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Abstract 

Background Predicting in advance the behavior of new chemical compounds can support the design process of 
new products by directing the research toward the most promising candidates and ruling out others. Such predictive 
models can be data‑driven using Machine Learning or based on researchers’ experience and depend on the collec‑
tion of past results. In either case: models (or researchers) can only make reliable assumptions about compounds that 
are similar to what they have seen before. Therefore, consequent usage of these predictive models shapes the dataset 
and causes a continuous specialization shrinking the applicability domain of all trained models on this dataset in the 
future, and increasingly harming model‑based exploration of the space.

Proposed solution In this paper, we propose cancels (CounterActiNg Compound spEciaLization biaS), a technique 
that helps to break the dataset specialization spiral. Aiming for a smooth distribution of the compounds in the 
dataset, we identify areas in the space that fall short and suggest additional experiments that help bridge the gap. 
Thereby, we generally improve the dataset quality in an entirely unsupervised manner and create awareness of poten‑
tial flaws in the data. cancels does not aim to cover the entire compound space and hence retains a desirable degree 
of specialization to a specified research domain.

Results An extensive set of experiments on the use‑case of biodegradation pathway prediction not only reveals that 
the bias spiral can indeed be observed but also that cancels produces meaningful results. Additionally, we demon‑
strate that mitigating the observed bias is crucial as it cannot only intervene with the continuous specialization pro‑
cess, but also significantly improves a predictor’s performance while reducing the number of required experiments. 
Overall, we believe that cancels can support researchers in their experimentation process to not only better under‑
stand their data and potential flaws, but also to grow the dataset in a sustainable way. All code is available under 
github. com/ KatDo st/ Cance ls.

Keywords Machine learning, Bias, Data quality, Chemical compound space

Introduction
In domains where gathering data requires time-intensive 
experiments, predicting likely outcomes for experiments 
helps concentrate efforts on the right experiments. One 
example is the development of effective yet sustainable 
and environmentally-friendly products, e.g., pesticides, 
that (hopefully) fulfill their purpose and then quickly 
degrade into harmless non-toxic compounds over time. 
Experiments involve long-term studies of each com-
pound’s effect and observation in soil under different 
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environmental conditions. Ruling out compounds that 
might not bring the desired chemical properties or 
degrade into toxic by-products is an essential aspect of 
the development process. Similar challenges arise in 
other areas of chemical research and development, such 
as the design of new pharmaceuticals, fragrances, or 
commodity chemicals.

However, predictive models learn from and specialize 
to the data provided to them [1, 2]. While this specializa-
tion is useful up to the point where the desired domain is 
accurately captured [3, 4], the models can over-specialize. 
Starting from the initial dataset, a trained model will only 
be able to make reliable predictions in densely populated 
areas of the compound space, leaving the remaining areas 
outside of the model’s applicability domain. As a conse-
quence, it will suggest a set of experiments well within its 
applicability domain, shifting the overall data distribution 
towards in-domain data. Should the model be re-trained 
after obtaining the new experimental results, it will put 
more emphasis on the now densely populated areas fur-
ther shifting the data distribution. After a few iterations 
of dataset growth, we can observe that the applicability 
domain is either consistent or shrinking despite the addi-
tional data [5], and new potentially interesting areas of 
the compound space will never be explored. For exam-
ple, in density-based applicability domain techniques 
using relative thresholds [6, 7], the density ratio between 
dense and sparse areas changes—and rightfully so since 
a trained model will increasingly focus on dense areas 
and become less reliable on sparse ones. This scenario is 
a self-reinforcing type of selection bias where the model 
chooses to obtain new results for compounds it can 
already predict reliably, and therefore slows down or even 
stops learning.

A similar effect can be observed when humans rather 
than models choose the compounds to experiment with 
[8]. Jia et  al. [9] argue that anthropogenic factors play a 
key role in the compound selection process for experi-
ments, and hence the development of datasets. More 
than on the cost, availability, or ease of use of available 
candidate compounds, researchers tend to base their 
selection on their past successes and that of their col-
leagues or research articles. This results in a specializa-
tion spiral iteratively narrowing down the scope within 
which models and humans can make informed decisions.

Active Learning [10] is a tool that aims to break the 
cycle by selecting the most informative experiments 
for the model instead. Although Active Learning has 
been shown to suffer from shifts in distribution [11], 
it is capable of slowly expanding the compound space 
and will eventually even explore beyond the desired 
degree of specialization. In addition, Active Learning is 
always model-dependent. This is a major drawback since 

datasets, especially those requiring long-term experi-
ments, can and will be used for different purposes over 
time, and it is often infeasible to gather new data specifi-
cally for a model.

Instead, in this paper, we suggest cancels (Counter-
ActiNg Compound spEciaLization biaS), a model-free 
and even task-free method to generally point out poten-
tial shortcomings of the data and improve the quality 
without losing the desired specialization to a specific 
domain.

In the Machine Learning landscape, two algorithms 
have been proposed that are specifically designed to 
search for dataset issues induced by the sampling pro-
cess without requiring additional information such as a 
ground-truth sample or distribution. imitate [12] and 
mimic [13] investigate the dataset’s distribution and hint 
to flaws that might be a consequence of a selection bias, 
that is, a mismatch between the probability distribu-
tions of a non-uniformly drawn sample and the sampling 
space. Although these mismatches are not always visible 
from the biased sample alone, both methods identify 
unusual and sharp deviations in density that will cause 
issues for modeling tasks, and they generate additional 
data points to smooth out the distribution. Both methods 
operate under different assumptions regarding the defi-
nition of flaws but are designed for real-valued tabular 
data which is not provided by chemical compound data-
sets. Additionally, the methods’ generation of artificial 
compounds that mitigate the bias could result in infeasi-
ble compounds that are neither useful nor interpretable. 
While the general idea of imitate and mimic aligns with 
the problem we attempt to solve in this paper, neither is 
directly applicable.

cancels adapts ideas from both and extends them 
to select data from a pre-defined pool rather than gen-
erating which allows us the freedom to select meaning-
ful compounds worth experimenting with from a data 
quality standpoint. Possible applications for cancels 
include Computer-Aided Drug Design (CADD) [14, 
15]. These methods greatly support the drug discovery 
and development process by modeling the behavior of 
compounds, but, as is common in all data-based meth-
ods such as Machine Learning, they can only make reli-
able predictions for compounds that are similar to what 
those models trained on [16]. This might be one of the 
key reasons why, despite the progress of CADD methods 
in recent years, still only a small fraction of the chemi-
cal compound space has been explored in the search for 
drug candidates (as stated by Mouchlis et al. [14]). While 
de novo drug design [2, 16–18] aims to base the candi-
date search on a broader space, it also relies on the qual-
ity of the underlying dataset [19, 20], and it disregards 
the distributions of the resulting compound set and 
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their implications for future predictors or generators [4]. 
cancels can help select additional compounds to test 
in order to improve the dataset quality for future drug 
design cycles while still testing the most promising can-
didates for today’s search.

The remainder of this section discusses the prob-
lem we attempt to solve and reviews related research. 
The "Proposed method" section introduces the cancels 
algorithm. Based on the experimental setup outlined in 
the "Experimental setup" section, the "Results and discus-
sion" section presents and discusses experimental results. 
Finally, we conclude the paper.

Background
Aiming to support the data gathering process and 
improve the data quality on-the-fly, an understanding 
of flaws and shortcomings in the dataset is crucial as it 
allows us to smooth them out with subsequent experi-
ments. Typically, no perfect and complete sample is avail-
able that could be used as a ground truth to compare with 
and strive for as it would render the gathering process 
obsolete. While missing values and sparsely populated 
areas of the compound space are simple to detect, biases 
are often less visible. Yet they compromise the training of 
models and inferred conclusions limiting the scope and 
precision of future discoveries [1, 2]. Therefore, in this 
paper, we aim to create awareness of potential biases and 
grant the researcher the opportunity to mitigate their 
effects early on, independently of the models that can 
arise from the collected data. Formally, we state the prob-
lem we aim to solve as follows:

Problem statement. Let D be an (unknown) compound 
dataset (potentially with labels or properties) that is rep-
resentative of an underlying distribution which we con-
sider to be the ground truth. Given only a biased subset 
B ⊂ D and a pool P of candidate compounds, the task is 
to select a set of compounds Psel ⊆ P such that a model 
trained on B ∪ Psel would provide minimally different out-
puts (such as predictions, clusters, etc.) from one trained 
on D.

The problem is adapted from the reconstruction prob-
lem we first introduced in 2020 [12], where, instead 
of selecting from a pool, we generated additional data 
points. We presented the imitate algorithm that, given 
only the biased dataset B, generates additional data to 
mitigate the bias. While imitate is limited to normally 
distributed data, mimic [13] extends its scope to data-
sets that can be modeled as mixtures of Gaussians. The 
assumption of normality is well motivated for three rea-
sons: First, intuitively, we would expect a trained model 
to perform well on the domain it is designed for, and we 
allow a certain amount of error around the fringes and 
would not expect it to perform on entirely different data. 

This describes a Gaussian-like distribution of the under-
lying dataset. We also expect a reasonably smooth data 
distribution, particularly for larger datasets. Second, 
Bareinboim et  al. [21] prove theoretically that, without 
additional data or assumptions, the true class label dis-
tributions cannot be recovered from the biased data. 
Hence, trained models will not generalize well. Therefore, 
some assumption is necessary. Third, normal distribu-
tions are very common in nature [22] as a consequence of 
the Central Limit Theorem.1

However, we can assume that not all distributions we 
might encounter are normally distributed. To avoid mis-
leading results in this case, both methods test if a Gauss-
ian fits the data reasonably well and refuse any further 
outputs if not. See the original papers for details on 
the definition of a ‘reasonable’ fit in this case. Since the 
observed dataset is potentially biased skewing its dis-
tribution, the acceptable margin necessarily needs to 
be sufficiently large. Hence, if the true data distribution 
is similar to (but not exactly) a Gaussian, this distinc-
tion will likely not be detected. But since we can expect 
smoothing over the data distribution to improve the data 
quality regardless, the implications of assuming a Gauss-
ian distribution are overall benevolent.

Because we use parts of both imitate and mimic for 
our research, we present them here briefly and refer the 
interested reader to the original papers for more details.

As illustrated in Fig.  1, given only a biased dataset B, 
imitate [12] uses Independent Component Analysis 
(ICA) [24] to transform it into a new space. There, the 
axes are statistically independent and chosen in a way 
that they show those data distributions that resemble a 
Gaussian the least. Keeping imitate’s assumption that 
the dataset’s ground truth follows a normal distribution 
in mind, this transformation exposes B’s weaknesses and 
allows for component-wise analysis of the data. After 
transforming the data to the new space found with ICA, 
imitate analyzes the data for each of the axes separately. 
It represents the data density with a histogram or grid-
like evaluation of a kernel density estimator and heuristi-
cally aims to find the Gaussian that most likely represents 
the ground-truth distribution under a selection bias sce-
nario. To find a good fit, imitate uses the bin positions 
and heights to fit a Gaussian density function using an 
ordinary least squares optimizer. To put more empha-
sis on the observed data than the data that is potentially 
missing due to a bias, imitate adjusts the weights dur-
ing the optimization to the bin heights. Note that this 

1 The Central Limit Theorem states that a sequence of independent and iden-
tically distributed (i.i.d.) random variables converges almost surely (that is, the 
probability of the convergence is 1) to a Gaussian [23]. Since we can typically 
assume that real-world measurements are not perfectly i.i.d. but rather combi-
nations of different effects, we often observe this effect.
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procedure yields fundamentally different results from 
traditional density fitting techniques using the Expecta-
tion-Maximization approach if a selection bias is present 
since instead of modeling the present data B, imitate 
aims to capture the potential ground truth D. See Fig. 2 
for a comparison. Once the Gaussians have been fitted 
for all components, imitate generates points to fill in 
the gap between the Gaussian and the observed density 
and back-transforms them to the original data space. If 
these generated points focus on certain areas, they indi-
cate a potential selection bias. Suitable visualization of 
these areas can help the researcher understand the data-
set and its potential flaws. Additionally, if a bias has been 
identified, adding the generated data points to the biased 
dataset B before training a model can help improve its 
performance.

Because imitate fits only one Gaussian per dimension 
to the data, it is limited to datasets whose ground truth 
can be expected to contain only one normally distributed 

cluster. mimic relaxes this limitation and divides the data 
into presumably Gaussian clusters before applying the 
imitate algorithm to each of them separately. The key 
element of mimic is the clustering itself. As opposed to 
typical clustering approaches that find the optimal sep-
aration of the present data, mimic aims to cluster the 
ground truth instead, given only the biased data. Start-
ing from small non-Gaussian clusters obtained via, for 
example, KMeans, mimic iteratively applies imitate 
to the cluster to identify where points need to be added 
to obtain a smooth Gaussian. When possible, mimic 
selects those points from other clusters that fill in the 
gap best, re-applies imitate, assigns further points, etc. 

Fig. 1 Overview over the imitate algorithm

Fig. 2 Comparison of the Gaussians fitted to a biased dataset (left) 
when using the traditional Expectation‑Maximization fitting (center) 
and the fitting procedure outlined in the imitate algorithm (right)
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until either a smooth Gaussian is achieved or no suitable 
points are available. Finally, mimic resolves overlapping 
clusters by merging and uses imitate for each of these 
clusters to generate and analyze points that can indicate 
and mitigate a bias.

Both methods have been shown to help mitigate selec-
tion biases on real-valued tabular data [12, 13] but have 
not yet been successfully applied to special types of data 
incorporating, for example, categorical or even binary 
features. Additionally, they cannot account for natural 
limitations or boundaries of the data space, and random 
generation of data points in the chemical compound 
space will most likely result in impossible compounds 
misleading models rather than helping them. Aiming to 
gain an understanding of chemical compound datasets 
and their inherent biases, in this paper, we present ways 
to utilize (parts of ) both methods in our context and 
overcome the issues mentioned above.

Related work
Except for imitate and mimic, to the best of our knowl-
edge, no method has been proposed to investigate biases 
without using a ground-truth sample or additional infor-
mation about the bias. In this section, we review fields 
that deal with related problems, i.e., bias detection with 
ground-truth samples and active learning for chemistry, 
and highlight the differences to our problem statement. 
Additionally, we discuss biases specifically in the chemi-
cal compound space.

Bias detection using ground-truth information
The goal of a learning task is to understand the inherent 

patterns of a dataset and to learn to infer typically unob-
served properties from descriptive features. Learning 
from data means that, based on a fully observed training 
set, a model can be trained to fulfill this task and to gen-
eralize to unseen data. The key ingredient to a successful 
generalization is that the training data shares the same 
distribution in terms of features and target property as 
the data the model will be applied to in the future. A bias 
violates this assumption and causes the generalization 
step to fail resulting in poor performance of the model.

The literature on Transfer Learning covers several kinds 
of distribution shift problems between observed and tar-
get data [25], whether it is due to a shift in the learning 
task, a shift in the data domain, or both. A special case 
of Transfer Learning is Covariate Shift Correction [26] 
where observed and target data share the same domain, 
e.g., the chemical compound space, and the same poste-
rior distribution, but follow shifted data distributions. An 
example of covariate shift occurs in the drug discovery 

process [27] where predictive models are trained on 
known drugs but expected to generalize to unexplored 
compounds. If the models are expected to perform well 
on the observed and the target data, that is, if the target 
space contains the observed data, this special scenario is 
called a Selection Bias [28–30].

In all three problem formulations, the implicit or 
explicit assumption is that knowledge of the target 
domain is available, either in the shape of its distribution 
or a representative sample. The traditional and popular 
approach to solve this distribution mismatch is then to 
weigh the training compounds based on their estimated 
relevance in the target domain during the model training 
process [30–33].

However, if the target domain cannot be specified or 
is generally unknown, as it is in our problem statement, 
none of these approaches can be used.

Active learning in chemistry
Active Learning is a semi-supervised Machine Learn-

ing setting that utilizes information from a trained model 
to infer the samples which would most improve the 
model [10]. The main aim is to train models using fewer 
labels than would be required for random sampling as 
these are often expensive to obtain.

An Active Learning strategy consists of an initial 
model, usually trained on a small amount of randomly 
selected data; a query strategy, which is responsible for 
identifying the most informative samples; and a setting, 
which determines how those samples are obtained. A 
wide variety of query strategies have been proposed in 
prior work, but uncertainty-based strategies are the most 
common [10]. These strategies evaluate the confidence 
of the model on each sample, and samples with the low-
est confidence (highest uncertainty) are considered the 
most informative. New samples can be obtained from 
an unlabelled pool (pool-based) or synthesized de novo 
(query-synthesis). In practice, pool-based Active Learn-
ing is typically preferred as synthesized samples are often 
difficult to label, or simply invalid [34].

In cheminformatics, Active Learning has demonstrated 
the potential to improve the quality of models while 
reducing the amount of data required [35]. For example, 
Smith et  al. used Active Learning to train a model for 
molecular energetics that outperformed a model trained 
using random selection while using only 10% of the avail-
able labels [35]. Active Learning has also been applied to 
the fields of drug-discovery [36], toxicity prediction [37], 
chemogenomics [38], and others [39].

In contrast to the approach presented in this paper, 
Active Learning attempts to select samples which 
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improve the current model. The selected samples are 
not necessarily transferable to other models [40]. Addi-
tionally, Active Learning intentionally seeks to bias the 
dataset towards informative samples and does not aim to 
explore the space or improve the dataset quality.

Bias in the chemical compound space
Hert et  al. [3] aim to quantify the bias of screening 

libraries towards biogenic molecules, given an estimate 
of the entire space and a specified optimal dataset, i.e., 
the optimal bias, by assessing the similarity between the 
observed and the optimal dataset. Given that the chemi-
cal space is estimated to contain at least 1060 molecules 
with 30 or fewer heavy atoms [41], stretching even 
today’s largest databases across that space to achieve the 
often idealized uniform distribution [5, 18] would result 
in very sparse coverage. The authors hence postulate that, 
as opposed to the aim to cover the entire space uniformly, 
biases toward specific domains are essential to enable the 
successful performance of models and researchers within 
those domains. In agreement with this, in this paper, 
rather than aiming to cover the entire compound space, 
we suggest a technique that mitigates the bias within 
an observed dataset while preserving its bias within the 
compound space. Therefore, despite improving the data-
set quality, we preserve the dataset’s specialization to its 
domain.

Sieg, Flachsenberg, and Rarey [2] investigated mul-
tiple benchmark datasets for structure-based virtual 
screening such as DUD, DUD-E, and MUV, and discov-
ered that they are all inherently biased since they have 
grown depending on human decisions based on individ-
ual assumptions and goals. When screening for specific 
properties, these biases persist and eventually find their 
way into models trained on these datasets resulting in a 
negatively impacted model performance [19]. Attempts 
to mitigate the dataset biases during screening evolve 
around different sampling techniques or strategic omis-
sion of features [2]. While those are feasible approaches 
in large databases, they mean a substantial loss of infor-
mation in small datasets [42] such as those we are work-
ing with. Here, the long-term goal must be to smooth out 
the biases within the dataset domain and improve the 
data quality in the future.

Proposed method
When presented with a potentially biased dataset, we 
would like to identify present biases and mitigate them 
in subsequent experiments. The imitate and mimic 
algorithms presented in the previous section deal with 
this problem for real-valued, numeric, and tabular data, 

but are not applicable to the chemical compound space. 
Compounds can be represented in a variety of different 
ways, e.g., as SMILES, molecules, or MACCS finger-
prints, but none of these representations fit imitate’s 
and mimic’s criteria. Additionally, to mitigate a bias, both 
algorithms generate data that smoothes out the distribu-
tion of the biased dataset. However, random generation 
of chemical compounds will most likely not result in 
meaningful and feasible compounds. We address both 
problems with our novel algorithm, cancels (Counter-
ActiNg Compound spEciaLization biaS).

The idea behind cancels is to represent the com-
pounds in the potentially biased dataset as MACCS fin-
gerprints because of their widespread use, fixed lengths, 
efficiency to compute, and solid performance in a diver-
sity of applications [43]. Based on a comparison of differ-
ent compound representations, we found that MACCS 
fingerprints also perform well in our case (see our experi-
mental results and Fig. 11 for details). We then use Prin-
cipal Component Analysis (PCA) to strongly reduce 
the dimensionality of the data and obtain Gaussian-like 
real-valued distributions as is necessary for imitate. In 
the PCA space, imitate can be applied, with adapta-
tions (as discussed below), and point to potential biases. 
Data to mitigate the bias could be generated in this space, 
but not transformed back to the original space leaving 
the output hardly interpretable. Instead, we propose to 
use the PubChem [44] database as an unlabeled pool of 
candidates and project each of them into the PCA space. 
Rather than generating new data, cancels chooses from 
the candidates. As a result, we not only ensure that a 
back-transformation to the original compound space is 
possible, but also that the selected candidates to mitigate 
the bias are indeed feasible compounds. Figure 3 summa-
rizes the procedure.

The remainder of this section discusses all involved 
steps in detail. It is organized in the order cancels 
uses it. Note that cancels draws from both imitate 
and mimic in the first three steps and when identifying 
compounds to mitigate the bias, respectively.

Data transformation
 Starting from a potentially biased set of compounds, 

we represent each of them using the MACCS fingerprint 
since it provides us with a fixed-length feature represen-
tation. MACCS fingerprints have been shown to include 
correlated features causing distance measurements to be 
flawed [45], however, we subsequently reduce the dataset 
dimensionality and thereby mitigate the effect of related 
features. At the same time, reducing the dimensional-
ity overcomes the problem of binary features. cancels 
uses PCA to reduce the compound dataset expressed 
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as MACCS fingerprints to the first nPC principal com-
ponents. If nPC is sufficiently small (see Fig.  12 for a 
comparison of different values; we use nPC = 5 in our 
experiments), we can observe continuous non-discrete 
distributions over the axes to which imitate can be 
applied. Note that by using PCA, we implicitly operate 
in Euclidean space as opposed to the typical treatment of 
MACCS keys using Tanimoto distances. As pointed out 
by Martin and Cao [46], this decision can lead to more 
emphasis on the compounds’ length than their differ-
ences and future research should be dedicated to apply-
ing Multi-Dimensional Scaling (MDS) [47] to a Tanimoto 
distance matrix instead.

Bias identification
Once the compound dataset is transformed into PCA-

space, imitate exploits the orthogonality of the principal 
components and analyzes the dataset distribution over 
each of them separately. Histograms or Kernel Density 
Estimators (KDE) evaluated over a grid approximate the 
data’s probability density. KDE is preferable for small 
datasets since it is less sensitive to the choice of grid 
whereas histograms are substantially faster to evalu-
ate. Similar to imitate, we choose the type of density 

estimation based on the dataset size (with a threshold 
of 1000 compounds), and select the grid granularity that 
optimizes the corrected Akaike Information Criterion 
[48].

Using the density estimates on the grid as the tar-
gets and their square as weights, imitate fits a scaled 
and truncated Gaussian that models observed data as 
closely as possible but might over-estimate areas that are 
under-represented in the data. This discrepancy between 
observed data and fitted Gaussian points to potential 
biases. imitate’s weighted optimization (as explained 
in the  "Background" section) is the key to this result: It 
puts more emphasis on higher density values during the 
optimization allowing room for error on lower densities 
under the premise that densely populated areas are more 
‘trust-worthy’ than sparse ones. However, there is no 
guarantee that imitate identifies areas as biased that are 
actually populated in the compound space.

Boundaries
To alleviate the problem that imitate points to areas 

of the compound space that do not contain feasible com-
pounds, we need to derive a method to provide the opti-
mization process with boundaries. Luckily, the goal is to 
smooth out the distribution to obtain a Gaussian density. 
While this problem has only one global optimum, it has 
multiple local optima that bring equally smooth Gauss-
ians at the cost of filling in more compounds. If imitate 
converges to a globally optimal solution that is outside 
the feasible compound space, we redirect it to the next 
best solution within the space unless the quality gap 
between the solutions is too extreme. The boundaries of 
the feasible compound space are extracted from the pool 
that is used to select bias-mitigating solutions.

In order to give the user control over the acceptable 
quality gap, we suggest a parameterized solution. Instead 
of using constrained optimization, we adjust the optimi-
zation target and weights. Out-of-bounds optimization 
targets are set to 0, and their weight is set to w > 0 times 
the highest within-bounds weight (see the imitate paper 
[12] for details on the weights and optimization). A small 
w will have little impact on the optimization and the 
obtained Gaussian is not likely to change. The larger w 
is, the more strongly the optimization is forced to find a 
different solution. Intuitively, w quantifies the acceptable 
quality gap since errors on out-of-bounds targets can be 
translated to errors in high-accuracy regions with respect 
to the grid and the size of the out-of-bounds region.

Based on a variety of preliminary experiments, we 
decided to use w = 103 for our experiments since it is 
sufficiently strong to move the optimizer to a suitable 
within-bounds optimum unless there is no other rea-
sonable solution. See Fig. 4 for a comparison of different 

Fig. 3 Overview over cancels 
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choices for w. Once the Gaussian has been redirected, 
compounds need to be identified that are capable of fill-
ing in the gap.

Identifying compounds to fill in the gap
Univariate Gaussians fitted to each component sepa-

rately can be combined into a multivariate Gaussian (see 
our previous work [13] for details) pointing to biases in 
PCA space. To mitigate these biases, compounds need to 
be identified that, when added to the dataset, smooth out 
its distribution by filling in the gap between present data 
and fitted Gaussian.

The mimic algorithm iteratively uses imitate to find 
flaws in initial clusters, scores, and adds points mitigating 
these flaws until it finds a bias-aware Gaussian cluster-
ing of the data. In each step, after obtaining a new target 
Gaussian from imitate, mimic scores all available points 
from other clusters and uses the scores to randomly 
select candidates to be added to the cluster. It stops once 
adding further points would not improve the fit of the 
Gaussian.

cancels adapts this procedure and exploits mimic’s 
scoring function to select compounds from the pool 
transformed into the same PCA space. Note that PCA 
as a dimensionality reduction technique is not invert-
ible, hence we need to store the mapping of pool com-
pounds from the original to the PCA space in order to 
infer knowledge from the chosen candidates. Given the 
target Gaussian from the previous steps, cancels scores 
each compound c in the pool with

where g(c) is the density assigned by the Gaussian trun-
cated at the triple standard deviation, d(c) measures the 
discrepancy between fitted Gaussian and available data 
at this point, and 1 is the indicator function output-
ting 1 if the index condition holds true and 0 otherwise. 
After normalization, the calculated scores can be used 
as probabilities to randomly select compounds from 
the pool without replacement. cancels stops sampling 
compounds when adding further compounds would not 
improve the fitness of the Gaussian, that is when the 

s(c) = 1g(c)d(c)�=0

(

log g(c)+ nPC log d(c)
)

,

likelihood of the Gaussian given the training set together 
with the additional data does not increase or the pool is 
exhausted.

Finally, cancels uses the stored mapping to obtain the 
original representation of the selected compounds. These 
compounds can be interpreted as suggestions of which 
experiments to carry out next, but since they have been 
selected randomly based on the calculated probability 
distribution, a direct interpretation might not be optimal. 
However, the selected compounds describe underrepre-
sented areas. Analyzing their characteristics can help the 
researcher gain insights into which kinds of experiments 
fell short in the past, and manual selection of experi-
ments that fill in this gap can be a valuable compromise 
between improved data quality and meaningful experi-
ments with interesting results.

If the pool of candidate compounds is rather small, 
alternatively, a researcher might prefer to use the normal-
ized scores for the entire pool directly and, rather than 
sampling from it, choose manually subject to additional 
criteria such as availability, price, or other properties not 
represented by the fingerprint. Note that adding only the 
compounds with the highest scores does not necessarily 
smooth out the dataset’s distribution but has the poten-
tial to create a new bias. Instead, the researcher would 
need to choose a large amount of highly-scoring com-
pounds, some medium-score compounds, and even a few 
compounds with low scores. To simplify this process, we 
suggest repeatedly choosing a few compounds with high 
scores, adding them to the dataset, retraining cancels, 
and scoring the remaining pool until a desired number of 
compounds have been identified.

Experimental setup
To showcase what cancels can reveal about a data-
set and what insights can be won, we apply it to multi-
ple datasets and analyze its results. Our use-case for 
this paper is biodegradability, however, cancels could 
also be applied to other domains such as drug develop-
ment. Although cancels makes suggestions as to which 
compounds might be interesting to obtain labels for, 
analyzing these recommended compounds and their 
characteristics grants us more than that: It teaches us 
about weaknesses of the dataset and underrepresented 
areas that might cause a lowered model reliability regard-
less of the trained model. To quantitatively evaluate can-
cels’s performance though, we need to train a model to 
evaluate changes in accuracy. Note that no matter what 
we evaluate, cancels is in any case provided with only 
the MACCS fingerprints of the datasets, and has no 
access to labels or further data characteristics. In this 
section, we introduce our general experimental setup. 
We might deviate from this setup in single experiments 

Fig. 4 Comparison of different weights for imitate with a custom 
boundary
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depending on the question we aim to answer. All devia-
tions are listed in the following section for the sake of 
reproducibility. Unless stated otherwise, we use the setup 
introduced here. Our implementation together with all 
experiments, results, and plots is publicly available on 
GitHub [49] for the sake of the reproducibility of results 
and to support further research.

Datasets
The main datasets we analyze in this paper are the 

EAWAG-SOIL [50] (short: SOIL) and EAWAG-BBD 
(short: BBD) datasets extracted from the enviPath plat-
form [51–54]. Both datasets contain biodegradation 
pathways capturing the chemical changes of a given start-
ing compound (we refer to this as a “root compound”) 
during biotransformation. SOIL and BBD contain 343 
and 248 root compounds, respectively. We prepare both 
datasets by extracting the compounds’ MACCS finger-
prints, and, to investigate the dataset development over 
time, join the year of publication of each pathway to 
its root compound where possible (299/343 root com-
pounds in SOIL have years, and 215/248 in BBD) as well 
as use categories from the PubChem database [44].

For a large-scale experiment demonstrating how the 
application of cancels can help improve the classifica-
tion accuracy, SOIL and BBD are too small to yield sta-
tistically reliable indications. Instead, in this case, we use 
the substantially larger Tox21 dataset [55, 56] containing 
11093 compounds and similarly obtain MACCS keys as 
input features as pre-processed by Stepišnik et al. [43].

To put SOIL and BBD and their development over the 
years in a frame of reference, we downloaded all unique 
SMILES from the PubChem database to obtain an esti-
mate for the span and the density of the compound space.

As pools for cancels to select compounds from, we 
use the subset of PubChem with an “Agrochemical” flag 
to be able to extract the same use categories we obtained 
for SOIL and BBD. When experimenting with Tox21, we 
split it into subsets so no external pool is necessary (see 
the following section for details).

Classifiers, evaluation, and stability
Tox21 is a dataset with multiple labels, hence we use 

a multi-label classifier to predict its labels. To achieve 
the most stable performance among runs and reduce 
the effect of randomness induced by the classifiers, we 
train Ensembles of Classifier Chains (ECCs) [57] with 10 
chains per ensemble. We evaluate the classifier perfor-
mance using Multilabel-Accuracy (short: Accuracy)

acc =
#TP+ #TN

#TP+ #TN+ #FP+ #FN
.

Here, #TP and #TN count the number of correctly pre-
dicted positive and negative labels, respectively. Similarly, 
#FP and #FN count the number of mispredicted labels.

To achieve statistical stability and ensure the signifi-
cance of observed patterns, we repeat every experiment 
100 times under different dataset splits and report the 
average results together with 95% confidence intervals.

Results and discussion
cancels is a method that, given only an unlabeled data-
set, searches for biases and underrepresented regions 
and suggests additional compounds that can improve 
the dataset quality. As such, we will use cancels as a 
tool to identify flaws in the dataset and investigate if the 
suggested compounds can indeed help improve the per-
formance of subsequently trained models. This section 
investigates several questions ranging from if the bias spi-
ral discussed in the introduction can indeed be observed 
in the datasets to what can be won by using cancels. 
Unless specified explicitly, all experiments have been set 
up as outlined in the "Experimental setup" section. 

How did the datasets develop over time?
Independent of if a model is in place to support the 

choice of which experiments are the most promising or 
not, we can make the most reliable assumptions on the 
outcome of experiments for compounds that are similar 
to those we observed before. We hypothesize that this 
reliability shapes the process of further experimentation 
and hence induces specialization to the part of the com-
pound space that is already well populated while explora-
tion of other parts of the compound space falls short.

This hypothesis seems to be confirmed for the develop-
ment of the SOIL and BBD datasets. Figure 5 illustrates 
the development of the root compound datasets from 
the year 2000 to 2015. We use the PubChem database as 
a lower boundary for the space of feasible compounds 
(i.e., PubChem measures the already discovered com-
pound space). The true space is even larger but has not 
yet been fully explored [14]. Regardless, neither SOIL nor 
BBD covers the entire space—the datasets are special-
ized to their respective domains. Both datasets consist 
of one main group of compounds and a second group 
that is structurally different from the first one. In SOIL, 
this smaller group mainly corresponds to sulfonamides 
typically acting as antibacterial and antifungal agents. In 
BBD, it corresponds to compounds containing groups 
of multiply oxidated elements such as sulfates and nitro 
compounds. We can observe that, although compounds 
are continuously being added to the datasets, their distri-
butions seem stationary and the gaps between the main 
and the small groups are never closed.
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Figure  6 further quantifies this suspicion. For both 
datasets, during the first years, the average distance of 
compounds to the center decreases indicating that com-
pounds were added close to the center in the already 
populated areas. In later years, the average distance to 
the center has a slight upward trend, however, the stand-
ard deviation is decreasing at the same time indicating 
a shift of the center to another already populated area. 
In both cases, no new areas of the compound space are 
being explored although new compounds are continu-
ously being added. Additionally, a small standard devia-
tion implies a small area a model specializes to while 
other more sparsely populated areas are less reliably 
predictable.

Which underrepresented regions can cancels detect?
Application of cancels to the SOIL and BBD datasets 

reveals the underrepresented regions displayed in yel-
low in Fig.  7. When comparing the datasets and those 
regions to the entire compound space estimated using 
PubChem, we can see that mitigating these biases, while 
potentially improving the dataset quality, does not gen-
eralize towards covering the entire chemical space but 
rather smooths out the dataset’s distribution locally while 
retaining the specialization to the dataset’s domain.

One interesting observation is that cancels suggests 
adding compounds on the outer ranges of PubChem 
rather than its center. Sampling new compounds ran-
domly would result in a distribution shift towards that 

Fig. 5 Qualitative dataset development for SOIL and BBD root compounds in relation to the compound space represented by the PubChem 
dataset and visualized in the PCA spaces obtained from SOIL (top), BBD (center), and PubChem (bottom). In all three datasets, white represents the 
highest density
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of PubChem and the dataset would lose its focus on the 
domain for which it is designed.

Note that the indicated areas focus on regions within 
the compound space due to the boundaries introduced in 

the "Proposed method" section, so finding suitable com-
pounds that mitigate this bias is possible.

Which kinds of compounds does cancels suggest to miti-
gate the bias? 

To fill in the underrepresented regions identified in the 
previous experiment, we offer cancels a pool of com-
pounds to choose from. This pool is assembled from 
those compounds in the PubChem database that carry 
an “Agrochemical” flag. The reduction to this subset was 
necessary to enable us to extract the same auxiliary infor-
mation from the pool data that is already available for the 
SOIL and BBD datasets. Figure 8 displays the frequency 
of relevant, non-exclusive labels for the entire pool (in 
gray) as well as the input dataset (SOIL in blue, BBD in 
wine) and the top 20 and top 50 candidate compounds to 
mitigate the bias.

We observe a shift towards fungicides and herbicides 
for SOIL and biocides and fungicides for BBD in the 
recommendations for both datasets. This is a meaning-
ful result since both categories are under-represented 
in the datasets by design, but seem relevant to add as 
they are structurally similar in order to train models on 
the datasets. Comparison with the entire pool shows 
that cancels specifically targets compounds belong-
ing to these categories—they do not reflect a general 
trend of the pool. Note that these results have been 
obtained although cancels was never presented with 
these categories but only the MACCS representations 
of compounds.

Cross-check: does cancels perform as expected?
To cross-check that cancels is working as intended, 

we carry out an additional experiment. Training a ker-
nel density estimator to model the dataset’s density, we 
sort all compounds by their assigned densities. Hold-
ing out the x% of the dataset with the lowest density, 
we use cancels on the rest and score the held out 
compounds. Intuitively, removing data from a dataset 
should reduce its quality and result in high scores for 
the removed data aiming to retrieve the original dataset 
quality.

The results are shown in Fig.  9. We see that for low 
percentages x, the scores are generally low. This is 
expected since outliers will be removed first and can-
not be expected to score highly. For high x the average 
scores are decreasing again. This is also expected since 
cancels is applied to a very small portion of the data-
set only and, by design, makes conservative estimates 
resulting in high scores only for some of the removed 
compounds. The peak is at x = 50% where both effects 

Fig. 6 Quantitative development of SOIL and BBD root compounds 
in terms of the compound’s average distance to their center (top) and 
their dataset size (bottom)

Fig. 7 Potential biases detected by cancels for SOIL (top) and BBD 
(bottom) visualized in their respective PCA spaces against the 
PubChem compound space
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are minimal. Overall, cancels’s general behavior fits 
our expectations.

We notice a few irregularities in the patterns devi-
ating from a smooth ascend to and descend from the 
x = 50% peak. These irregularities stem from a change 

in the underrepresented area cancels points to and 
are an indication of a bias in the dataset: If the data-
set was smooth and unbiased, removing those x% of 
compounds with the lowest density would narrow the 
dataset to its center (or, if there are multiple clusters, 
to their centers) equally from all sides. In this case, 
the estimated Gaussian would stay consistent over all 
x ≤ 50% and potentially even for higher ones. Hence, 
since we observed jumps, we can conclude that a bias 
must be present even from this perspective.

Can cancels improve the model performance?
To assess the relevance of the compounds suggested 

by cancels, we use the Tox21 dataset (see our experi-
mental setup) due to its size and set up an experiment as 
follows: In each of 100 runs, we randomly hold out 40% 
of the dataset as a test set (4437 compounds), offer 40% 
of the remaining data as a pool (4437 compounds), and 
use the rest for training (2219 compounds). Due to the 
sampling of the relatively small training set, a statistically 
small bias can be introduced whose effect is smoothed 
out by the 100 runs. Note that we do not introduce an 

Fig. 8 Qualitative evaluation of the top 20 and top 50 compounds suggested by cancels to mitigate the detected biases in SOIL (top) and BBD 
(bottom) in comparison to the respective dataset’s compounds and the “Agrochemical” subset of PubChem. Note that categories are non‑exclusive

Fig. 9 While holding out x% of the SOIL (top) and BBD (bottom) 
datasets, we train cancels on the rest. Bar heights represent average 
scores of the holdout set with their corresponding uncertainty 
intervals (black lines)
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artificial bias into the dataset with our sampling proce-
dure but instead retain the original bias we suspect to be 
in the dataset.

Based on the training set, we select additional com-
pounds from the pool in four different scenarios: We 
can select (i) no additional compounds, (ii) nCancels com-
pounds suggested by cancels, (iii) nCancels compounds 
that feed rather than mitigate the bias based on density-
based random sampling (i.e., we sample based on the 
dataset distribution directly), or (iv) all available addi-
tional compounds (i.e., the entire pool).

A classifier is then trained on the training set together 
with each selection of additional compounds and evalu-
ated on the test set.

Figure 10 shows that compound selection using can-
cels not only is better than continuing to feed the bias 
but also than using the entire pool! A repeated meas-
ures ANOVA with posthoc Tukey HSD test [58, 59] 
confirms that these results are statistically significant 
under significance level α = 0.01.

Splitting the test dataset along the compounds’ 
median density reveals that this effect is particularly 
strong in the low-density areas. This is an essential 
result since it supports the exploration of the space that 
breaks the bias spiral and has the potential to lead to 
global rather than local optimization.

How does the compound representation affect the 
performance?

Using a MACCS fingerprint as a compound’s feature 
representation for training a model is widely popular 
[43] due to the computational speed and the solid per-
formance in different applications. However, cancels’s 
compound feature representation is independent of that 

used by the model. To investigate which representation 
performs best in cancels, we repeat the previous exper-
iment with the following competitors to MACCS finger-
prints: (i) Continuous Data-Driven Descriptors (CDDD) 
[60] obtained from an RNN autoencoder, (ii) PaDEL 
[61], a set of 1875 2D and 3D molecular properties, (iii) 
Spectrophores [62] calculated from 3D properties of mol-
ecules using affinity cages, and (iv) Mol2vec [63], a neu-
ral network-based embedding similar to the word2vec 
models used in Natural Language Processing trained to 
embed structures co-appearing frequently near each 
other in latent space. For all competitors, we obtained the 
pre-processed datasets from Stepišnik et al. [43].

Figure  11 illustrates the results: The differences 
between representations are small. MACCS and Mol2vec 
perform slightly better than the rest, and MACCS finger-
prints additionally show a smaller variance among runs. 
Ultimately, the right choice of feature representation 
depends on the application and should be investigated 
individually, but in our use case, using MACCS finger-
prints for cancels seems well justified.

How does the number of principal components influence 
the performance?

Choosing the correct number of principal compo-
nents for PCA in cancels in an unsupervised setting 
is a difficult task since we have no feedback as to which 
number performs best. Intuitively (and following the 
Central Limit Theorem), the smaller the number nPC of 
principal components, the more closely our dataset dis-
tribution will resemble a Gaussian. At the same time, 
the higher nPC , the more variance in the dataset we can 
explain using the components. That is, a dataset can be 
modeled perfectly if its dimensionality matches nPC , but 

Fig. 10 Dividing the Tox21 dataset into a training set, a pool, and a test set, we train a classifier on either the training set only, the training set 
together with the entire pool, the training set plus cancels‑based compound selection, and the training set plus a selection that feeds the biases 
instead of mitigating it. The box plot (left) displays the results in terms of accuracy when evaluating the trained models on the test set. A confidence 
interval plot (right) indicates that compound selection using cancels is significantly better than all other options
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information will be lost if the dimensionality is reduced. 
We can see both aspects in Fig. 12 where there is a peak 
around nPC = 8 indicating that the results presented here 
(with nPC = 5 ) could have been better, but our estimated 
value is reasonable. To choose a suitable value for nPC , 
as a rule of thumb, we suggest trialing different values 
and visualizing the dataset distribution over the result-
ing components. A solid choice is the largest value that 
shows Gaussian-like distributions over all components. 
In future research, we will investigate how to choose nPC 
automatically. 

Can iterative application of cancels improve the accu-
racy even further?

The previous experiments showed an improvement in 
accuracy for cancels-based compound selection, espe-
cially in lower-density areas of the data space. To inves-
tigate the long-term effect, we carry out a similar but 
iterative experiment where we randomly split the pool 
into 5 equally-sized sub-pools. In each of five iterations, 
we select additional compounds from the correspond-
ing sub-pool based on the training set and the selections 
from all previous iterations. As before, we select the same 
number of points for both cancels-based sampling and 
sampling based on the data density in every iteration to 
ensure a fair comparison. Note that an iterative applica-
tion of cancels can help obtain a smoother result since 
the selection of suitable additional compounds is a rand-
omized process. Particularly when working with multiple 
dimensions, selecting one compound that fills in a gap in 
one dimension can create artifacts in others that need to 
be smoothed in subsequent iterations. If the data is suf-
ficiently Gaussian, however, no further compounds are 
added. More restrictive definitions of what is ‘sufficient’ 
can be implemented before each round of compound 
selections, for example using a statistical normality test 
such as the Shapiro-Wilk test.

Figures  13 and 14 summarize the impact of cancels 
on each of the iterations. Firstly, we observe that three 
iterations seem sufficient to smooth out the dataset dis-
tribution. Additional iterations have no effect and the 
accuracy is saturated. After three iterations, cancels 
has selected only about 4000 compounds and still largely 
outperforms the entire pool with about 7000 compounds. 
The red line (“Tr + High Density Compounds”) stands 
for training on the training set together with a random 
sample from the pool. Since the pool follows the same 
distribution as the dataset, sampling from it will result in 
mostly compounds in dense areas, but few compounds 

Fig. 11 Influence of different compound representations on cancels’s 
performance

Fig. 12 Influence of the number of principal components used in 
cancels’ dimensionality reduction

Fig. 13 Iterative application of cancels and all competing baselines (see Fig. 10) on the Tox21 dataset: In each of the five iterations, the compound 
selection takes place based on the training set and the selected compounds from previous iterations. For cancels, the accuracy improves upon all 
other selection strategies
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from sparse areas can also find their way in, so the red 
line eventually catches up with cancels. This effect is 
an anomaly due to our experimental design and will no 
longer be observed if the pool’s distribution does not 
match that of the dataset and the test set. In summary, 
selecting the right compounds not only improves the 
data quality but also is substantially more economical as 
it means carrying out fewer experiments.

In practice, improving the dataset quality is not the 
only goal—a researcher also aims to make decisions 
regarding their data collection based on their current 
interests, projects, and goals. To achieve a healthy bal-
ance, we suggest one or two iterations of cancels after 
each interest-driven addition to the dataset before the 
dataset is fit for its upcoming tasks.

Conclusion
Predictive modeling can support the development pro-
cess of new chemicals, however, those models specialize 
to the data provided, and solid performance can only be 
guaranteed in densely populated areas of the compound 
space. Avoiding carrying out experiments with a very 
uncertain result, new additions to the dataset will most 
likely stem from already densely populated areas where 
the prediction reliability is high. Over the years, this 
results in a stronger over-population of already over-
populated areas and a shrinking applicability domain of 
trained models inducing a specialization bias.

To break this spiraling specialization cycle, in this 
paper, we propose cancels, a novel technique to inves-
tigate a dataset independently from a specific model, 
create awareness of underrepresented areas, and suggest 
additional compounds that can help mitigate the bias. 
So far, cancels is unique in many regards: (i) It gener-
ally improves the dataset quality in a model-independent 
fashion while other methods are only designed to sup-
port the training process of one specific model, (ii) while 
generalizing the dataset and enabling further targeted 
exploration of the compound space, cancels does not 
lose the desired specialization to a certain domain when 

suggesting additional compounds, and (iii) cancels’s 
outputs are interpretable and can be used to investigate 
different aspects of a dataset as demonstrated in our 
extensive set of experiments.

Our various experiments indicate that on two real-
world datasets, SOIL and BBD, a continuous speciali-
zation can indeed be observed which renders these 
datasets a valid use-case for cancels. Interpretation of 
the results suggests that a focus on fungicides and her-
bicides or biocides and fungicides for SOIL and BBD, 
respectively, would increase a trained model’s applicabil-
ity domain and hence improve its performance. Valida-
tion of cancels on the Tox21 dataset shows that careful 
selection of future experiments can not only reduce the 
total amount of experiments to be carried out but also 
improve the performance of predictive models by a sig-
nificant margin.

All results presented in this paper have been obtained 
based solely on the compounds’ MACCS keys. Future 
research will investigate how auxiliary information can 
be integrated in an effective way where available. Addi-
tionally, we aim to make cancels fully automated for 
the simplest usage possible. As such, we aim to automati-
cally infer parameters such as the number of principal 
components from the dataset and context, for example 
using information criteria that incorporate a measure of 
Gausseanity but penalize for every dimension lost. Over-
all, we hope that cancels can be of use to help research-
ers understand the datasets they are dealing with and to 
improve their quality early on to improve their usability 
universally.
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