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• Variability of pesticide losses makes it
hard to detect changes in water quality.

• Pesticide use data helps account for part of
the temporal trends in water quality.

• Hydrological events can obscure the ef-
fects of mitigation measures.

• A strong reduction is needed to detect a
change within 10 years of
monitoring data.

• Sensitive methods for change detection
are more prone to false-positives.
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An inadvertent consequence of pesticide use is aquatic pesticide pollution, which has prompted the implementation of
mitigation measures in many countries. Water quality monitoring programs are an important tool to evaluate the ef-
ficacy of these mitigation measures. However, large interannual variability of pesticide losses makes it challenging
to detect significant improvements in water quality and to attribute these improvements to the application of specific
mitigation measures. Thus, there is a gap in the literature that informs researchers and authorities regarding the num-
ber of years of aquatic pesticide monitoring or the effect size (e.g., loss reduction) that is required to detect significant
trends in water quality. Our research addresses this issue by combining two exceptional empirical data sets with
modelling to explore the relationships between the achieved pesticide reduction levels due to mitigation measures
and the length of the observation period for establishing statistically significant trends. Our study includes both a
large (Rhine at Basel,∼36,300 km2) and small catchment (Eschibach, 1.2 km2), which represent spatial scales at ei-
ther end of the spectrum that would be realistic for monitoring programs designed to assess water quality. Our results
highlight several requirements in a monitoring program to allow for trend detection. Firstly, sufficient baseline mon-
itoring is required before implementing mitigation measures. Secondly, the availability of pesticide use data helps ac-
count for the interannual variability and temporal trends, but such data are usually lacking. Finally, the timing and
magnitude of hydrological events relative to pesticide application can obscure the observable effects of mitigation
measures (especially in small catchments). Our results indicate that a strong reduction (i.e., 70–90 %) is needed to de-
tect a change within 10 years of monitoring data. The trade-off in applying a more sensitive method for change
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detection is that itmay bemore prone to false-positives. Our results suggest that it is important to consider the trade-off
between the sensitivity of trend detection and the risk of false positives when selecting an appropriatemethod and that
applying more than one method can provide more confidence in trend detection.
1. Introduction

Agricultural pesticides are used globally to improve the efficiency of
crop production to feed the growing global population (Rosling et al.,
2018; Zhang, 2018). In the last decade, annual global pesticide use was es-
timated to be approximately 5.7 million tonnes per year (FAOSTAT, 2020).
An inadvertent consequence of pesticide use is aquatic pesticide pollution,
which can be detrimental to human health and the healthy functioning of
aquatic ecosystems (Schäfer et al., 2012; Beketov et al., 2013; Chow
et al., 2020; Fuhrimann et al., 2021). Such negative effects have triggered
mitigation measures in many countries (Reichenberger et al., 2007). Exam-
ples are the national pesticide risk reduction plans across the European
Union (PANE, 2013). In Switzerland a National Action Plan was developed
with aims to reduce the stream length where Environmental Quality Stan-
dards are exceeded by 50 % within 10 years (Swiss Federal Council,
2017). Accordingly, there is a need to evaluate the outcome of thesemitiga-
tion activities. Water quality monitoring programs are one tool for such an
evaluation process (e.g., Boye et al., 2019).

While many of the long-term monitoring programs have been and still
are essential to report on the status of water bodies and to identify existing
water quality problems (e.g., Spycher et al., 2018), it is less clear to which
degree existing monitoring programs and the subsequent statistical analy-
ses fulfill the needs for robust trend analysis for evaluating the outcome
of mitigation measures (Lloyd et al., 2014).

One key problem is the question how to detect effects of mitigation ac-
tions against the high level of inter-annual variability in pesticide losses and
in-stream concentrations. Such inter-annual fluctuations have been shown
to correspond to seasonal pesticide use patterns and hydrological condi-
tions (Gilliom, 2001; Lerch et al., 2011), which can lead to the misinterpre-
tation of effects (or lack thereof) caused by implemented mitigation
measures (Vecchia et al., 2009). It was observed that discharge during the
respective application period explains a substantial part of the inter-
annual variability for a given catchment (Leu et al., 2010).

Chow et al. (2020) reviewed long-term pesticide monitoring studies and
found that trends were only detected for large effects sizes, such as those
caused by restricting pesticide use by banning a given compound. Mitigation
measures, other than restricting pesticide use, rarely led to detectable long-
term reductions in aquatic pesticide pollution. In the few cases where mitiga-
tion measures (e.g., buffer strips, biobeds, spray drift reduction) led to a de-
tectable long-term reduction (Kreuger and Nilsson, 2001; Hermosin et al.,
2013; Daouk et al., 2019; Budd et al., 2020), a decrease of >45 % was re-
quired to attribute the effect to the implemented mitigation measures.

There exists a long tradition in hydrology to analyse temporal trends in
catchment responses to external forcings (Wolman, 1971). Accordingly, dif-
ferent methods have been developed and proposed. For example, the
double-mass curve approach (Searcy and Hardison, 1960) used the slope
of cumulative discharge against cumulative precipitation to detect long-
term trends in discharge behaviour. Others have looked at the changes in
concentration-discharge relationships (Choquette et al., 2019; Jarvie
et al., 2017; Zhang et al., 2016) to separate between trends due to climatic
forcings and land use effects.

Applying such approaches to assess pesticide trendsmust consider some
specifics of pesticide use, transport, as well as themethod of analysis. There
is a pronounced seasonality of agricultural pesticide use,which additionally
is very compound and crop-specific. Combinedwith the fact that the extent
of pesticide losses depends strongly on the actual timing between applica-
tion and precipitation events, traditional grab samplingmay only poorly re-
flect the full extent of pesticide pollution. This introduces additional
uncertainty that may limit the possibility to detect temporal trends. For
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dealing with this problem, the United States Geological Survey (USGS)
has developed a statistical regression model (SEAWAVE-Q) to separate
the seasonal use patterns and hydrological conditions from the underlying
time trend in pesticide concentration time-series (Vecchia et al., 2009).

However, the considerable number of agricultural pesticides used can
lead to relevant changes of the use of single compounds, e.g., due to substi-
tution, and a decrease in concentration levels cannot be simply interpreted
as improvement due to better practices. A useful way to avoid this problem
is to express pesticide losses a loss rates by normalising observed loads in
rivers by the applied pesticide use the catchment. While this approach
has been used already for decades (e.g., Larson et al., 1995), its application
is still hampered in many countries due to the lack of reliable pesticide
application data.

These challenges are well known (e.g., Chow et al., 2020) and recom-
mendations are provided in the literature regarding the best way to estab-
lish monitoring programs. However, there is little quantitative data
available in the literature that informs researchers and authorities regard-
ing the number of years of pesticide monitoring required to reliably detect
significant trends. This paper addresses this issue by combining two excep-
tional empirical data sets with modelling to explore the relationships be-
tween the achieved pesticide reduction levels due to mitigation measures
and the length of the observation period for establishing statistically signif-
icant trends. Firstly, we analyse a unique set of long-term (since 1995) her-
bicide time-series in River Rhine with daily resolution. This data set allows
us to evaluate the degree to which seasonal discharge during the applica-
tion period can explain compound-specific loss rates and how strong miti-
gation effects need to be, such that they can be detected against the
background of unexplained inter-annual variability.

Because the Rhine data set reflects the response of a large basin
(∼36,300 km2), questions remain regarding the relevance of the results
formonitoring sites at smaller streams. For smaller catchments, it can be ex-
pected that single precipitation events play a more important role such that
seasonal metrics such as total discharge volumes have more limited explan-
atory power. To explore this aspect, we combine data from an intensive
(i.e., high temporal resolution sampling during rain events), controlled her-
bicide experiment at the scale of a small catchment (Eschibach 1.2 km2;
Doppler et al., 2012) with a herbicide transport model developed for that
area (Ammann et al., 2020) to investigate the long-term herbicide dynam-
ics given the weather dynamics observed over one decade. By simulating
the long-term herbicide loss dynamics with different levels of mitigation,
we quantify the possibility to distinguish between natural variability due
to timing between application and rainfall events and mitigation effects.
Overall, the results at both scales provide insights with a dual benefit.
First, they shall help to develop realistic expectations regarding monitoring
programs. Second, they shall provide insights that help develop mitigation
programs that are ambitious enough to cause improvements that are large
enough so they can be observed against natural variability.

Finally, our study helps set realistic expectations for national water
quality monitoring programs. For instance, the Swiss National Surface
Water Quality Monitoring Program (NAWA TREND) consists of multiple
monitoring sites draining watersheds (>21) ranging from 2.0 km2 to
∼28,000 km2 (Fabre et al., 2023). Thus, the scales of the catchments pre-
sented in our study represent scales at both ends of the spectrum. Naturally,
it would be desirable to also study catchments of intermediate size, but
apart from a few scientific studies with controlled applications
(i.e., Eschibach; Doppler et al., 2014), most countries currently lack data
on pesticide use at the small and intermediate catchment scale. Studies
may be possible after 2025 when the planned georeferenced collection of
all applications will be available (FOAG, 2023).
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2. Methods

2.1. Empirical data sets

The Rhine River at Basel drains a basin of about 36,300 km2 (Fig. 1),
has a mean altitude of 1333 masl and an average air temperature of 4.8 °C.
Precipitation generally increases with altitude and ranges between
1350 mm/yr in the lower reaches and 1930 mm/yr in the alpine regions
(Uehlinger et al., 2009). Land use is mixed and includes considerable
areas of arable cropping in the Swiss Plateau and the German area east of
Lake Constance.

Compound selection: Since 1993, water quality at Basel has been
monitored daily for an increasingly large set of compounds (Ruff et al.,
2013). The introduction of high-resolution mass spectroscopy (HRMS) in
2012 drastically expanded the number of quantified compounds, which is
currently >600. During this initial year, the limits of quantification also im-
proved, which led to a consistent data set starting from 2013 thatwe use for
our analysis (Figs. S1–S3). All concentrations evaluated in this study were
determined with daily composite samples consisting of subsamples taken
every 6min at 5 locations across the river cross-section. The data is publicly
available from the International Commission for the Protection of the Rhine
(IKSR, 2020). Out of the 149 pesticides (76 herbicides, 35 fungicides, 26 in-
secticides, and 12 biocides) and 55 metabolites with quantified daily com-
posite samples, we selected agricultural pesticides suitable for quantitative
evaluation according to the following criteria: 1. availability of sales or
usage data, 2. sufficiently high detection frequency, and 3. main usage for
agricultural plant protection products (PPP).

The first criterion led to the exclusion of the herbicide atrazine, which
has not been sold in Switzerland since 2008 (FOAG, 2021). The sale of
the herbicide isoproturon was discontinued in 2020 but was included
since sales stopped recently relative to this study.
Fig. 1. The Rhine River sampling station at Basel with outlines for the Rhine River Catc
Rhine River Catchment.
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The second criterion requires detection frequencies (DF) above the limit
of quantification (LOQ) of >20 %, which is a recommended threshold for
robust statistical analyses (Helsel, 2012). Accordingly, we considered that
threshold but also examined compounds with DF between 5 and 20 % to
avoid missing interesting candidate pesticides.

The third criterion was the most difficult because PPP compounds may
also be authorized for use as biocide products or veterinary drugs. For such
usage, no sales datawere publicly available. Therefore, for these ambiguous
compounds we used additional data to check the plausibility that agricul-
tural use was the dominant source for the Rhine River. First, we only con-
sidered compounds for which the seasonal load distribution corresponded
to the main application period of the respective active ingredient, e.g., for
herbicides applied in spring, the highest loads are also observed in spring
or early summer. For biocide usage, inputs show a different temporal distri-
bution over the year (Wittmer et al., 2011). Second, the calculated loss rates
(see below) should lie in the range of previous studies, i.e., low single-digits
(cf. Burgoa andWauchope, 1995). Some compounds that were used as PPP
and biocide (e.g., carbendazim) had unrealistically large loss rates (>30 %
of agricultural sales) suggesting a non-agricultural source. After excluding
such critical compounds, we ended up with a set of seven herbicides that
could be used for analysis (Table S1). Two of the seven (MCPA and
Mecoprop) are also authorized for amenity and homeowners use for both
professionals and non-professional users. The other five compounds are
only registered for usage in crop production. Data on the share of amenity
and homeowner use during the study period are not available. For
mecoprop, a baseload from building materials can be expected with about
the same load throughout the year stemming from this use (Wittmer
et al., 2011).

Use data: Since Switzerland does not have regional data on pesticide
use available, the national sales data (FOAG, 2021) of the corresponding
year was taken as a proxy for the pesticide use in the catchment. Other
hment and subcatchment at Basel. Also, shown are the land cover types within the
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researchers in Europe, the US, and South Africa, have also used PPP sales as
a proxy for use when use data are not readily available (Schreder and
Dickey, 2005; Dabrowski, 2015; Galimberti et al., 2020). The catchment
area of the Rhine atWeil am Rhein covers about 68 % of the Swiss territory
and includes almost 80 % of the total population and 87 % of the arable
land (Swiss Federal Statistical Office FSO, 2018). For this reason, it seems
justified to compare the national PPP sales volumes as an estimate for use
in the Swiss part of the Rhine catchment with the load of the Rhine catch-
ment area, but it should be kept in mind that the estimates tend to overes-
timate the true use in the Swiss part of the Rhine catchment (by a factor of
∼1.15), an affect more or less compensated by additional load from tribu-
taries of the Rhine in southern Germany (Moser et al., 2018). We acknowl-
edge this assumption may result in biased loss calculations. However, our
statistical analysis addresses the relative variation in loss rates between
years, which is less susceptible to inaccuracies in the absolute loss rates
themself.

Discharge data: Discharge at the sampling location in Basel is mea-
sured every 5 min by the canton of Basel-Stadt and is published by the Fed-
eral Office of the Environment (FOEN, 2022). The mean daily discharge
was provided with the daily composite sample concentration data by the
cantonal laboratory.

Load calculations: Yearly loads were calculated as the product of the
daily composite sample concentration (Ci) and the mean discharge on day
i (Qi) summed over all days of the corresponding calendar year (Eq. (1))

L ¼
Xn

i¼1

Ci � Qi ð1Þ

Concentrations below the LOQ were set to zero, which is a simplifica-
tion as the real value is likely to be between zero and the LOQ. However,
tests of substituting these values with LOQ/2 showed only minor differ-
ences for all compounds with high DF, e.g., 0.5 % and 2 % higher mean
load for mecoprop and metolachlor, respectively. For dimethenamid and
MCPA, two compounds with mean DF < 50 %, the effect was more pro-
nounced with 30 % and 36 % higher loads. However, given the high inter-
annual variability of the loads of up to a factor of 5, the approach for dealing
with concentrations below 0 adds very little to the total variability.

Calculation of loss rates: The loss rates (LR) for a given year k were
calculated by dividing the load Lk in Basel by the sales data for
Switzerland (Eq. (2)).

LRk ¼ Lk
Salek

(2)

Pesticides are not necessarily used in the year they are sold, but no
compound-specific information was found about the tendency to use stocks
from previous reporting years. Therefore, the sales of all compounds were
weighted by taking 2/3 of the sales data from the current year and 1/3
from the previous year thereby dampening fluctuations in the sales data.
Two approaches were used to calculate the loss rates: 1. calculates the
load for all months of each evaluated year, and 2. calculates the load only
for the months making up the main loss period (MLP). The MLP is often a
very distinct period of 2–4 months in the spring or early summer that
makes up the largest fraction of the annual load. E.g., for dimethenamid
(a herbicide applied only to maize), the MLP is from May–July (cf.
Fig. S3). For chlorotoluron and isoproturon, two herbicides applied in win-
ter crops, the MLP ranges from October to February and from October to
May, respectively. Although most farmers do not apply pesticides between
November 1st and February 15th, the losses can be elevated over several
months. Thus, the term main loss period is distinctly different from the ap-
plication period. The prolonged period with increased load of isoproturon
is due to it being first applied in the fall and then again in early spring.
The load of the MLP of these two compounds was compared to the annual
sales data of the year the MLP starts. As the sales data for the year 2021
were not available at the time of this study, loss rates could only be calcu-
lated from 2013 to 2020.
4

Eschibach catchment is a small (1.2 km2) agricultural catchment lo-
cated in northeastern Switzerland (Fig. 2). The main crops produced
there are corn, sugar beet, winter wheat, and rape seed. It was the site of
an experimental study, which consisted of a controlled application of two
herbicide mixtures on May 19, 2009 (Doppler et al., 2012). The first mix-
ture (containing atrazine, CAS No.: 1912-24-9) was applied to six experi-
mental corn fields where Doppler et al. (2012) had full control over the
application. Thus, spraying of the first mixture took place all on the same
day with the same spraying method. The second mixture (containing
terbuthylazine, CAS No.: 5915-41-3), which was applied to the rest of the
corn fields in the catchment, could not be sprayed all on the same day nor
with the same spraying method. Hydrological monitoring (i.e., stream dis-
charge, precipitation, groundwater levels, and soil moisture) took place
within the catchment from summer 2008 to autumn 2009. Water samples
for pesticide analysis were taken from the stream and tile drains at five dis-
charge measurement stations prior to the herbicide application and during
a two-month period after application. During the two-month period, 13
rain events occurred, which triggered automatic high-resolutionwater sam-
pling. This consisted of taking a water sample every 15 min for the first six
hours after the start of an event, followed by hourly sampling until
returning to baseflow discharge levels. Grab samples were taken periodi-
cally during baseflow periods. In total 1500 samples were taken, of which
600 were selected for chemical analysis to represent the chemograph dy-
namics based on seven rainfall events that occurred during the experiment
(Doppler et al., 2012). Pesticide concentrations were measured with online
solid-phase extraction (SPE) coupled to liquid chromatography and a triple
quadrupole mass spectrometer (LC-MS/MS). The limit of detection (LOD)
for all compounds was between 2 and 10 ng/L. For all compounds
isotope-labelled internal standards were used for quantification. For further
details see Doppler et al. (2012). This data set formed the basis for the de-
velopment of a perceptual and conceptual hydrological pesticide transport
model (Ammann et al., 2020, see below).

2.2. Model description and setup

A conceptual hydrological model of the Eschibach catchment was
developed to simulate fast herbicide transport (Ammann et al., 2020).
The Eschibach model is capable of simulating discharge and pesticide
concentration time-series at the outlet of the catchment given an equal
length time-series for precipitation, evapotranspiration, and the appli-
cation of pesticides. The model accounts for degradation and sorption
of pesticides (Table S2 for physico-chemical characteristics), as well as
the spatial distribution of hydrologic properties by using hydrological
response units (HRU) (Doppler et al., 2014). There are four main
HRUs represented in the Eschibach model, listed in order of increasing
travel times:

1. Impervious areas, such as roads (both paved and unpaved) and drive-
ways.

2. Overland flow areas connected directly to the stream or via artificial
shortcuts, such as maintenance manholes of the tile drainage system or
roadside storm drains.

3. Fast vertical infiltration throughmacropores in the upper soil layers that
reach tile drains.

4. Slower moving saturated groundwater flow.

The Eschibach model was calibrated to stream discharge and
high-resolution concentration measure-ments of atrazine and
terbuthylazine described in the previous section. Compared to the original
model application, we adjusted the time-dependent parameters in the
Eschibach model from a 15-minute time-step to a 10-minute time-step to
align with the maximum time resolution obtainable from MeteoSwiss
(2019) for meteorological data. We also added an additional interception
bucket to the HRU representing impervious areas to overcome unrealistic
concentration peaks that would otherwise occasionally occur simulta-
neously with the pesticide application.



Fig. 2.The Eschibach catchment with the experimental setup. Five sampling stations are shownwith their corresponding subcatchments (Su and Sd: subsurface upstream and
downstream; Ou, Om, and Od: open upstream, middle, and downstream). The weather stations A and B, land use and drained areas are shown. Also, shown are the
experimental wheat and corn fields where two controlled herbicide applications took place in the spring of 2009 (numbered 1–6). Inset map shows location within
Switzerland (from Doppler et al., 2014).
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We used the Eschibach model to simulate herbicide concentrations
at a 10-minute time resolution from 2008 to 2018 using meteorological
forcings (i.e., temperature, ET, precipitation) from a meteorological sta-
tion located roughly 11 km north of Eschibach in Schaffhausen
(MeteoSwiss, 2019). The quantity of herbicides applied each year in
the model was the same amount applied in the 2009 experiment for
the first mixture (Doppler et al., 2012). The timing of pesticide applica-
tion occurred on a single day each year based on a growing degree-day
of 5.9 °C for corn (Neild and Seeley, 1977), which represents conditions
similar to those on the day of the controlled pesticide application in the
2009 experiment (Doppler et al., 2012). Additionally, the date of pesti-
cide application was chosen based on the prevailing hydrological condi-
tions (i.e., herbicide was not applied on a rainy day). We use this
scenario as a control, representing the inter-annual variability in herbi-
cide concentrations purely caused by the inter-annual variability in
weather conditions.

2.3. Simulation of mitigation effects

For both study areas, we represented the effect of mitigation measures
by reducing either the observed loss rates (The Rhine at Basel) or the
amount of herbicide applied (Eschibach catchment). Next, we assumed
the monitoring period to consist firstly of a control period without mitiga-
tion measures implemented and secondly a mitigation period of the same
duration.

The Rhine River at Basel: For each of the herbicides considered, the ef-
fects of the mitigation measures were expressed as the Reduction Level
(RL) in percent of the control period. Accordingly, we calculated for each
5

year of observed loss rates (LRobs) the corresponding loss rates for the differ-
ent RLs as follows (Eq. (3)):

LRRLi ¼
100 � RLi

100
LRobs (3)

We varied the RLs between 0 and 90 % in steps of 5 %.
Eschibach catchment: Mitigation effects were simulated by reducing the

herbicide application rate corresponding to the RLs-values described
above. To evaluate the effects of application timing on our ability for
trend detection, we also simulate the same reduction levels with applica-
tion split across a 1-month period (−10 days and + 20 days from the
date of single-day application) on days without rainfall. To reflect the sam-
pling scheme currently implemented in the Swiss NAWA monitoring pro-
gram (Kunz et al., 2016) we converted the simulated 10-minute
concentration time-series to 14-day average composite values (see S2.2 in
Supporting Information for simulated concentration time-series).

2.4. Statistical approaches

The Rhine River at Basel: To investigate the impact of the duration of the
observation period, we combined the original and the reduced LRs of vari-
ables length between 6 and 16 years. For each duration, the control and the
mitigation period had the same duration (between 3 and 8 years each). The
8 years (2013−2020) of monitoring data served as an empirical control pe-
riod since it did not contain any significant trends. Through random sam-
pling of individual years, we generated sets of shorter control periods as
well. By reducing the loss rates as described above, we also derived sets



Table 1
Overview of statistical approaches.

Method Data used Study area

Concentration Discharge

t-Test All data None Eschibach, Rhine
Seasonal Mann-Kendall All data None Eschibach
C-Q relationships All data All data Eschibach, Rhine
Double-mass curve Seasonal data Seasonal data Eschibach
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ofmitigation periods.We fully exploited the combinatorial possibilities and
analysed 12,021 sets of control-mitigation years (3136 combinations of six
and 10 years, 4900 of eight years, 784 of 12, 64 of 14, and one of 16 years).

For the assessment of mitigation effects in the Rhine basin, we started
from the observation that loss rates LRobs of each herbicide were well corre-
lated with the discharge volume QMLP during the respective main loss pe-
riod (see Result section below). Mitigation measures reducing the loss
rates will cause theQMLP - LRobs relationship to decrease.We tested whether
the observed slope was significant between the control and the mitigation
period (Table 1). To that end, we used a linear regression model for the
loss rate of each compound with the average discharge during MLP
(QMLP) and the indicator variable “period” (control or mitigation) as an in-
dicator variable. We tested whether there was a significant interaction be-
tween these two explanatory variables implying the slopes to differ
between the two periods. We tested this interaction for all year combina-
tions and all reduction levels yielding a distribution of p-values over 64
(for a duration 14 years) up to 4900 year-combinations (for a duration of
eight years). In the result section, we mainly refer to the 10 % quantile
and the median of these distributions. An exception was of course the 16-
year period where we rely on the single, complete set of years for the con-
trol period and the respective set for the mitigation period.

Eschibach catchment: The simulated atrazine time-series for the control
and treatment scenarios were analysed for statistically significant trends
or changes using a variety of statistical approaches (Table 1), which include
the t-test (Gosset, 1908), Seasonal Mann-Kendall test (Hirsch et al., 1982),
the Welch's t-test (Welch, 1947), and the double-mass curve analysis
(Searcy et al., 1960).

We also tested relationships between the yearly maximum concentra-
tion, Cmax, in a composite sample and the respective rainfall sum Psum for
the period of the respective sample. The Cmax-Psum slope difference was
tested by the Welch's t-test implemented in R. We also cumulated these an-
nual maximum concentrations and the respective rainfall amounts as
double-mass curves. Such curves have been used in hydrology for decades
(e.g., Searcy&Hardison, 1960) to check whether the relationship between
two variables change over time. Here, we tested for a change in the slope of
the double-mass curve and how probable the cumulated Cmax values at the
end of the treatment periodwere under assumption that the Cmax-Psum slope
of the control period prevailed during the treatment period.

The slope difference was tested based on Monte Carlo simulations. To
formulate a proper null hypothesis, we randomly sample from the Cmax-
Psum slope correlation (n = 10,000) for the precipitation values of the
Table 2
Regression models between loss rates and discharge volumes between application perio
slope: refer to regression between average discharge and loss rate, sd: standard error of t
observe a significant change based on 14 years of observations, RL50%: minimal reduction
on 14 years of observations.

Compound Main loss period Mean LR Intercept S

Chlortoluron Oct–Feb 0.43 −0.56 0
Dimethenamid May–July 0.33 −0.61 0
Isoproturon Oct–May 0.44 −0.65 0
MCPA Apr–Sept 0.82 −1.85 0
Mecoprop Apr–Aug 1.6 −0.34 0
(S-)Metolachlor Apr–June 0.46 −0.53 0
Terbuthylazine May–Aug 0.39 −0.51 0
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treatment period. For each realisation, we calculated the resulting slope
and the cumulative Cmax sum after the treatment period under the null hy-
pothesis (Ho). This resulted in a distribution for the Cmax-Psum slopes and
the cumulative Cmax sum. The slope and concentration sum for the treat-
ment were then compared with the respective distributions based on Ho re-
sulting in an empirical exceedance probability.

To account for the effect of the specific sequence of years attributed to
the control or treatment period, we applied the procedure described in
the previous paragraph to all combinations of years (252 combinations
for 10 years split into 5 years of control and treatment, respectively).

3. Results

3.1. Herbicide dynamics in the Rhine River at Basel

The loss rates calculated from the observed loads and weighted sales
data ranged on average between 0.33 % and 1.6 % of the amounts applied
(Table 2). They revealed considerable interannual variability with the min-
imum and maximum loss rates for each compound differing by factors be-
tween 2.0 and 12.8 (median = 5.3) between years. For the seven study
compounds, average discharge during the main loss period (MLP) ex-
plained between 60 and 96 % of the variance (Table 2, Figs. 3, S4–S6).

If mitigation measures are effective in reducing loss rates, the slope of
the observed loss rate for each compound would decrease. We tested the
necessary length of control-mitigation observation period and strength of
reduction level to observe a significant change in the slope of the QMLP -
LRobs relationship (p < 0.05). Despite decent relationships for most com-
pounds, the analysis revealed that very effective or very long time-series
are needed to detect significant changes against the observed, unex-
plained variance in the system. With 14 years of observations (seven
years of control and mitigation, respectively), for four compounds a
50 % reduction level will only lead to a significant change in 10 % of
all year combinations (see Method section for details). Only three com-
pounds are less demanding (required reduction between 17 and 42 %).
If one expects 50 % of the year combinations to cause a significant
change with 14 years of observations, reduction levels must exceed
50 % except for one compound (metolachlor).

The possibility to detect changes depends on how well discharge de-
scribes the loss rate (Fig. 4). The smaller the unexplained variability the
smaller the necessary reduction level or duration of the observation period
(i.e., metolachlor has an R2 = 0.96 and with 14 years of observations re-
quires a 25 % reduction level to observe a significant change, while
chlortoluron with an R2 = 0.60 and the same observation period requires
a 85% reduction level). Roughly, 1% of explained variance reduced the re-
quired reduction level by 1 % as well.

However, even with a good model, the required reduction level in-
creases strongly if the observation period gets short. While a 22.5 % reduc-
tion level was sufficient for metolachlor based on 16 years of observation,
with only six years (three years of control and mitigation, respectively) of
observation, a reduction level of almost 70 % is required to achieve a me-
dian p-value <0.05 (Fig. 5).
ds. Mean LR: average loss rate over the eight-year monitoring period, intercept and
he slope, RL10%: minimal reduction level necessary for 10 % of year-combinations to
level necessary for 50% of year-combinations to observe a significant change based

lope sd R2 p-value RL10% RL50%

.0012 0.18 0.60 0.02 50 85

.0007 0.14 0.70 0.01 53 70

.0012 0.13 0.69 0.02 53 70

.0024 0.22 0.82 0.002 35 52

.0017 0.19 0.78 0.004 42 57

.0008 0.06 0.96 0.00002 17 25

.0007 0.13 0.69 0.01 56 68



Fig. 3. Correlations between average discharge and the loss rate (% of combined sales of the previous and current year, seemethods for details) for metolachlor (top left) and
terbuthylazine (bottom left); relationships between the median p-value (in natural log units; dots) for the slope differences between control and mitigation period as a
function of reduction level and duration of the observation period (years) for metolachlor (top right) and terbuthylazine (bottom right). The years indicate the full
duration ranging between 6 and 16 years split equally between control and mitigation period. The red horizontal line indicates a p-value of 0.05.
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3.2. Herbicide dynamics in the Eschibach catchment

The average simulated loss rate for atrazine was 0.42 % and ranged be-
tween 0.008% and 1.25%. Fig. 6 shows the simulated annual atrazine con-
centration distributions from 2008 to 2018. The distribution for each year
contains concentration values within a 100-day application period. The
blue box plots represent the annual concentration distributions for the con-
trol scenario with the same quantity of herbicide applied as in the 2009 ex-
periment (Doppler et al., 2012). The red box plots represent the mitigation
scenario where half the atrazine is applied. Fig. 6 shows the high level of
inter-annual variability of atrazine concentrations and that some years
with half application have concentrations distributions that are higher
Fig. 4. Relationship between explained variance and the reduction level ne
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than those with full application (e.g., comparing 2016 to 2011 concentra-
tions). The variability is solely due to the annual differences in the timing
and intensity of rainfall events relative to pesticide application (see
Figs. S10–S15 in Supporting Information). We can see that the variability
in hydrological conditions alone can make it difficult to evaluate the effec-
tiveness of mitigationmeasures (see S2.1 of Supporting Information for fur-
ther discussion).

3.2.1. Statistical tests
Based on the modelled time-series described above, we have derived

simulated monitoring data consisting of 14-day composite samples. Subse-
quently, we used different statistical tests to observe their power to detect
eded to get a median p-value <0.05 for differing years of observations.



Fig. 5. Relationship between duration and reduction level for metolachlor (median p-value <0.05).

Fig. 6. Simulated annual atrazine concentrations over application period (14-day average composite values). Each box shows outliers (crosses), upper and lower adjacent
(whiskers), 25th and 75th percentiles values (box limits), median values (bar within box), and mean values (diamonds). One outlier of 2.1 μg/L in 2008 plots off the
graph. Time-series of annual simulated atrazine concentrations from 2008 to 2018 are available in Supporting Information (Figs. S10–S15).

Table 3
Summary of test efficiencies for simulated Eschibach atrazine concentrations. Per-
cent chance of rejecting Ho (no change, p-value = 0.05) given 10 years of monitor-
ing data (5 years control, 5 years mitigation) at different reduction levels of applied
atrazine.

Application reduction level 0 % 10 % 30 % 50 % 70 % 90 %

T-test Annual mean conc. 5 % 6 % 10 % 21 % 43 % 72 %
Annual median conc. 5 % 6 % 9 % 21 % 47 % 71 %
Annual 90th percentile 4 % 6 % 8 % 17 % 35 % 58 %

SMK-test 14 % 19 % 33 % 52 % 80 % 99 %
C-Q relationship 2 % 2 % 6 % 16 % 33 % 89 %
Double mass curve 22 % 25 % 36 % 54 % 80 % 100 %
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the simulated trends over time. We have treated each single year as inde-
pendent and tested all combinations of years assigned to either the control
or mitigation period.

The different statistical methods that we applied use different levels of
information. The t-test for example pools all data irrespective of season,
C-Q relationships consider the potential influence of hydrological condi-
tions on concentration levels and SeasonalMann-Kendall test adds seasonal
information. Accordingly, one can expect that trends were easier to detect
when more information was considered.

Even though we analysed the output of a completely deterministic
model, the statistical tests revealed a very limited power to detect the
existing trends against the interannual variability (Table 3). The Seasonal
8
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Mann-Kendall test and the double mass curve analysis performed best. Yet,
even with a 50 % reduction of the herbicide input, only in about half of the
cases (i.e., combinations of year considered control or treatment) a signifi-
cant trend was observed. This implies a high rate of false negative results.

Conversely, even for the control treatment (i.e., no mitigation measures
applied), depending on the combination of years, an apparent negative
trend was observed (i.e., false positive). The chance of false positives is
shown in the column with ‘0% Application Reduction Level’ in Table 3.
Thus, there is a chance (2–22%) the test would suggest that there was a sig-
nificant change even if no reduction in application was made.

We suspected that our resultsmight be influenced strongly by the distri-
bution of the herbicide input over time. Because the calibration of the
model was performed with data from a controlled experiment where all
the atrazine was applied on the same day, the standardmodel also assumed
such an application timing. To be closer to conditions resembling normal
farm practice, we also split the application over several days during a
one-month period. This change in the model set-up hardly affected our
analyses.

We also hypothesized that herbicides with shorter half-lives than atra-
zine might be evenmore sensitive to timing effect between time of applica-
tion and the rainfall triggering the major loss events. This might imply that
it would even more difficult to detect trends over time. However, our find-
ings do not support these expectations.

This was different for the influence of concentrations reported below
limits of quantification (LOQ). To test for this factor, we subjected the
time-series for atrazine and sulcotrione to stipulated LOQs of 6 and
15 ng/L for the 14-day composite samples, respectively. We then analysed
the results of these censored time-series for the two caseswhere the concen-
trations were either set equal to LOQ or to zero. For both compounds, the
statistical power to detect significant trends was further diminished.

Based on these findings that time averaged samples and the sequence of
years limit the possibility to reliably detect existing trends, one may ask
how long monitoring must last to ensure such trend detection. In the ab-
sence of longer measured time-series of weather data to run the model,
we created synthetic input time-series by repeatedly sampling from the
existing data set with full years as units. These simulations revealed that de-
pending on the mitigation effort unrealistic long monitoring time-series
would be required. Even with a 50 % reduction, it would take a 40-years
time-series for 80% of all possible year combinations to detect a significant
trend using the Seasonal Mann-Kendall test (SMK-test).

4. Discussion

4.1. Trend detection in long-term monitoring data

In many countries, governmental programs monitoring water quality
aim to evaluate the success of implemented policies for improving water
quality, which can include the reduction of aquatic pesticide risks. From a
political and environmental perspective, there is generally the desire to
achieve improvements within short periods of time. The analysis of the
high-resolution, long-term data sets of several important herbicides in the
Rhine River at Basel provides several important lessons regarding the pos-
sibility to detect improvements with confidence. As known from many
studies (e.g., Chow et al., 2020; La Cecilia et al., 2021), the observed
concentrations and loads may fluctuate strongly at daily, seasonal, and
inter-annual scale. This variability though can be rather well explained if
pesticide use or sales data are available, one accounts for the seasonal appli-
cation and loss patterns (i.e., major loss period, MLP) while factoring in the
hydrological conditions during the MLP. However, even with such a solid
base of data (i.e., pesticide use, in-stream concentrations, hydrology), our
results demonstrate that effects of mitigation measures must be substantial
(most cases load reductions >50 %) and monitoring periods must span
many years (>10 years) to be able to detect significant trends or improve-
ments. Conversely, it would be challenging or nearly impossible to detect
statistically significant improvements from mitigation measures if their ef-
fectiveness is small to moderate (e.g., 10–30 % load reduction) or if
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monitoring periods for control and mitigation phases are limited to only a
few years. Although mitigation measures have been shown to be effective
in controlled experiments (Reichenberger et al., 2007), there is little empir-
ical evidence of strong reductions in aquatic pesticide pollution by individ-
ual mitigation measures (e.g., buffer strips) beyond banning or limiting
pesticide use (Chow et al., 2020). Therefore, we encourage the implemen-
tation of multiple mitigation measures.

4.2. Signal to noise ratio in the synthetic example

Our analysis was based on the output of a deterministic hydrological
transport model of the Eschibach catchment, which revealed substantial
problems to detect implemented temporal trends against the inter-annual
variability. Obviously, part of the deterministic signal (i.e., model output)
cannot be captured by the metrics applied to the concentration time-
series but appears as noise in the subsequent data analysis. There are
three main factors that contribute to this effect, which are also relevant
for the analysis of real monitoring data. First, model outputs are aggregated
over time to result in time-integrated samples reflecting a realistic sampling
strategy (i.e., same used in Swiss monitoring program). Second, the infor-
mation of the exact timing between herbicide application and rainfall
events is ignored. This also corresponds to the real-world situation. Finally,
there is indeed a random component to the analysis in that the sequence of
years that are either attributed to the control or mitigation period have a
substantial influence on the outcome. Evenwith strong herbicide reduction
implemented, depending on the sequence of years, an unlucky situation
may prevent the detection of a significant trend or improvement.

Our results demonstrate that these factors may prevent the detection of
trends even with substantial real mitigation success and lead to false nega-
tive results. On the other hand, the analyses of the control treatment shows
that the randomness of the sequence of years may also lead to apparent
trends despite a lack of change (false positive). Table 3 shows that tests
that have higher chance of change detection also have a higher chance of
delivering a false positive. Although the double mass curve analysis has
the greatest chance of detecting a change with a given application reduc-
tion level, it comes at the price of having the highest chance of a false pos-
itive (Table 3). Thus, there appears to be a trade-off when selecting the
change detection method between the sensitivity of the method and the
risk of a false positive.

The effects are not restricted to such synthetic examples but can also af-
fect the analyses of real monitoring time-series. However, in reality, addi-
tional factors may further increase the risk for false negative or positive
findings. For instance, other pesticide types (e.g., insecticide, fungicides)
can be more varied in their physiochemical properties, making it harder
to predict their fate and transport within the watershed. Furthermore,
non-agricultural sources can potentially contribute to aquatic pesticide pol-
lution (e.g., urban), which can obfuscate trend detection. Mitigation mea-
sures targeted against agricultural sources could be misjudged as
ineffective (false negative) when non-agricultural sources are overlooked.

Furthermore, our analysis represents the simple scenario where mitiga-
tion measures lead to an abrupt change in water quality (i.e., immediate re-
duction in loss rate or application).Whereas, in reality, there could bemore
gradual improvements in water quality from the implementation of mitiga-
tion measures. However, it is likely that the detection of significant gradual
improvements (against the high levels of interannual variability) is even
more challenging than detecting abrupt changes.

5. Conclusions

Our findings have implications firstly for scientists analyzing aquatic
pesticide pollution data for trends and secondly for authorities and policy
makers regarding their expectations of detectable trends when imple-
menting policies to improve water quality.

Our results indicate that different types of statistical tests result in differ-
ent p-values, varying in their sensitivity to change detection. Furthermore,
our results suggest that a strong reduction (i.e., 70–90 %) is needed to
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detect a change within 10 years of aquatic pesticide monitoring data. The
double-mass curve endpoint test may have the appropriate level of sensitivity
to detect the subtle changes in aquatic pesticide pollution when constrained
by the length of monitoring time-series; however, the trade-off in applying
a more sensitive method for change detection is that it may be more prone
to false-positives. Our results suggest that it is important to consider the
trade-off between detection sensitivity and the risk of false positives when
selecting an appropriate trend detection method and that applying more
than one method could provide more confidence in trend detection.

Still, even with the most powerful statistical tests, there are several im-
portant requirements from the monitoring program to allow for trend de-
tection. For example, enough baseline monitoring is required before
implementing mitigation measures. When selecting compounds for evalu-
ating mitigation policies, it is important to consider the difficulty to detect
significant trends for pesticides with concentrations close to or below the
limits of quantification. Additionally, in small catchments, effects caused
by changes in pesticide use or the implementation of mitigation measures
can be obscured by the timing and magnitude of hydrological events rela-
tive to pesticide application.

In the context of using pesticidemonitoring programs for evaluating the
success of mitigation policies, our findings demonstrate that the existence
of a high-quality monitoring program per se may not be sufficient to dem-
onstrate the success of such policies. In fact, most European countries use
monthly or quarterly grab samples for their pesticide monitoring. Our find-
ings suggest that such low-resolutionmonitoring wouldmake the detection
of trends due to mitigation measures, such as sustainable pesticide use pol-
icies (Möhring et al., 2020), nearly impossible. Comprehensive monitoring
studies have revealed that measured environmental concentrations of sev-
eral compounds are more than a factor of 10 above their water quality ob-
jectives (e.g., Spycher et al., 2018; Liess et al., 2021). Thus, compliancewith
the water quality regulations would require a corresponding reduction of
those concentrations, which if achieved should lead to significant observ-
able trends. It is important that researchers communicate to policy makers
and authorities that data from monitoring programs will only be able to
demonstrate positive developments if the effects of mitigation measures
are strong and the monitoring is long enough (generally longer than the
typical 4-year policy and funding cycle).
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