Supporting Information

Evaluation of the role of superoxide as chain carrier of ozone decomposition to hydroxyl radicals during ozonation

Yang Guoa, Gang Yua, Urs von Guntenb,c, Yujue Wanga*

a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China.

b Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland

c School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland

* Corresponding author. E-mail: wangyujue@tsinghua.edu.cn (Yujue Wang)

S1. Composition of synthetic solutions

Table S1. Composition of synthetic solutions used in this study (buffered with 10 mM phosphate at pH = 8) with the concentrations and the first-order scavenging rate constants. The second-order rate constants for the reaction of methanol, acetate, and tert-butanol with •OH are 9.7 × 108 M−1 s−1, 7.9 × 107 M−1 s−1, and 5 × 108 M−1 s−1, respectively. (Buxton et al., 1988; Wolfenden and Willson, 1982)

<table>
<thead>
<tr>
<th>Solution</th>
<th>Methanol [C] (M)</th>
<th>•OH[C] (s−1)</th>
<th>Acetate [C] (M)</th>
<th>•OH[C] (s−1)</th>
<th>tert-Butanol [C] (M)</th>
<th>•OH[C] (s−1)</th>
<th>Overall •OH scavenging rate (s−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.24 × 10−4</td>
<td>1.2 × 105</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.2 × 105</td>
</tr>
<tr>
<td>2</td>
<td>0.93 × 10−4</td>
<td>0.9 × 105</td>
<td>0.38 × 10−3</td>
<td>0.3 × 105</td>
<td>0</td>
<td>0</td>
<td>1.2 × 105</td>
</tr>
<tr>
<td>3</td>
<td>0.62 × 10−4</td>
<td>0.6 × 105</td>
<td>0.76 × 10−3</td>
<td>0.6 × 105</td>
<td>0</td>
<td>0</td>
<td>1.2 × 105</td>
</tr>
<tr>
<td>4</td>
<td>0.31 × 10−4</td>
<td>0.3 × 105</td>
<td>1.14 × 10−3</td>
<td>0.9 × 105</td>
<td>0</td>
<td>0</td>
<td>1.2 × 105</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1.52 × 10−3</td>
<td>1.2 × 105</td>
<td>0</td>
<td>0</td>
<td>1.2 × 105</td>
</tr>
<tr>
<td>6</td>
<td>0.93 × 10−4</td>
<td>0.9 × 105</td>
<td>0</td>
<td>0</td>
<td>0.6 × 10−4</td>
<td>0.3 × 105</td>
<td>1.2 × 105</td>
</tr>
<tr>
<td>7</td>
<td>0.62 × 10−4</td>
<td>0.6 × 105</td>
<td>0</td>
<td>0</td>
<td>1.2 × 10−4</td>
<td>0.6 × 105</td>
<td>1.2 × 105</td>
</tr>
<tr>
<td>8</td>
<td>0.31 × 10−4</td>
<td>0.3 × 105</td>
<td>0</td>
<td>0</td>
<td>1.8 × 10−4</td>
<td>0.9 × 105</td>
<td>1.2 × 105</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.4 × 10−4</td>
<td>1.2 × 105</td>
<td>1.2 × 105</td>
</tr>
</tbody>
</table>
S2. Determination of the second-order rate constant for the reaction of O_2^- with acetate

The second-order rate constant for the reaction of O_2^- with acetate ($k_{O_2^-,ACT}$) was measured by competition kinetics in a xanthine-xanthine oxidase (XOD) system (Guo et al., 2021b; Pasternack and Halliwell, 1979). The system (3 mL) contained xanthine (400 μM), XOD (0.2 U) and DETAPAC (1 mM). The reference compound was nitrotetrazolium blue chloride (NBT), which reacts with O_2^- with a second-order rate constant of 6×10^4 M$^{-1}$ s$^{-1}$.

The reaction of O_2^- with NBT$^{2+}$ yields the stable and colored formazan, for which the concentrations was measured by spectrophotometry (Hach DR6000, USA) at $\lambda=560$ nm ($\varepsilon = 13800$ M$^{-1}$cm$^{-1}$).

In the experiments where the test compound (M) was added together with the NBT$^{2+}$ to the xanthine and XOD system, the generated O_2^- were mainly consumed in the parallel reactions with NBT$^{2+}$ and M

\[\text{NBT}^{2+} + O_2^- \xrightarrow{k_{O_2^-,NBT}^{2+}} \text{Formazan} + O_2 \] \hspace{3em} \text{(S1)}

\[M + O_2^- \xrightarrow{k_{O_2^-,M}} M' + O_2 \] \hspace{3em} \text{(S2)}

where M and M' are the test compound and the product from the reaction of O_2^- with M, respectively; $k_{O_2^-,M}$ is the second-order rate constant for the reaction of O_2^- with M.

Assuming a steady-state approximation to O_2^-, we can obtain

\[\frac{d[O_2^-]}{dt} = 0 = r - k_{O_2^-,NBT}^{2+} [\text{NBT}^{2+}][O_2^-] - k_{O_2^-,M} [M][O_2^-] \] \hspace{3em} \text{(S3)}

where r is the rate of O_2^- production from the enzymatically catalyzed reaction of xanthine with XOD. By rearranging Eq. S3, the concentration of O_2^- is given as

\[[O_2^-] = \frac{r}{k_{O_2^-,NBT}^{2+} [\text{NBT}^{2+}] + k_{O_2^-,M} [M]} \] \hspace{3em} \text{(S4)}

Meanwhile, the rate of formazan production (v) from Eq. S1 can be expressed as

\[v = \frac{d[\text{formazan}]}{dt} = k_{O_2^-,NBT}^{2+} [\text{NBT}^{2+}][O_2^-] \] \hspace{3em} \text{(S5)}
By substituting Eq. S4 into Eq. S5, we obtain

\[v = \frac{d[\text{formazan}]}{dt} = r \cdot \frac{k_{O_2^{-}, NBT^{2+}} \cdot [\text{NBT}^{2+}]}{k_{O_2^{-}, NBT^{2+}} \cdot [\text{NBT}^{2+}] + k_{O_2^{-}, M} \cdot [M]} \]

(S6)

In the experiment where only the reference compound (NBT^{2+}) was added in the system (no test compound was added), Eq. S3 changes to

\[\frac{d[O_2^{-}]}{dt} = 0 = r - k_{O_2^{-}, NBT^{2+}} \cdot [\text{NBT}^{2+}] \cdot [O_2^{-}] \]

(S7)

and the rate of formazan production (V) in the absence of M is given as

\[V = \frac{d[\text{formazan}]}{dt} = k_{O_2^{-}, NBT^{2+}} \cdot [\text{NBT}^{2+}] \cdot [O_2^{-}] \]

(S8)

Combining Eq. S7 and S8, we obtain

\[r = V \]

(S9)

Finally, by substituting Eq. S9 into Eq. S6 and rearranging the obtained equation, we can get

\[\frac{V}{v} = \frac{k_{O_2^{-}, M} \cdot [M]}{k_{O_2^{-}, NBT^{2+}} \cdot [\text{NBT}^{2+}]} + 1 \]

(S10)

Therefore, by following the production rate of formazan in the absence and presence of M (V and v), the second-order rate constant for the reaction of O₂⁻ with the test compound can be estimated from the slope of linear regression of Eq. S10. (Guo et al., 2021b; Pasternack and Halliwell, 1979). As shown in Fig. S1, the slope of the regression line represents the \(k_{O_2^{-}, \text{NBT}^{2+}} \) ratio between target compound and NBT^{2+} (Eq. (S10)). Based on the \(k_{O_2^{-}, \text{NBT}^{2+}} \), the second-order rate constant for the reaction of O₂⁻ with acetate was determined as 3.2 \(\times \) 10⁴ M⁻¹ s⁻¹.
Fig. S1. Determination of the second-order rate constant for the reaction of acetate with O_2^-. Ratio of production rate of the reference compound (NBT$^{2+}$) as a function of molar ratios of acetate and NBT$^{2+}$. Reaction conditions: $[\text{NBT}^{2+}] = 1 \text{ mM}, [\text{Acetate}] = 0.5, 1.0, 1.5, \text{ and } 2 \text{ mM.}$

S3. Reaction of CCl$_4$ with O$_2$

The second-order rate constant for the reaction of CCl$_4$ with O$_2^{-}$ has been determined to be $1.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ in a previous study using the same method as described in Text S1 (Guo et al., 2021a). In the present study, the second-order rate constant for the reaction of O$_2^{-}$ with CCl$_4$ was further verified using the competition kinetic method with 2,5-dichloro-p-benzoquinone ($k_{O_2^-} = 1.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ (Bielski et al., 1985)) as the reference compound. As shown in Fig. S2a, the concentration of CCl$_4$ decreased only slightly slower than that of 2,5-dichloro-p-benzoquinone in the xanthine-xanthine oxidase system. After 20 min, the concentration of CCl$_4$ was abated by \sim20% in the system. Although the decreases of CCl$_4$ concentrations are relatively small under the tested reaction conditions, they can still provide a valid estimation of the second-order rate constant. Based on the linear regression between the natural logarithm of the relative residual concentrations of CCl$_4$ and chlorobenzoquinone (Fig. S2a inset), the second-order rate constant for the reaction of O$_2^{-}$ with CCl$_4$ was determined as
8.4 \times 10^8 \text{ M}^{-1} \text{s}^{-1}, \text{ which is very close to the previously reported value (within the experimental}
81 \text{ errors). This result confirms that CCl}_4 \text{ can react rapidly with O}_2^{•−}, \text{ and the previously reported}
82 \text{ rate constant is reliable. Note that loss of CCl}_4 \text{ through evaporation was evaluated in pure water}
83 \text{ and found to be negligible under the tested conditions (Fig. S2b).}

Fig. S2. Determination of the kinetics of the reaction between O$_2^{•−}$ and CCl4. (a) Decrease of
87 CCl4 and 2,5-dichloro-p-benzoquinone concentrations in the xanthine-xanthine oxidase system;
88 (b) blank experiment to test the stability of CCl4 concentrations in water; (c) degraded CCl4
89 and released Cl$^−$ during the xanthine-xanthine oxidase process; (d) chlorine concentration
90 balance before and after the xanthine-xanthine oxidase process. Experimental conditions: (a)
91 [CCl4] = [2,5-dichloro-p-benzoquinone]$_0$ = 200 μg/L, [xanthine] = 400 μM, [XOD] = 0.3 U,
To examine dechlorination of CCl₄ by O₂⁻⁻, 20 μM CCl₄ was added in the xanthine-xanthine oxidase system. After the reaction was completed, approximately 4.1 μM CCl₄ was degraded, while 15.1 μM Cl⁻ was detected in the system. These data suggest that on average, 3.68 moles of Cl⁻ are released per mole of CCl₄ degraded during the reaction. Meanwhile, dechlorination transformation products of CCl₄ (CHCl₃, CH₂Cl₂, and CH₃Cl) were detected in the water, yielding a good overall molar Cl balance (Fig. S2c). The results observed herein are in agreement with the previous findings that O₂⁻⁻ is a strong nucleophile and can degrade chlorinated organics through a nucleophilic substitution mechanism (Hayyan et al., 2016; Mitchell et al., 2014; Smith et al., 2004).

S4. Ozone decomposition in the presence of CCl₄

Fig. S3 shows that with increasing CCl₄ concentrations, the rate of O₃ depletion decreased considerably during ozonation. This change can be mainly attributed to an enhanced suppression of the O₂⁻⁻-promoted O₃ decomposition at higher CCl₄ concentrations. For the highest concentration of CCl₄ (6.3 mM), the observed pseudo-first order rate of O₃ depletion was 1.9 × 10⁻³ s⁻¹, which is about three times the rate of O₃ depletion caused by the reaction with OH⁻ at pH 9 (k = 7 × 10⁻⁴ s⁻¹). This difference suggests that the O₂⁻⁻-promoted O₃ decomposition is not fully suppressed at the applied CCl₄ concentration, or there are some impurities in the synthetic solutions that may initiate the O₃ decomposition (e.g., chemicals and buffers added in the synthetic solutions may contain some impurities that can react with O₃).
Fig. S3. Ozone decomposition kinetics in synthetic solutions containing varying concentrations of CCl₄. Reaction condition: O₃ dose = 1.0 mg/L (0.021 mM), [CCl₄] = 0.0021–6.3 mM, pH = 9 (buffered with 10 mM borate). The line of O₃ depletion by the reaction with OH⁻ is simulated using a second-order rate constant of 70 M⁻¹ s⁻¹ (Merényi et al., 2010).

S5. Methanol and acetate as a chain promoter and inhibitor, respectively

Fig. S4 shows the evolution of O₃, •OH, and O₂⁻ concentrations during ozonation of synthetic solutions with constant total scavenging rate and various scavenging ratios of promotor (methanol)/inhibitor (acetate) (see Table 1).
Fig. S4. Evolution of \(\text{O}_3 \), \(\cdot \text{OH} \), and \(\text{O}_2^{\cdot-} \) concentrations for various promoter (P):inhibitor (I) scavenging ratios (P/I). (a) P = 100%, (b) P/I = 3:1, (c) P/I = 1:3 and (d) I = 100% during ozonation. Reaction conditions: \(\text{O}_3 \) dose = 0.021 mM, pH ~8.0 (phosphate buffer, 10 mM), total scavenging rate = \(1.2 \times 10^5 \) s\(^{-1} \), P =100%: [MeOH] = 0.124 mM; P/I = 3: [MeOH] = 0.093 mM, [Acetate] = 0.38 mM; P/I = 1/3: [MeOH] = 0.031 mM, [Acetate] = 1.14 mM; I=100%: [Acetate] = 1.52 mM.
Fig. S5. Effects of the P/I ratios on the evolution of (a) O₃, (b) •OH, and (c) O₂⁻ concentrations during ozonation of MeOH- and/or acetate-containing solutions. Reaction condition: O₃ dose = 0.021 mM, [MeOH] = 0–0.124 mM, [acetate] = 0–1.14 mM, pH ~8.0 (phosphate buffer, 10 mM), total scavenging rate = 1.2 × 10⁵ s⁻¹, P = 100%: [MeOH] = 0.124 mM; P/I = 3: [MeOH] = 0.093 mM, [acetate] = 0.38 mM; P/I = 1: [MeOH] = 0.062 mM, [acetate] = 0.76 mM; P/I = 1/3: [acetate] = 0.031 mM, [acetate] = 1.14 mM; I = 100%: [acetate] = 1.52 mM.

Fig. S6. Modelling of ozone decomposition in MeOH- and/or acetate-containing solutions by Eq. 15 (k_{\text{•OH, O₃}} = 1.1 × 10⁸ M⁻¹ s⁻¹). The symbols are experimental and the dashed lines modelling results. Reaction condition: O₃ dose = 0.021 mM, pH ~8.0 (phosphate buffer, 10 mM).
mM), total scavenging rate = 1.2×10^5 s$^{-1}$, P =100%: [MeOH] = 0.124 mM, P/I = 3: [MeOH] = 0.093 mM, [acetate] = 0.38 mM; P/I = 1: [MeOH] = 0.062 mM, [acetate] = 0.76 mM; P/I = 1/3: [MeOH] = 0.031 mM, [acetate] = 1.14 mM; I =100%: [acetate] = 1.52 mM.

S6. Methanol and tert-butanol as a chain promoter and inhibitor, respectively

The results obtained with tert-butanol as an inhibitor (Fig. S6) were generally very similar to those obtained with acetate (Fig. 1).
Fig. S7. Ozonation of synthetic solutions with constant total scavenging rate and various promotor (methanol):inhibitor (tert-butanol) scavenging ratios (P/I): Effect of the P/I ratios on (a) ozone decrease, (b) \(p \)-CBA abatement and (c) CCl\(_4\) abatement during ozonation of MeOH- and/or TBA-containing solutions. The insets in Fig. S6a, b and c show the O\(_3\) exposures, ‘OH
exposures, and O_2^- exposures, respectively. Reaction conditions: O_3 dose = 0.021 mM, pH
~8.0 (phosphate buffer, 10 mM), total scavenging rate = $1.2 \times 10^5 \text{s}^{-1}$, P = 100%: [MeOH] =
0.124 mM; P/I = 3: [MeOH] = 0.093 mM, [TBA] = 0.06 mM; P/I = 1: [MeOH] = 0.062 mM,
[TBA] = 0.12 mM; P/I = 1/3: [MeOH] = 0.031 mM, [TBA] = 0.18 mM; I = 100%: [TBA] =
0.24 mM.

Fig. S8. Ozonation of synthetic solutions with constant total scavenging rate and various
promotor (methanol):inhibitor (tert-butanol) scavenging ratios (P/I): (a) R_{ct}, (b) R_{SO}, and (c)
R_{SH} as a function of the P/I ratios. Reaction conditions: O_3 dose = 0.021 mM, pH ~8.0
(phosphate buffer, 10 mM), total scavenging rate = $1.2 \times 10^5 \text{s}^{-1}$. P = 100%: [MeOH] = 0.124
mM; P/I = 3: [MeOH] = 0.093 mM, [TBA] = 0.06 mM; P/I = 1: [MeOH] = 0.062 mM, [TBA]
= 0.12 mM; P/I = 1/3: [MeOH] = 0.031 mM, [TBA] = 0.18 mM; I = 100%: [TBA] = 0.24 mM.
Fig. S9. Ozonation of synthetic solutions with constant total scavenging rate and various promotor (methanol):inhibitor (tert-butanol) scavenging ratios (P/I): Effects of the P/I ratios on the evolution of (a) O$_3$, (b) •OH, and (c) O$_2^-$ concentrations. Reaction conditions: O$_3$ dose = 0.021 mM, pH ~8.0 (phosphate buffer, 10 mM), total scavenging rate = 1.2 \times 105 s$^{-1}$. P =100%: [MeOH] = 0.124 mM; P/I = 3: [MeOH] = 0.093 mM, [TBA] = 0.06 mM; P/I = 1: [MeOH] = 0.062 mM, [TBA] = 0.12 mM; P/I = 1/3: [MeOH] = 0.031 mM, [TBA] = 0.18 mM; I =100%: [TBA] = 0.24 mM.
Fig. S10. Modelling of ozone decomposition in MeOH/TBA-containing solutions using Eq. 15 \(k_{\text{OH,O}_3} = 3.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}\). The filled circles are experimental results, the open triangles are modelling results calculated using Eq. 15, and the dash lines are drawn based on the relative contribution of \(\text{OH}^\cdot\), \(\cdot\text{OH}\), and \(\text{O}_2^\cdot\), respectively, to the \(\text{O}_3\) decay calculated by Eqs. 16-18. Reaction conditions: \(\text{O}_3\) dose = 0.021 mM, pH ~8.0 (phosphate buffer, 10 mM), total scavenging rate = 1.2 \times 10^5 \text{ s}^{-1}. P = 100\%: [\text{MeOH}] = 0.124 \text{ mM}; P/I = 3: [\text{MeOH}] = 0.093 \text{ mM}, [\text{TBA}] = 0.06 \text{ mM}; P/I = 1: [\text{MeOH}] = 0.062 \text{ mM}, [\text{TBA}] = 0.12 \text{ mM}; P/I = 1/3: [\text{MeOH}] = 0.031 \text{ mM}, [\text{TBA}] = 0.18 \text{ mM}; I = 100\%: [\text{TBA}] = 0.24 \text{ mM}.

S7. Ozonation of natural waters

Fig. S11. Ozonation of a selected groundwater (GW) and two surface waters (SW-1, SW-2): (a) \(R_{ct}\), (b) \(R_{SO}\), and (c) \(R_{SH}\). Reaction conditions: Specific \(\text{O}_3\) dose = 1.0 mg \(\text{O}_3/\text{mg DOC}\). For water quality data of the three real waters see Table 2.
Fig. S12. Relative contribution of OH\(^-\), 'OH, O\(_2\)\(^{2-}\), and DOM to the relative ozone depletion (C/C\(_0\)) in the selected (a) groundwater (GW) and (b, c) surface waters (SW-1, SW-2). The solid circles are experimental data and the dash lines are drawn based on the relative contributions of OH\(^-\), 'OH, O\(_2\)\(^{2-}\), and DOM to O\(_3\) decay calculated using Eqs. 21-24. Reaction conditions: Specific O\(_3\) dose = 1.0 mg O\(_3\)/mg DOC. Refer to Table 2 for water quality data of the three real waters.

References

