, this approach is an effective means of addressing geogenic 
contaminants. However, it should be noted that seasonal fluctuations 
can occur at certain locations, and these cannot be taken into account in 
the modeling due to a lack of data. 

Fig. 4. Compilation of the importance of the 16 final predictor variables in modeling all three thresholds (800 μS/cm, 1500 μS/cm and 2500 μS/cm). Estimates of the 
importance of the random forest variables for EC thresholds of 800 μS/cm, 1500 μS/cm, and 2500 μS/cm are in the Supplementary Material (Figs. S4, S5, and S6). 
Partial dependence plots (PDPs) of the predictor variables can also be found in the Supplementary Material (Figs. S7, S8 and S9). 
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5.2. Salinity hotspots 

The groundwater salinity maps for the three thresholds highlight the 
uneven spatial distribution of salinity in the region and the large areas 
potentially affected (Fig. 2). These areas are mainly the arid flat low
lands of Somalia, Kenya, Djibouti and Ethiopia. For the reference 
threshold of 1500 μS/cm EC, about 46% of the modeled area is poten
tially affected. Under all thresholds examined, Somalia is particularly 
affected in proportion to its total area (more than 80% of its territory is 
affected), followed by Kenya, with more than 30% affected (Fig. S3). 
Kenya’s hotspots are the Chalbi and Nyiri deserts, Ethiopia’s hotspots 
are the Ogaden Desert in the Somali region and Djibouti is affected 
mainly in the Djibouti region. These results confirm and extend the 
knowledge on areas potentially affected by high groundwater salinity in 
Ethiopia and Kenya (Ashun, 2014; Meaza et al., 2019; Rosinger et al., 
2021), and in particular in Somalia (Muthusi et al., 2007; Said et al., 
2021). 

The on-going droughts that have affected the region have increased 
pressure on the limited groundwater productivity in the area, affecting 
groundwater quality and increasing stress on the water provisioning 
system (FAO-SWALIM, 2021; Funk, 2020). Rising temperatures and low 
humidity promote evaporation and, thus, the concentration of minerals 
in groundwater. Numerous authors have pointed to high salinity 
groundwater as one of the leading causes for the closure or abandon
ment of wells in the Horn of Africa, as the water has become unsuitable 
for human consumption (FAO-SWALIM, 2013; Gurmessa et al., 2021; 
Gurmessa and Taye, 2021; Pavelic et al., 2012). Future climate pro
jections indicate that by the end of the 21st century, during the short 
rainy season, the region could experience an increase in annual rainfall 
and a decrease in drought events (IPCC, 2022b). This contrast to the 
observed drying trend is known as the “East African rainfall paradox” 
(Bichet et al., 2020; IPCC, 2022b). However, long-term rainfall pro
jections carry significant uncertainties. For example, the frequency, 
duration and intensity of droughts with global warming of 2 ◦C or higher 
are projected to increase in Somalia but decrease or remain unchanged 
in Kenya and the Ethiopian highlands (IPCC, 2022b). At the same time, 
temperatures are projected to increase in the region, enhancing evapo
ration and water consumption that may lead to a decrease in ground
water recharge, exacerbating salinization. 

This situation exemplifies the strong link between water quantity 
and water quality in an area where there are notable deficiencies in the 
water sector related to water quality testing and monitoring. De
ficiencies in water quality regulation are exacerbated by the rather 
limited understanding of how the water supply gets contaminated and 
the risk involved with using contaminated water (UNDP, 2016). 

Estimates of the affected area and population in Eritrea were not 
calculated due to spatial uncertainty in the model (Fig. 3). Future 
research could specifically focus on groundwater salinity in this country, 
as some authors have reported problem areas (e.g. Lowenstern et al., 
1999; Zerai, 1996). 

5.3. Population exposed 

Based on the population at risk, Somalia stands out with the greatest 
number of people exposed to high salinity at all three thresholds (Fig. 5). 
Regardless of the threshold level, the high proportion of the population 
affected by salinity in Somalia hardly varies, with ~ 50% of the people 
exposed to high salinity in the Horn of Africa residing in Somalia. In the 
cases of Kenya, Djibouti and Ethiopia, the potentially affected pop
ulations are concentrated in specific regions. For example, for the EC 
1500 μS/cm threshold, 73% and 16% of the affected people in Kenya 
live in the North Eastern and Coast provinces, respectively, while 71% of 
the affected population in Djibouti lives in the Djibouti region and 81% 
of those affected in Ethiopia live in the Somali region (Fig. 3, Fig. 5 and 
Table S3). 

As illustrated in Fig. 3C and 3D, pregnant women and infants are 

particularly vulnerable to high salinity levels in groundwater. There are 
~ 372,000 potentially exposed infants (up to one year of age) in the 
Horn of Africa, of which ~ 210,000 live in Somalia. Only five of the 18 
regions in Somalia are home to just under 50% of the infant population 
exposed to salinity levels of 1500 μS/cm; in regions of Somalia such as 
Nugaal, Sool, and Bakool, around 60% of infants could be at risk at all 
studied thresholds (Table S5). 

Somalia also has the highest relative and absolute number (i.e., 
~237,000) of at-risk pregnancies in the Horn of Africa for the 1500 μS/ 
cm threshold. In regions such as Hiiraan and Bakool, over 50% of 
pregnant women are at risk under all the thresholds (Table S4). How
ever, when looking at first-level administrative units, the Somali region 
in Ethiopia has the highest number of potentially affected pregnancies of 
the four countries. The region’s at-risk pregnancies are estimated to be 
136,000 at the 1500 μS/cm level (38% of the region’s total pregnancies) 
and decline to 63,000 for the 2500 μS/cm threshold (23% total). In 
Somalia, the proportion of affected pregnancies remains almost the 
same, regardless of the threshold level. 

5.4. Socioeconomic considerations 

All studied countries have high rates of poverty and inequality, 
which inhibit the provisioning of safe sources of drinking water. In 
critical periods of drought, it has been reported that the price of water is 
highly volatile, increasing by up to 50% and costing more than US$1 per 
cubic meter (Mourad, 2021). 

Drought leads to famine, and it has been reported that populations 
under such environmental stress will use whatever water is available, 
regardless of its quality (Muthusi et al., 2007) and putting their health at 
risk. Families often mix powdered milk with untreated water to feed 
their children. Unfortunately, highly saline water has been linked to 
diarrhea and other intestinal illnesses that can be life-threatening for 
infants (Chakraborty et al., 2019). 

In addition, the lack of fresh water affects the area’s scarce and 
fragile groundwater-dependent agriculture through crop losses and 
intensified soil degradation, which drives desertification (IPCC, 2019). 
Due to the adverse conditions for agriculture, a large part of the popu
lation in the Horn of Africa is engaged in livestock farming of more 
saline-resistant species, such as goats or camels (Muthusi et al., 2007). 
However, due to the large spatial and temporal extent of droughts, 
livestock keepers are forced to migrate internally in search of resources 
for their animals. This can lead to even more pressure on the few 
available water sources and increased social conflicts in the area 
(MoEWR, 2021; UNDP, 2016). This massive livestock migration has left 
children and women with limited access to food, increasing the likeli
hood of malnutrition and ill health (UNDP, 2016). 

5.5. Influence of climate change 

Salinity contamination in groundwater is the result of the interplay 
of several human and natural factors with some factors playing a more 
dominant role, such as climatic, topographical, hydrological, and 
geological characteristics. High salinity is concentrated in low and flat 
areas close to the sea with high temperatures and where precipitation is 
low and evaporation is high. Precipitation, recharge, evaporation, gyp
sum deposits, fractured ancient marine deposits, and proximity to the 
ocean were found to be the main factors related to high salinity levels in 
the study area (Supplementary Material, Figs. S3, S4, and S5). 

Water quality in terms of salinity content has frequently been found 
to relate to climatic conditions in the area. It has been reported that 
during periods of drought and even during regular dry seasons, borehole 
yields have decreased and groundwater quality sometimes becomes 
more saline or brackish (FAO-SWALIM, 2021; WASH, 2019). Gurmessa 
et al. (2021) points to the arid conditions of a region as the best predictor 
of groundwater salinity throughout Africa. Drought has also been 
identified as a primary cause of reduced aquifer recharge. The present 
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study has observed that lower groundwater recharge is positively related 
to higher groundwater salinity (see partial dependency plots in Figs. S3, 
S4, and S5). Anthropogenic causes, such as contamination (Brhane, 
2018) or excessive groundwater extraction and rapid urbanisation, may 
lead to an increase in sealing of the soil surface, which, in turn, may 
reduce groundwater recharge rates and contribute to high salinity in 
confined areas. Coastal areas in the region are particularly vulnerable to 
saline intrusion due to over-exploitation of groundwater (Idowu and 
Lasisi, 2020; MNR, 2013). 

The key challenges in understanding groundwater salinity in the 
Horn of Africa lie in identifying and understanding the different con
stituents that explain high EC (e.g. sodium, potassium, calcium, mag
nesium, chloride, fluoride etc.). Certainly, the distribution of these 
salinity constituents varies across such a large region as the Horn of 
Africa and there are drinking water health guidelines for some of their 
constituents, such as boron, fluoride, magnesium, and nitrate (WHO, 
2003). The WHO recommends identifying the components of salinity to 
help protect the population from hazardous contaminants. For example, 
groundwater in areas of Somalia, Ethiopia, and Kenya contains high 

concentrations of fluoride (Kut et al., 2016). Given current drying trends 
(FAO-SWALIM, 2021), the challenges for estimating near-future 
groundwater quality in the Horn of Africa lie in better understanding 
how salinity drivers relate under different temperature and precipitation 
projections. 

5.6. Adaptation to water salinity 

Reducing salinity in the discussed context of the region involves 
complex and far-reaching challenges. Therefore, there is a need to adapt 
to high water salinity; e.g. Somalia’s 2013 climate change adaptation 
plan already highlights the need to adapt to increasing groundwater 
salinity (MNR, 2013). Adaptation would involve tasks such as careful 
management and governance of freshwater sources present in the re
gion. Much work can still be done to improve the management of the 
resource, monitor water quality, and educate the population to avoid 
overexploitation and contamination of available freshwater boreholes 
and wells (UNDP, 2016). There is also a need to improve and add to the 
available infrastructure (MoEWR, 2021) and promote approaches such 

Fig. 5. Populations at risk of high salinity ingestion through groundwater by country and first-level administrative units. Groundwater-dependent populations living 
in salinity hazard areas for the studied thresholds (A) EC of 1500 μS/cm, (B) 800 μS/cm, and (C) 2500 μS/cm. 
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as “safe sourcing”, which is a hydrogeological approach to finding low- 
salinity groundwater in high-salinity groundwater environments (Gur
messa and Taye, 2021) or deeper exploration (Godfrey et al., 2019). 
Water harvesting technologies are further interventions (Gebru et al., 
2021). Additionally, the fragmented coordination of water management 
must be addressed to reach a functioning water governance (Mourad, 
2020). Before the civil war in Somalia, 34% of the irrigable land was 
used; today it is considerably less, down to 9% (MoEWR, 2021). A meat- 
based diet has the largest water footprint, followed by vegetarian and 
vegan diets. Hence, in the face of water scarcity, promoting a plant- 
based diet and agricultural practices to support it could be an alterna
tive to nourish the population (Zucchinelli et al., 2021). To strengthen 
crop farming, it is recommended to promote active irrigation manage
ment, soil moisture monitoring, and the introduction of plant species 
resilient to salinity or reduced water availability (Abrol et al., 1988; 
Mariani and Ferrante, 2017). At the same time, filtering or desalination 
technologies can be implemented, which are expensive today but are 
expected to become increasingly common in the future with the rapid 
advancement of desalination technologies, the reduction of emissions 
and costs through the use of solar energy, and market maturation 
(Sharon and Reddy, 2015; World-Bank, 2019). Somalia’s national water 
resources strategy 2021–2025 highlights the exploration of desaliniza
tion alternatives to ensure the availability and sustainable management 
of water and sanitation (MoEWR, 2021). Djibouti’s national program for 
rural water supply by 2030 also proposes the use of this technology 
(OWAS, 2013). This would imply a reduction in cost and the introduc
tion of adequate measures for the safe management of the brines derived 
from desalination (World-Bank, 2019). A comprehensive review of 
adaptation options taking into account groundwater salinity and water 
scarcity in the region can be found in Gurmessa and Taye (2021). 

6. Conclusion 

In this research, the areas affected by unsafe levels of salinity in 
groundwater and the number of people potentially exposed to high 
salinity in the Horn of Africa were estimated. Salinity in groundwater in 
this area mainly affects arid flat lowlands with low groundwater 
recharge in gypsum deposits and fractured rocks related to ancient 
marine deposits. Sporadic and scarce rainfall and high temperatures 
favor evaporation and the salinization of groundwater and soil, which 
contributes to water insecurity. For the areas this research has high
lighted as relevant for high EC, the next step would be to identify the 
constituents that drive high salinity (e.g. sodium, potassium, magnesium 
etc.). Furthermore, another challenge of estimating groundwater quality 
in the Horn of Africa lies in better understanding the relationship be
tween salinity drivers and various rainfall and temperature projections. 
More precipitation, as predicted with climate change, could raise 
groundwater levels but also mobilize salt from the surface, leading to 
higher salinity. 

An uneven spatial distribution of groundwater salinity across the 
Horn of Africa was found. Large potentially affected areas are found in 
the eastern regions, namely in the Chalbi and Nyiri deserts in Kenya, the 
Ogaden desert in the Somali region of Ethiopia, the Djibouti region in 
Djibouti, and most of Somalia. In the studied countries, the estimate of 
people exposed to salinity exceeding 1500 μS/cm (800 μS/cm – 2500 
μS/cm) is 11.6 (7.5–17) million people, including 372,000 
(258,000–553,000) infants and 491,000 (305,000–713,000) pregnant 
women. These numbers equate to ~ 7% of the overall population. 
However, Somalia is undoubtedly the country most affected by high 
salinity in groundwater in absolute and relative terms; around 50% of 
the population, or 5 million people, may be exposed to salinity levels in 
their drinking water, with this proportion remaining nearly constant 
across the salinity levels examined. This is particularly hazardous for 
vulnerable populations in the country, such as infants and pregnant 
women who comprise about half a million people at risk. This geospatial 
predictive modeling provides the first detailed mapping of groundwater 

salinity in the region, which is essential information for water and health 
scientists and decision-makers for identifying and prioritizing areas and 
populations in need of assistance. 
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