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The governing hydrological processes are expected to shift under climate change

in the alpine regions of Switzerland. This raises the need for more adaptive and

accurate methods to estimate river flow. In high-altitude catchments influenced

by snow and glaciers, short-term flow forecasting is challenging, as the exact

mechanisms of transient melting processes are di�cult to model mathematically

and are poorly understood to this date. Machine learning methods, particularly

temporally aware neural networks, have been shown to compare well and often

outperform process-based hydrological models on medium and long-range

forecasting. In this work, we evaluate a Long Short-Term Memory neural network

(LSTM) for short-term prediction (up to three days) of hourly river flow in an alpine

headwater catchment (Goms Valley, Switzerland). We compare the model with

the regional standard, an existing process-based model (named MINERVE) that

is used by local authorities and is calibrated on the study area. We found that

the LSTM was more accurate than the process-based model on high flows and

better represented the diurnal melting cycles of snow and glacier in the area of

interest. It was on par with MINERVE in estimating two flood events: the LSTM

captures the dynamics of a precipitation-driven flood well, while underestimating

the peak discharge during an event with varying conditions between rain and

snow. Finally, we analyzed feature importances and tested the transferability of

the trained LSTM on a neighboring catchment showing comparable topographic

and hydrological features. The accurate results obtained highlight the applicability

and competitiveness of data-driven temporal machine learning models with the

existing process-based model in the study area.
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hydrological model, LSTM, short-term forecast, machine learning, alpine, streamflow,
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1. Introduction

Monitoring and controlling hydrological processes has a

long history in Switzerland, where traditional irrigation systems

enabled subsistence-based mountain agriculture (Crook, 2001)

and systematic hydrological measurements are taken for over 100

years (Hegg et al., 2006). Especially, modeling and forecasting

river discharge from meteorological observations have been an

essential task of hydrologists. Until today, these hydrological

forecast models help to forecast hydrological power output (Ogliari

et al., 2020), mitigate the dangers of flood events (Alfieri et al.,

2013), and improve the understanding of the underlying processes,

such as snowmelt and evapotranspiration (Höge et al., 2022).

Especially in Switzerland, many civil services such as local

environmental agencies and hydropower producers depend on

reliable forecasts of river flow for effective management of water

resources. The forecasting of water discharge is challenging in

alpine environments, due to the dynamics of snow and glacier melt

and the fine-grained heterogeneity of the terrain, which requires

injecting information from detailed elevation maps (Tiel et al.,

2020).

In general, three families of models have been used to

predict river discharge (Devia et al., 2015). First are physically

based models, which are mechanistic and rely on the solution

of a complex set of differential equations. They tend to be

computationally expensive, but their parameters have physical

interpretation and are valid for a wide range of situations. Second

are conceptual or process-based models, which are parametric

model reservoirs, and include semi-empirical equations with a

physical basis. Their calibration involves curve fitting, which makes

direct physical interpretation difficult. Third and last, empirical

or data-driven models are data-based and designed with little

consideration of features and processes within the system. They

are often only valid within the boundary of the given domain, but

have high predictive power and are computationally very efficient.

Among data-driven models, artificial neural networks have been

known for decades (Campolo et al., 1999; Hsu et al., 2002), but

only re-gained popularity in recent years thanks to deep learning

(DL) based hydrological models (Kratzert et al., 2019; Anderson

and Radić, 2022; Lees et al., 2022).

The re-emergence of neural networks for hydrological models

is supported by new computational infrastructure combined with

increasing availability of river flow and meteorological observation

data (Shen et al., 2021). Different DL models have been developed

to predict river flow from meteorological forcing data. The

most common are Multilayer Perceptron (MLP), Convolutional

Neural Networks (CNN), and Long Short-Term Memory (LSTM)

Networks (Sit et al., 2020). Combined structures such as encoder-

decoder LSTMs (Kao et al., 2020) or CNN-LSTM (Feng et al.,

2020) have been put to the test as well. Even though these

modern data-driven approaches are showing promising results,

they are only slowly tested on catchments in Switzerland. For

instance, Mohammadi et al. (2022) recently combined the outputs

of three existing conceptual models used in Switzerland with

a MLP neural network to estimate the river runoff in the

Emme watershed in central Switzerland. Also, only a handful

of studies have focused on leveraging the predictive power of

neural networks for application in glacier-influenced catchments.

For instance, Anderson and Radić (2022) identified a relationship

between glacier cover extent and temperature sensitivity of the

model by using a CNN-LSTM hybrid model for daily streamflow

simulation. De la Fuente et al. (2019) developed a forecast

system for nine hydrometric stations in Chile, predicting hourly

discharge values three days ahead with high accuracy (Nash-

Sutcliffe efficiency of 0.97 to 0.99).

In this paper, we aim at closing this research gap and

contributing to the growing hydrological research in data-driven

models. We do so by developing and testing a LSTM model for

river discharge monitoring in the glacially-influenced Goms Valley

in Switzerland.We compare our model with the local standard: the

operational systemMINERVE (Hernández, 2011; Hernández et al.,

2014), a conceptual bucket model developed and managed by the

Research Center on Alpine Environment (CREALP).

In summary, our main contributions are:

• the development of a light-weight data-driven LSTM model

that can be trained with moderate computational effort, to

predict near future discharge with variable predictive horizons

up to 72 h,

• a comparison to the conceptual MINERVE model, which

represents the operational standard in the area of interest, and

• further studies analyzing the relative importance of the input

variables and the robustness of the LSTM approach to a

transfer to a different catchment, which are considered the

main limitations of data-driven models (Devia et al., 2015).

We compare two approaches for the LSTM setup: (1) using the

same input feature set as the process-based model (temperature,

precipitation, radiation) for best comparison and (2) including

past discharge observations in the feature set to harness the auto-

correlation of the discharge signal. During the forecasted 72 h

window, discharge observations are not available and will be

replaced as inputs by the model predictions in a recursive manner.

We further analyze the impact of training the LSTM with a loss

function on the entire forecast window compared to a loss function

on the first predicted value only.

The remainder of this paper is as follows: we start by describing

the study area and data in Section 2. Different model setups are

detailed in Section 3. We continue by presenting the results of the

different experiments in Section 4. Finally, in Section 5, we review

the obtained results and place our findings into context with the

current literature.

2. Data description

2.1. Study area

The studied catchment in the Goms Valley is situated in the

southern Swiss Alps at the foot of the Rhône glacier, where the

Rhône river has its source. Large parts of the North and of

the Southeast of the catchment are covered by glacier ice. Two

hydrometric stations mark off the sub-catchments Gletsch and

Goneri on which this study is focused. Figure 1 shows the location

of the two sub-catchments within the Rhône catchment and further

includes a table with a summary of the sub-catchments’ geographic
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properties. River discharge at these hydrometric stations is a

combination of rainfall-induced runoff and meltwater from snow

and glacier ice, which then feeds into downstream sub-catchments.

Human influence is low in the area and can be therefore neglected.

2.2. Available observation data

2.2.1. Meteorological forcing data
The Swiss Federal Office of Meteorology and Climatology

MeteoSwiss provides historical reanalysis data and real-time

observations of precipitation (mmh−1), air temperature (◦C) and

incoming shortwave radiation (Wm−2) for all of Switzerland. Air

temperature and radiation are point observations from ground-

based weather stations distributed throughout Switzerland. Since

2005, precipitation is available as the gridded product CombiPrecip

of 1 km resolution combining radar and rain-gauge observations

(Federal Office ofMeteorology andClimatologyMeteoSwiss, 2014).

Before 2005, precipitation is available only from rain gauges.

2.2.2. River flow observations
Observations of river flow discharge (m3 s−1) at the two

measurement stations Gletsch andGoneri are operated by the Swiss

Federal Office for the Environment FOEN (Federal Office for the

Environment FOEN, 2017). The observation history since 1990 was

provided by CREALP for this study.

Figure 2 depicts both the mean annual flow and the flow

duration curve for the studied period 1999–2020. The observed

annual flow patterns can be characterized as nivo-glacial for the

station Goneri, and glacial for Gletsch. For both stations, peak

flows are reached during the melt season in (late) summer, showing

diurnal cyclic patterns due to sub-daily variations of glacier and

snow melt induced by variations in air temperature and solar

radiation (find a flow example showing the diurnal melting cycles

in Figure 9 in the Supplementary material). At both locations,

flood events of different magnitudes have been recorded over the

considered time period (1999–2020). They often occur at the end

of summer on a weak snowpack and high baseflow. Intensive

precipitation events can then lead to direct runoff and sometimes

mobilize snow melt, producing extreme discharge values.

2.3. Data pre-processing

We consider the following meteorological forcing variables

at hourly frequency: air temperature, precipitation and incoming

shortwave radiation. The forcing data is aggregated in two steps,

first on elevation bands, each spanning 400m of altitude, to

account for the large spread in elevation of the alpine catchment.

Temperature and radiation observations at the nearest weather

stations have been interpolated via inverse distance-weighting, and

precipitation has been extracted directly from the CombiPrecip

gridded product and integrated over each zone. Subsequently, the

resulting elevation band-separated data is aggregated a second time

into two zones, a glacier-covered zone and a non-glacial zone, by

using the glacier cover extent from swissTLM3D (Federal Office of

Topography swisstopo, 2013) in its 2013 version. Glacier-covered

areas show different reactions to meteorological forcings due to

altered energy and mass flows in the icepack (Hock and Jansson,

2005). The separation will allow the model to learn those different

reactions. For better comparison, we assume a constant glacier

cover extent as done in the process-based model MINERVE. We

highlight that a dynamic glacier cover separation of the inputs

would be advised to represent seasonal dynamics and account for

shrinking glaciers as observed in the Swiss Alps (Rounce et al.,

2023).

The final model inputs are then the three meteorological

forcings, once for the glacier-covered zone and once for the non-

glacial zone. This specific two-step aggregation scheme was selected

in order to keep the number of input variables constant, while still

accounting for structural differences between glacier-covered and

open terrain.

Previous river discharge is an additional highly informative

variable to estimate current and future discharges due to its strong

auto-correlation. In some experiments, detailed in Section 3.3, we

introduce it in the tested models as an additional input variable.

Since the empirical distributions of the discharge at both stations

are highly skewed towards small values, we use the natural log-

transform of the discharge to focus on changes in magnitudes of

flow rate.

3. Methods

This section describes the process-based MINERVE

model (Section 3.1) and the data-driven LSTM network

architecture we used (Section 3.2). The last two Sections 3.3

and 3.4 describe the experimental setup and evaluation

metrics, respectively.

3.1. Process-based model: MINERVE

MINERVE (Hernández et al., 2020) is a process-based

rainfall-runoff model developed by CREALP. The MINERVE

model performs rainfall-runoff calculations based on a semi-

distributed concept and downstream propagation of discharges.

Find a simplified description of semi-distributed models and a

comparison to other model types in Sitterson et al. (2018). Each

element of the model represents a portion of the terrain (i.e.,

subbasins of the catchment) and models different hydrological

processes such as snowmelt, glacier melt, surface and underground

flow, etc. These hydrological elements are then linked together in

a network of junctions and rivers to simulate runoff processes.

MINERVE has been calibrated specifically for the study area and

is the state-of-the-art in the studied region used by local authorities

to estimate and forecast river discharge.

The model inputs are meteorological variables, i.e.,

temperature, precipitation and radiation, aggregated on elevation

bands as described in Section 2.3. The data is processed by

an HBVS (Hydrologiska Byråns Vattenbalansavdelning Valais)

module - HBV (Bergström, 1976) adapted by CREALP. Snow and

glacier melt are represented by a glacier snow model (GSM) with a

Seasonal Degree-day, inspired by Hamdi et al. (2005) and Schaefli

et al. (2005). The outflows of the sub-modules are then combined
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FIGURE 1

Studied catchment Goms Valley in the canton of Valais, Switzerland. Separation in sub-catchments and associated measurement stations for

meteorological and hydrological observations.

FIGURE 2

Left: Annual flow measured at the two hydrometric stations Gletsch and Goneri averaged over the studied period from 1999 to 2020. Drawn

confidence bands represent the 10% to 90% quantiles. Right: Flow duration curve of the observed discharge at the two hydrometric stations Gletsch

and Goneri from 1999 to 2020, depicting the probability of exceedance of a certain discharge value and a table with some key values.

using a transport function to simulate the resulting river flow at

the exit of a sub-catchment. In operation mode, previous discharge

observations are assimilated to correct the current system states. In

this study, we compare to the non-assimilated simulations, which

do not use observed discharge as model input, but only exogenous

variables.
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3.2. Long short-term memory network
(LSTM)

This section details the LSTM architecture used in this work

and further describes the objective functions, used for training the

models. We first introduce the standard LSTM architecture used

for the prediction of single values from a generic input sequence

in Section 3.2.1 and then extend single prediction to multi-step

forecasting with LSTM models. The loss function used for single-

step prediction and the loss function for multistep prediction is

described in Section 3.2.2. The last sections 3.2.3 and 3.2.4 then

briefly describe the implementation details and parameter and

hyperparameter optimization process.

3.2.1. Model architecture
The core of the LSTM, as developed by Hochreiter and

Schmidhuber (1997), consists of a recurrent cell that is applied

iteratively at every observation xt of a sequence (x1, . . . , xt , . . . , xT)

of T observations as depicted by Figure 3. Two internal memory

vectors are updated by several internal gates at each time step: the

cell state ct corresponds to the system’s long-term memory, and the

hidden state ht represents the short-term memory.

The four different gates within the LSTM cell update the

memory states using a combination of new inputs and previous cell

states. They each act like a single layer of nh neurons with weights,

bias and an activation function, nh being the chosen hidden size. As

a first step, the forget gate

ft+1 = σ (Uf xt + Vf ht + bf ) (1)

regulates at each time t how much of the information stored in

ct is deleted in the long-term memory vector. The input xt ∈ R
d

is a vector of d input variables at time t. In each gate, the two

weight matrices U ∈ R
nh×d and V ∈ R

nh×nh and the bias

b ∈ R
nh contain randomly initialized parameters and are updated

during the training process. The activation function σ represents

the sigmoid function; it adds non-linearity to the model and scales

the gate output between 0 and 1.

The combination of the input gate

it+1 = σ (Uixt + Viht + bi) (2)

and the cell gate

gt+1 = tanh (Ugxt + Vght + bg) (3)

control the new input information written to the long-term

memory. Finally, the long-term cell memory state is updated

ct+1 = ft+1 · ct
︸ ︷︷ ︸

forget

+ it+1 · gt+1
︸ ︷︷ ︸

input

(4)

by deletion of parts in previous cell memory and input of new

information. The output gate

ot+1 = σ (Uoxt + Voht + bo) (5)

then combines new inputs xt and the previous hidden state ht .

This gate is modulated by the updated long-term memory ct+1 of

Equation (4) to produce the updated hidden state

ht+1 = ot+1 · tanh (ct+1). (6)

We use a final linear output layer

ŷt+1 = Vlht+1 + bl (7)

to map the hidden state ht+1 of the LSTM cell to a single output of

estimated discharge ŷt+1 using the weight parameters Vl and bl.

The overall LSTMmodel can be abstracted to

ŷt+1 = LSTMexo(xt , xt−1, xt−2, ...) (8)

where we denote the index exo to indicate that only exogenous

variables (meteorological forcings) are inputs to the model (see

Figure 4, first setup). We can modify this model to the auto-

regressive ar setting

ŷt+1 = LSTMar((x, y)t , (x, y)t−1, (x, y)t−2, ...) (9)

by concatenating past flow observations y to the exogenous input

vector x, which we denote as (x, y)t for each time point t. Including

past discharge observations in the list of input variables allows for

utilizing the auto-correlation of the signal in an auto-regressive

fashion.

So far, in the auto-regressive setting, we have considered

a single-step prediction at t + 1, where all input variables

(x, y)t are observations. To extend the prediction to multistep-

ahead forecasting, we can use the estimated discharge predictions

ŷt+1,ŷt+2, . . . as inputs for the next prediction step (see Figure 4,

second setup). This recursive forecasting based on previously

estimated discharges can be repeated for an unlimited number

of steps. However, we expect forecast performance to drop as

prediction errors are propagated with every iteration.

3.2.2. Loss function single-step and multi-step
We can train the model (i.e., optimizing weights and biases

of the LSTM cell and linear layer) for single-step prediction by

minimizing a loss function L between the predicted output ŷi,t+1

and the measured discharge yi,t+1 of a sample i in a dataset of size

N. Here, we use the mean squared error over N samples as a loss

function to penalize large absolute errors.

MSEsingle = Lt+1 =
1

N

N
∑

i=1

(ŷi,t+1 − yi,t+1)
2 (10)

For multi-step forecasting in the auto-regressive approach, we

can extend the loss function as the average of the sample mean

squared errors over the entire predicted sequence of length T (see

Figure 4, third setup). In our case, we consider T = 72h.

MSEmulti =
1

T

T=72
∑

u=1

Lt+u =
1

N · T

N
∑

i=1

T=72
∑

u=1

(ŷi,t+u − yi,t+u)
2 (11)
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FIGURE 3

Internal gate structure of an LSTM cell and additional linear output layer.

3.2.3. Hydrological implementation
To ensure that modeled discharge is strictly positive, we predict

hourly values of logarithmic discharge in this study. Modeling

discharge in magnitudes further allows for covering the high

variability in flow observed at the studied locations. In a post-

processing step, the predictions are back-transformed using an

exponential function. The loss function is still calculated on normal,

back-transformed values to prioritize accuracy on high discharge

values. In its logarithmic version, the empirical distributions of the

discharge have two modes for both stations Gletsch and Goneri.

These correspond to low and high flow situations, as shown in

Figure 10 in the Supplementary material. The modes are naturally

separated by a critical discharge of 1.82 m3 s−1, which we use to

evaluate model performance separately for low and high flow later

in the experimental Section 4.

We consider two different input feature sets consisting of 6

or 7 input features: In the exogenous variables (exo) setting, we

use meteorological forcing variables for both the glacier-covered

(g) and non-glacial (ng) zone as described in Section 2.3: Pg , Png ,

Tg , Tng , Radg and Radng . In the auto-regressive (ar) setting, we

additionally use logQ as model input. All variables are used at

hourly frequency and are standardized by empirical mean and

standard deviation over the training period prior to model input.

When predicting multiple steps, logQ observations are

replaced by the model predictions log Q̂ as detailed in Section 3.2.1.

For exogenous variables, we always use meteorological

observations and not forecasts to focus on the prediction error

caused by the LSTM setup. The used meteorological forcings are

thus only associated with their measurement error, and additional

error caused by the meteorological forecast is not considered.

We use data from 1999 to 2020, which we split into a

pre-train, train, validation and test partition in chronological

order. We use the last 2×15 000 h (∼2×1.7 years) of data for

validation and test/evaluation partitions. In a preliminary analysis,

we tested the influence of the length of the test set on model

performance evaluation and determined 15 000 h to be the test set

length where error metrices stablize and performance evaluation

becomes statistically representative. The remaining years are used

for training as follows: the LSTMs are first pre-trained on data

from the period 1999–2005 (52 500 h) to obtain good parameter

initializations. We decided not to include this period in the main

training since precipitation data was retrieved from a different

source (see Section 2.2.1). Subsequently, the initialized models are

trained on the remaining 101 400 h (∼11.6 years) of main training

data from 2005-2016.

Samples are extracted from the training set as segments

consisting of a warmup period (365 days) and the forecasted

sequence (one to 72 h). The segments overlap in the warmup period

to obtain one sample per time step.

3.2.4. Parameter and hyperparameter
optimization

The parameters of the LSTM are determined during training

by minimizing the respective loss function - Equation (10) or

Equation (11) - on the training set using stochastic gradient descent

(SGD). The hyperparameters of the SGD controlling this training

process are optimized for the validation set using a grid search of

the following values: learning rate (step size of the gradient descent

{0.001, 0.01, 0.05, 0.1, 0.3, 0.5}) and weight decay (a regularization

to avoid overfitting {10−2, 10−3, 10−4, 10−5}). The optimal learning

rate and weight decay were found to be different for the three

LSTM models trained in this study and are listed in Table 3 in

the Supplementary material. The batch size (number of samples in

memory during one iteration) was set to 512 beforehand, according

to the available VRAM.

We chose a lightweight model structure with a single LSTM

layer and minimal model size to accelerate the calibration process.

The hidden size nh (corresponding to the size of cell state

and hidden state, tested values: {1, 2, 4, 8, 16, 32}) determined

the number of model parameters and was optimized in a

preliminary study. A hidden size that is too small will result in
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FIGURE 4

The three setups for multistep-ahead prediction with a single layer LSTM. xt is the vector of meteorological observations (precipitation, temperature,

radiation), and yt is the natural logarithm of river discharge at time t. Note that the depicted loss function is applied to the back-transformed

discharge values. From Top to Bottom: The LSTMexo setup uses only meteorological input variables and is trained with a loss on the first predicted

value. The LSTMar setup uses meteorological inputs plus the discharge signal, which is replaced by the model prediction in the forecast window, and

is trained with a single-step loss. The LSTMmulti setup is equal to the setup of LSTMar but is trained using a multistep loss evaluated on the entire

forecast window with uniform weights.

an oversimplified model, which is not able to represent all the

hydrological relationships. If it is chosen too large, unnecessary

degrees of freedom are awarded through a large number of

model weights and biases, slowing down the calibration process.

The determined hidden size of 4 - leading to a number of

197 model parameters for LSTMexo and 213 for LSTMar and

LSTMmulti - was fixed for all LSTM variations, to keep the model

size consistent.

During training, the selected initial learning rate as reported

in Table 3 in the Supplementary material was gradually reduced

until convergence, a common practice in neural network

training. For every LSTM setup we developed an ensemble of

ten models with different random parameter initializations to

represent the inherent error of the model. The final model

performance is then evaluated on the test set as the mean over

each ensemble.
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3.3. Experimental setup

Figure 5 summarizes the adopted workflow including feature

selection, pre-processing and the three analyses of the trained

models. Throughout this work, we consider a forecast horizon

of 72 h for the LSTMs and compare their performance to the

process-based model MINERVE. The forecast window of 72 hours

was selected according to the quality expected degradation due to

accumulating errors in the estimated flow that is used as input

to the LSTM model for the next time step. Note that in the

present setup, we only use meteorological observations and not

forecasts, as outlined in Section 3.2.3. For every tested LSTM setup,

we developed an ensemble consisting of ten individual models,

described in Section 3.2.4, and evaluate the mean performance over

the ensemble.

3.3.1. Multistep-ahead prediction
In this set of experiments, we compare three different

LSTM model setups for forecasting of river discharge in

the sub-catchment Gletsch as depicted by Figure 4: (a) using

only meteorological/exogenous variables to forecast discharge

(LSTMexo), (b) exogenous and discharge as input with a single-

step loss (LSTMar) and (c) exogenous and discharge as input with a

multistep loss (LSTMmulti). Through comparison of LSTMexo and

LSTMar we examine the importance of adding discharge inputs for

the prediction. When discharge is included in the feature set, its

observations are no longer available after the point of forecast and

are replaced by the predicted value. We thus expect an increasing

model error with progressing forecast and test whether extending

the single-step loss function on the entire 72-h window, as adopted

by LSTMmulti, can reduce this effect.

We compare all LSTM setups with the process-based model

MINERVE, which uses the same set of input variables as LSTMexo.

To test whether the LSTMs that receive past discharge as input

variable are learning more than just copying the discharge values,

we compare against a simplistic baseline model, which copies the

last observed discharge for the entire forecast window.

The multistep-ahead predictions will reveal the best LSTM

setup according to the selected criteria defined in Section 3.4, which

we then select for the subsequent experiments.

3.3.2. Permutation feature importance
After determining the best LSTM setup in the previous

experiment, LSTMmulti, we test whether meaningful relationships

between the input variables were learned by the model. We use

permutation feature importances to rank the input features by

relevance (Breiman, 2001; Fisher et al., 2019). This method consists

of shuffling the time-series of a feature in the test set and evaluating

the trained model on this time-series. The procedure is repeated

for each feature, recording the mean drop in performance over ten

different random permutations.

Permutation feature importance is a model agnostic method

and thus applicable to any model type and is further independent

of the actual feature distribution. It however evaluates each feature

separately, whereas as significant correlation and interdependence

between features might exist and thus only allows to get a

general idea of the relevance of the input variables. Other more

sophisticated methods, such as Shapley Additive Explanation

(SHAP) or Local Interpretable Model-Agnostic Explanations

(LIME) (Holzinger et al., 2022), take variable interrelation into

account and can provide additional insight about the directional

influence of a variable. In contrast to these methods, permutation

feature importance can be easily implemented for any model with

few lines of code, making it an accessible explainability tool for an

initial assessment of variable importance.

3.3.3. Application on other sub-catchment
We continue again with the best-performing LSTM setup and

aim to test one of the main limitations of data-driven models: they

are often limited to the training domain and perform poorly when

transfering to new domains (Devia et al., 2015). Testing out-of-

domain allows to assess whether reasonable physical relationships

have been learned [question (i)]. With this experiment, we further

evaluate if fine-tuning the trained model on the new domain over a

few epochs can boost the performance [question (ii)]. If successful,

this would allow to use the pre-trained model and transfer it to

a catchment with limited amount of observation data, e.g., if a

gauging station was only recently installed in the area of interest.

To address these questions we test and compare the

performance of three differently trained LSTMmulti on the

neighboring sub-catchment Goneri. We chose Goneri as test

location because of its comparable surface area and climatic

similarity to Gletsch. Both catchments are located in the same

valley, thus, we expect reasonable performance of a hydrological

model that has learned the correct basic relationships. To answer

question (i) we apply the model, which we previously trained

on the Gletsch sub-catchment, directly on the neighboring sub-

catchment Goneri. We denote this model LSTMGletsch. This test

will inform about the robustness of the model, i.e., whether

it overfits to the specifics of the sub-catchment. For question

(ii), we compare two models: LSTMGoneri, trained only on

data from Goneri, and LSTMGletsch+Goneri, the trained Gletsch

model finetuned on data from Goneri over ten training epochs.

The three LSTM models are compared to the local calibrated

version of the process-based model MINERVE similar to the

previous experiment.

3.4. Evaluation metrics

The prediction performance of the developed models is

assessed by visual inspection of the predicted hydrographs

and through several metrics common for hydrological model

evaluation. The target river discharge is separated into the low flow

(Q ≤ 1.82 m3 s−1) and the high flow (Q > 1.82 m3 s−1) regime

and evaluation is carried out separately on these regimes. These two

flow regimes were determined through visual inspection of the log-

histogram of discharge which is naturally separated in two clusters

(see Section 3.2.3 and Figure 10 in the Supplementary material).

To test the model performance for extreme events, under-

represented in the training set, two example flood events were

selected from the validation and test period: September 4-7, 2016,
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FIGURE 5

Adopted workflow, starting with feature selection and pre-processing, followed by the training of di�erent LSTM setups (ensemble of 10 models

each) and testing of general performance, feature importance analysis, and the robustness to a change of domain.

with an estimated return period of 29 years, and October 2-

5, 2020, with an estimated return period of 2 years [estimated

return periods from Federal Office for the Environment FOEN

(2021)].

The following metrics have been chosen for the

performance evaluation, the respective equations are listed in

Supplementary material 7.3. We use the Root-mean-square error

(RMSE) as an absolute error metric in the unit of discharge,

a perfect RMSE would be 0 m3 s−1. The volumetric efficiency

(VE) (Criss and Winston, 2008) is a performance score and

lies in the range of -∞ to 1. It measures the volume bias as the

integral under the discharge curve. A perfect model would have

a VE of 1, negative values indicate that the model prediction

error is larger than the observed discharge value. The VE

and RMSE can be used to evaluate short sequences and are

thus selected as primary performance criteria for multi-step

prediction.

The Nash Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970)

scores the simulation performance of the model compared to

using the empirical average as a predictor. An NSE of 0 describes

a model as good as the mean, a perfect model would have an

NSE of 1. Similarly, the Kling-Gupta efficiency (KGE) (Gupta

et al., 2009) describes the shape of the curve and combines several

measures of bias, variance and correlation coefficient into one

score. A perfect model would have a KGE of 1. The NSE and

KGE are used for continuous time series and thus not suitable

for evaluating short sequences, such as the 72 h of this study.

We therefore used these metrics only to evaluate continuous time

series of single-step predictions, which are listed in Table 4 in the

Supplementary material.

4. Results

4.1. Multistep-ahead prediction

This section compares the LSTM in different setups - regarding

input features and loss function - with the process-based model

MINERVE and a baseline copying the last flow value. We compare

the models in three flow regimes. In Section 4.1.1, we consider

low and high-flow situations, while Section 4.1.2 compares models

qualitatively on flood events in the evaluation area.

4.1.1. Low and high flow regimes
Figure 6 depicts the results of the multistep-ahead forecasts of

the different tested LSTM setups. Each line consists of the mean

performance over the ten ensemble members, with a standard

deviation drawn as a confidence band. We show how performance

develops along the forecast steps with RMSE as a metric. The

LSTM is compared to the process-based model MINERVE, as well

as a baseline copying the last observed value over the entire 72-h

forecast horizon. The larger the RMSE, the larger the absolute error

of the prediction. In Table 1 we further list RMSE and VE values of

some key forecast horizons.
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FIGURE 6

Test results of multistep-ahead prediction of river discharge in Gletsch by the LSTM models, the process-based model MINERVE and the baseline

(copies the last available discharge observation at t = 0h). Reported is the root mean squared error (RMSE) for di�erent forecast horizons, separated

into low flow (Left) and high flow regime (Right). For the LSTM, the depicted line represents the mean over the developed ensembles consisting of

ten models each, with a confidence band of one standard deviation.

TABLE 1 Test results of multistep-ahead prediction of river discharge in Gletsch by the developed LSTMmodels, the process-based model MINERVE and

the baseline (copies the last available discharge observation at t=0h).

low flow ≤1.82 m3 s−1 high flow >1.82 m3 s−1

1h 6h 12h 24h 48h 72h 1h 6h 12h 24h 48h 72h

RMSE / m3 s−1

LSTMexo 0.37 0.37 0.38 0.39 0.40 0.40 1.44 1.51 1.57 1.63 1.67 1.69

LSTMar 0.15 0.19 0.23 0.28 0.31 0.33 0.33 0.74 1.11 1.39 1.74 1.97

LSTMmulti 0.22 0.25 0.28 0.31 0.34 0.35 0.78 0.98 1.09 1.18 1.31 1.39

MINERVE 0.29 0.29 0.29 0.30 0.31 0.31 1.32 1.39 1.47 1.54 1.57 1.58

baseline 0.02 0.04 0.05 0.07 0.09 0.11 0.53 1.04 1.55 1.70 1.94 2.12

VE / -

LSTMexo −0.66 −0.65 −0.65 −0.65 −0.64 −0.63 0.73 0.73 0.74 0.74 0.74 0.74

LSTMar 0.02 0.02 −0.08 −0.17 −0.23 −0.25 0.95 0.89 0.84 0.79 0.73 0.70

LSTMmulti −0.34 −0.35 −0.41 −0.46 −0.50 −0.51 0.88 0.85 0.84 0.83 0.81 0.80

MINERVE 0.24 0.24 0.24 0.24 0.24 0.24 0.76 0.77 0.77 0.77 0.78 0.78

baseline 0.98 0.96 0.94 0.92 0.89 0.87 0.93 0.87 0.81 0.79 0.75 0.72

Reported are the root mean squared error (RMSE) and volumetric efficiency (VE) for different forecast horizons, separated into low and high flow regimes. For the LSTM, listed values represent

the mean over the developed ensembles consisting of ten models each. The best-performing model for each forecast step, according to the respective metric, is marked in bold.

A significant difference is observed between predictions of low

flow and high flow regimes, which were distinguished using the

empirical histogram of the logarithmically transformed discharge

as described in Section 2.3. Absolute errors on low flow are

very small, stable over time and do not exceed 0.4 m3 s−1 for

all models (compared to average flow values observed at this

station in Figure 2). Judging by the RMSE, all LSTMs perform

similarly to MINERVE when considering the spread of the

respective LSTM ensembles. We note that the baseline shows the

lowest RMSE error with 0.11 m3 s−1 after 72 hours, suggesting

that a simplistic auto-regressive model is sufficient to describe

the low flow regime. Furthermore, the volumetric efficiency of

all LSTM is negative or close to zero, which indicates that

the LSTM prediction error is larger than the river flow value

itself.

In the high flow regime, clear differences between the models

are visible. The prediction accuracy of the LSTMexo, which uses

only meteorological forcings as input, as well as of the process-

based model MINERVE stays constant over the entire forecast

window as depicted by the green and blue line in Figure 6,

respectively. MINERVE is thereby slightly more accurate in terms

of both RMSE and VE.

Adding past discharge values to the input vector, as

implemented in the LSTMar (orange line in Figure 6), results

in a significantly lower error than MINERVE for the first few

forecast steps. To verify whether the increased performance for the
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initial forecast hours can be traced back to the auto-correlation of

the discharge signal, we compare against the simplistic baseline,

which copies the last available discharge observation to the entire

forecast horizon. Since the baseline and LSTMar pattern are very

similar, we conclude that the LSTMar very likely attributes the

largest importance to the discharge input feature. This hypothesis

is further supported by the steep increase in RMSE that exceeds the

LSTMexo after 40 hours. If the relationships betweenmeteorological

forcings and output discharge were correctly learned by the model,

prediction error would level out around the LSTMexo instead of

exceeding it after a few steps.

Adapting the loss function for multistep prediction resolves

this issue, supporting our initial hypothesis. The LSTMmulti has an

initial performance that lies in between LSTMexo and LSTMar and

deteriorates only minorly with progressing forecast. For forecast

horizons over 12 hours, the LSTMmulti is the best of the compared

models. This is confirmed in Table 1, showing that the VE of

LSTMmulti is larger than the models with only meteorological

inputs over the entire forecast horizon. Additionally, a lower spread

within the model ensemble compared to the other trained LSTM is

observed in Figure 6.

4.1.2. Performance for flood events
We tested all themodels formultistep prediction of two selected

flood events with a lead time of about 24 h. Figure 7 depicts the

predictions of the three LSTMmodels, compared toMINERVE and

the baseline. The drawn lines of the LSTM are the ensemble median

with a confidence band ranging from the 10% to 90% quantile.

The observed LSTM forecast performance is different for the

two events. While the timing of the flood peak in the 2016

event is captured well by all LSTM setups, the peak discharge

is underestimated by the LSTMexo and LSTMmulti. Prediction

performance is here comparable to the process-based model

MINERVE. In 2020, only LSTMexo managed to represent the

dynamics of the flood event, while the other LSTM largely

underestimated the peak. MINERVE performed here significantly

better and reached the full peak height. It is, however, crucial to

note that the MINERVE version used in this study was recalibrated

to fit this specific flood event particularly well, which can alter

the interpretation of this event. The baseline predicts a constant

value for the entire forecast horizon and is not suited for predicting

specific events.

The different performance of the models on the flood

events can be explained by the underlying mechanisms being

fundamentally different between the events. The 2016 event was

a precipitation driven flood: at the end of summer the snowpack

is fully melted and a large precipitation event is transformed

directly to a runoff-peak. Both MINERVE and LSTM thus manage

to capture this regular flood event reasonably well. The 2020

event, in contrast, presented more complex dynamics. As shown

in Figure 7, recorded temperatures were only slightly above zero

when precipitation started to intensify. During the subsequent

translation into runoff and rise of the discharge peak, temperatures

drop around zero, switching between solid and liquid precipitation.

Note that the temperature profile shown in Figure 7 is the average

over the entire catchment, i.e., temperatures were below zero in

the high-altitude and above zero in the low-altitude section of the

catchment. It could thus be expected that the models perform badly

on this event with such exceptional conditions.

Next to the performance difference between different events,

we observe a performance difference between the tested LSTM

setups. For instance in the 2016 event, LSTMar occurs to be the

best predictor. While this observation can be drawn for this single

event, no model consistently outperforms the others in the studied

anomalies. We attribute this inconsistency to the rare nature of

these events, that are not captured sufficiently in the training data.

We could hypothesize performances during the 2016 event to be

linked to the duration of the precipitation, to the magnitude of

the event, or to the fact that LSTMar uses logQ as input, yet no

general conclusion can be drawn on a single event. Further studies

specifically designed for anomalous floods are necessary to assess

these properties of models more thoroughly, which we reserve for

future studies.

Generally, the prediction of flood events is a specifically

challenging task as precipitation magnitudes are at the high end of

the historically observed conditions. In addition, floods are often

triggered by specific mechanisms, such as rain on snow, that are

not yet sufficiently understood to represent them in a model. Data-

driven models, which learn from correlation and distributions of

the data, are thus expected to perform poorly on out-of-sample

conditions. Nevertheless, we showed with this experiment that

at least one of the tested LSTM setups is able to represent the

general dynamics of the flood events similarly well to the process-

based model MINERVE. The setup with agreeable performance to

MINERVE is hereby different for the two events: LSTMar is best in

September 2016, LSTMexo is best for the flood of October 2020.

4.2. Feature importance

In the previous experiment, we identified LSTMmulti as the

best-performing setup within the tested LSTMs. To justify its

performance and disclose the relationships learned by the LSTMwe

calculate permutation feature importances for the LSTMmulti setup.

Thismodel agnosticmethod defines feature importance by the drop

in performance (or increase in test error) when the observed time-

series of a feature is replaced by a series of random values drawn

from the feature’s empirical distribution. We calculate accordingly

the increase in test RMSE for 1h-ahead predictions on the test

period. Only high flow conditions are evaluated, since the variation

of the model simulations during low flow conditions was minimal

and we thus expect a smaller impact when omitting a feature. The

process is repeated ten times per feature for statistical stability and

we report the mean over the permutations in Table 2. A bigger

increase in test error indicates a stronger focus of the model on the

values of this feature.

The auto-regressive input feature logQ shows the strongest

increase in RMSE of +5.84 m3 s−1 after shuffling its values. It was

expected that the discharge is a strong predictor since it is highly

auto-correlated over the forecast window, which can be concluded

from the strong performance of the simple baseline during the

first forecast hours. Next important features are air temperature Tg

and incoming solar radiation Radg over the glacier-covered area.
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FIGURE 7

Test results of multistep-ahead prediction of two example flood events (Left: 2016 event; Right: 2020 event) in Gletsch by the LSTM models, the

process-based model MINERVE and the baseline (copies the last available discharge observation at t = 0h); and meteorological variables observed

during the event averaged over the entire sub-catchment. For the LSTM, the depicted line represents the median over the developed ensembles

consisting of ten models, with a confidence band of the 10-90% quantile. Note that MINERVE was recalibrated to fit the October 2020 flood event

particularly well.

This coincides with the strong influence of the glacier on the local

hydrology in Gletsch (observed, e.g., by the diurnal cycles shown

in Table 2). The LSTM seems to capture this relationship and thus

reacts predominantly to temperature and radiation over the glacier

- the main drivers of glacial melt.

Both precipitation features, over the glacier-covered and open

terrain, exhibit the smallest change in RMSE. While the applied

method allows a certain look inside the black-box model, it is

limited by the empirical distribution of the feature. Precipitation

is zero most of the times and rarely rises to an important level.

Shuffling the values will thus only seldom lead to significantly

deviant values, biasing the analysis and falsely indicating a small

importance of the precipitation feature. Even though this feature

fell under the radar of permutation feature importances, the good

performance of the LSTM on the flood events shows that the LSTM

does indeed react to precipitation.

A way to overcome this draw-back of the permutation

feature importances would be to apply other explainability

methods such as Shapley Additive Explanation (SHAP), Local

Interpretable Model-Agnostic Explanations (LIME) or GRADient

Class Activation Mapping (GRAD-CAM) as suggested by

Chakraborty et al. (2021) and Machlev et al. (2022). SHAP, for

instance, is based on game theory and takes inter-dependence

of predictor variables into account, and GRAD-CAM is a deep

learning-specific approach allowing to unveil local feature

contributions for specific events. While these post-hoc methods

are computationally complex and costly (Holzinger et al., 2022),

they could provide a more accurate ranking of global and

local variable importance and are worth exploring in future

studies.

4.3. Extension to other sub-catchments

We selected the best LSTM setup, LSTMmulti, according

to the findings of the multistep evaluation in Section 4.1.1

and applied it to the neighboring sub-catchment Goneri

in different training setups as introduced in Section 3.3.

Figure 8 summarizes the multistep prediction results of the

three compared training setups. The LSTM setups compare

similarly under high flow and low flow conditions. We thus limit

the description of this experiment’s results to high flow conditions

and refer to the Supplementary material for the low flow

results (Figure 11).

The LSTMGletsch is the LSTMmulti tested directly on Goneri

data without further finetuning. It reaches high accuracy on the

new area, with an RMSE of 1.1–2.1 m3 s−1 when forecasting

1 or 72 steps, respectively. Additional finetuning on the new

sub-catchment (LSTMGletsch+Goneri) can, however, improve the

predictions to a significant extent and reduce the RMSE at

72 h to 1.5 m3 s−1. A comparison with LSTMGoneri, the LSTM

model tuned from zero on the Goneri catchment, reveals that

the high performance can be primarily attributed to training

on data from the considered area, as both models perform

similarly well. Starting with a model that was trained on the

neighboring area does not contribute to the performance, however,

decreases the training time needed for the new area. This result

from the analysis of the RMSE is confirmed by inspection of

a flow example depicted in the right panel of Figure 8. All

LSTM models capture well the dynamics of the hydrograph and

react to incoming precipitation with an increase in discharge,

while the process-based model MINERVE seems to predict a
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TABLE 2 Permutation feature importances for LSTMmulti evaluated on high flow conditions (>1.82 m3 s−1) in the test set.

Glacier-covered Non-glacial logQ

Shu	ed feature Pg Radg Tg Png Radng Tng

RMSE with shuffled feature / m3 s−1 1.23 2.77 2.91 1.36 2.10 2.55 6.99

Absolute change in RMSE / m3 s−1 +0.08 +1.62 +1.76 +0.21 +0.95 +1.40 +5.84

To test a feature importance, its time series is shuffled over the test period andmodel performance evaluated for a 1h forecast. Reported RMSE represents themean over ten random permutations

and the absolute change to the initial RMSE of 1.15 m3 s−1 with the full feature set. An increased saturation of the highlight color indicates higher feature importance.

FIGURE 8

Left: Test results of multistep-ahead prediction of river discharge in Goneri by the process-based model MINERVE and the developed LSTM models:

trained only on Gletsch, trained first on Gletsch then fine-tuned on Goneri, trained only on Goneri. Reported is the root mean squared error (RMSE)

for di�erent forecast horizons under high flow conditions. The depicted line represents the mean over the developed ensembles, with a confidence

band of one standard deviation. Right: Prediction example of hourly discharge of the developed LSTM models and MINERVE for the sub-catchment

Goneri. For the LSTM, the depicted line represents the median over the developed ensembles consisting of ten models, with a confidence band of

the 10–90% quantile.

constant discharge for this timeframe. LSTMGletsch hereby over-

estimates the flow and reacts more strongly to temperature

and radiation.

5. Discussion

The results of this work demonstrate that data-driven

LSTM models that ingest the previous flow rate together

with meteorological variables achieve better accuracy than the

established conceptual bucket model MINERVE in the glacially-

influenced Goms Valley in Switzerland. We focused in this study

on high-flow situations with flow rates above 1.82m3 s−1, which

are most challenging to model accurately to provide knowledge

for applications like hydroelectric power estimation (Ogliari et al.,

2020) or flood risk assessment (Alfieri et al., 2013). Under low flow

conditions with inconsiderable flow variability, a simplistic model

that copies the last available discharge value (termed “baseline”)

showed to be sufficient in terms of prediction error. We also

evaluated the models on two distinct flood events, but found that

the prediction performance of all tested models was mixed for these

flood events, which we attribute to the challenges of modeling these

rare events that include new hydrodynamic mechanisms that are

under-represented in the training set. Depending on the event,

some LSTM setups could capture the flood peak well, and some

under-estimated peak discharge comparable to the process-based

model.

In the high flow regime, we found the LSTM variants that use

past discharge as model input next to meteorological variables,

i.e., LSTMmulti and LSTMar, most effective, as they can harness

the auto-correlation of the discharge signal. Concretely, the best

LSTM variant for longer term forecasting of ≥12 h, i.e., LSTMmulti,

predicted headwater discharge with an RMSE of 1.39 m3 s−1 for a

72 h forecast window compared to MINERVE with 1.58m3 s−1. In

short-term forecast <12 h, the LSTMar model predicted the flow

most accurately followed by LSTMmulti and MINERVE. This is due

to the different loss function used between LSTMar and LSTMmulti,

where an accurate long-term forecast is explicitly encouraged in

LSTMmulti by including all 72 prediction steps in the loss function at

equal weight. In contrast, LSTMar is optimized to accurately predict

only the next single step, which naturally leads to more accurate

short-term predictions, as we see in the experiments (Figure 6).

We would like to emphasize that these results were achieved with

a lightweight model with only 213 trainable parameters, which is

highly parameter-efficient and makes the prediction with tested

LSTMs computationally efficient next to ensuring that the LSTM

is less prone to overfitting.

The results were verified by transferring the model to the

neighboring location, the Goneri sub-catchment (Section 4.3),

and by a feature importance analysis (Section 4.2) that re-

emphasizes the importance of ingesting previous flow in the model,
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but also reveals that the model preferentially uses temperature

and radiation measurements above the glacier cover for its

predictions. While the adopted permutation approach to measure

feature importances is a fast and simple way to verify that

reasonable physical relationships were learned by the model, it

is limited to provide a first impression. Other more elaborate

methods need to be applied to obtain more accurate and detailed

measures of global and local interpretability with correlated input

variables (Chakraborty et al., 2021). For instance SHAP and

LIME (Holzinger et al., 2022) are two model agnostic strategies

allowing to take variable interactions into account and calculate

directional feature contributions. A common strategy specific

for deep learning models is the analysis of gradients, which

enabled to reveal dynamic feature contributions for LSTM in the

study of Kratzert et al. (2019). Gradient analysis provides exact

measures of local dependencies, as compared to approximate values

obtained through LIME, and could potentially help in improving

the understanding of the glacial hydrological processes in the

studied catchment.

In general, we observed that separating the analysis of the

developed LSTM into low and high flow regimes was crucial,

as different models achieved best results depending on the flow

situation. While high flow conditions, occurring during the melt

season in spring and summer, are modeled well by the LSTM,

relative errors are large during low flow in the accumulation

season, where the baseline models achieved best results. We

attribute this to runoff-generating processes being different in

winter than in summer, making it challenging for the model to

learn to represent these differentmechanisms equally well. Another

important observation is that the LSTM was particularly sensitive

to parameter initialization. We addressed this by training multiple

LSTM models and making ensemble predictions. This ensemble

spread, especially visible during the analysis of the two flood events,

emphasizes the importance of developing a model ensemble to

cover model-inherent uncertainty, as highlighted by Kratzert et al.

(2021).

Modeling in glacier-influenced catchments can be especially

challenging due to the highly dynamic processes present in the

alpine environment, which are often not yet fully understood

(Tiel et al., 2020). In contrast to process-based models, DL

models infer processes from correlations in the input data

and do not need a precise description of the processes. In

particular, LSTM are time-aware DL models that still resemble the

general structure of process-based models, and contain memory

states that are able to learn storage processes such as snow

accumulation. LSTM are thus suitable as hydrological models

and could be established for many catchments in a much shorter

time than with process-based models, where model structure and

parameters need to be adapted manually when moving to other

catchments.

A general limit of the setup, as presented in this study,

is that input data was aggregated on the glacier and non-

glacier-covered zones with a fixed surface area, whereas climate

change scenarios report a shift in glacier extent and snow-covered

area for Switzerland. To ease this constraint, meteorological

inputs could be aggregated using a dynamic delineation of the

glacier-covered area based on real-time satellite images, scaling

the variables by the respective surface area of each zone. A

further limitation comes from the lightweight character of the

developed LSTM.

While the light-weight model architecture with few trainable

parameters has several practical and computational benefits, it may

not have the internal capacity to learn very complex behaviors.

Given related work with substantially larger deep learning models

(Kratzert et al., 2018; Feng et al., 2020), we hypothesize that

our light-weight LSTM may not be optimal in this particular

configuration when used as a large regional model and utilizing

public datasets such as CAMELS (Addor et al., 2017), or the

soon available Swiss version [CAMELS-CH (Höge et al., 2023)].

Still, we did not observe better performance on our evaluated

catchments when increasing the model capacity in this work.

Nevertheless, our comparison of input features and loss functions

should be transferable directly to larger regional models and our

explicit feature importance and transferability studies provide a

general insight into the applicability of data-driven LSTM models

in Switzerland and for glacial catchments in general.

6. Conclusion

Operational flood and water resource management require

accurate short-term predictions of river discharge by hydrological

models. With this work, we showed that the previously

demonstrated power of data-driven deep learning models for

hydrological modeling can be extended to alpine catchments in

operational frameworks. Besides the good performance, deep

learning models can be set up faster, while being more flexible than

their process-based counterparts. The flexibility with respect to

the choice of input data allowed us, for instance, to integrate past

discharge observations to supersede complex data-assimilation

techniques.

We believe that adaptive, fast reactive models as the one we

propose are truly needed: under changing climate conditions, the

shift in flow regimes that is starting to be observed further raises

the need for models that can follow new distribution with limited

calibration time and that can be transferred between catchments

without full re-calibration. We hope that this work will contribute

to the further application of data-driven deep learning models for

forecasting runoff in alpine environments in synergy with current

conceptual models.
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