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A B S T R A C T   

Widespread implementation of on-site water reuse is hindered by the limited availability of monitoring ap-
proaches that ensure microbial quality during operation. In this study, we developed a methodology for moni-
toring microbial water quality in on-site water reuse systems using inexpensive and commercially available 
online sensors. An extensive dataset containing sensor and microbial water quality data for six of the most critical 
types of disruptions in membrane bioreactors with chlorination was collected. We then tested the ability of three 
typological machine learning algorithms – logistic regression, support-vector machine, and random forest – to 
predict the microbial water quality as “safe” or “unsafe” for reuse. The main criteria for model optimization was 
to ensure a low false positive rate (FPR) – the percentage of safe predictions when the actual condition is unsafe – 
which is essential to protect users health. This resulted in enforcing a fixed FPR ≤ 2%. Maximizing the true 
positive rate (TPR) – the percentage of safe predictions when the actual condition is safe – was given second 
priority. Our results show that logistic-regression-based models using only two out of the six sensors (free 
chlorine and oxidation–reduction potential) achieved the highest TPR. Including sensor slopes as engineered 
features allowed to reach similar TPRs using only one sensor instead of two. Analysis of the occurrence of false 
predictions showed that these were mostly early alarms, a characteristic that could be regarded as an asset in 
alarm management. In conclusion, the simplest algorithm in combination with only one or two sensors per-
formed best at predicting the microbial water quality. This result provides useful insights for water quality 
modeling or for applications where small datasets are a common challenge and a general advantage might be 
gained by using simpler models that reduce the risk of overfitting, allow better interpretability, and require less 
computational power.    

Abbreviations 
FC free chlorine 
FN false negative 
FP(R) false positive (rate) 
Logit logistic regression 
LRT log-removal target 
LRV log-removal value 
MBR membrane bioreactor 
ORP oxidation–reduction potential 
RF random forest 

SVM support-vector machine 
TN true negative 
TP(R) true positive (rate) 

1. Introduction 

On-site water reuse can improve global access to clean water, sani-
tation, and hygiene (Rodriguez et al., 2020) and increase water use ef-
ficiency (Wilcox et al., 2016), but only if the reclaimed water is safe for 
the intended reuse application. Treatment technologies for on-site water 
reuse are increasingly becoming available. Membrane bioreactors 
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(MBRs) produce higher effluent quality than conventional treatment 
processes and are considered a “best available” technology for the 
treatment of wastewater from as few as 20 people (Diaz-Elsayed et al., 
2019; Lesjean et al., 2011). MBR-based treatment systems are often 
combined with chlorination to ensure high microbial water quality and 
to meet disinfection requirements set by regulatory agencies (Hirani 
et al., 2014). 

MBR with chlorine disinfection (MBR+Cl2) is a well-tried and robust 
combination of technologies for water reclamation with a low proba-
bility of treatment disruptions (Hirani et al., 2014). However, even a 
single day of disrupted operation can pose a risk to human health 
(Schoen et al., 2018). Therefore, monitoring systems must be established 
to ensure microbially safe water when hazardous events occur (Branch 
et al., 2016). Currently, no widely applicable online monitoring exists 
for MBR+Cl2 systems, which constitutes a major bottleneck for their 
real-world application (Reynaert et al., 2021). 

Microbial water quality targets depend on the specific reuse context, 
because MBR+Cl2 systems can treat various types of water such as 
mixed wastewater or source-separated greywater for a range of reuse 
applications such as landscaping, toilet flushing, and showering at 
different scales, including household and building scale. Quantitative 
microbial risk assessment can be used to calculate treatment log- 
removal targets (LRTs) for pathogens for combinations of wastewater 
qualities, reuse applications, and reuse scales, which thus ensures that 
the risk to human health remains below a certain benchmark (WHO, 
2016). Stochastic models have been applied to determine the moni-
toring frequencies required to prevent a significant increase in risk as a 
function of the LRT. These indicate that frequencies as low as 1 s are 
required to verify a LRT of 7 (Smeets, 2010). Manual sampling and 
laboratory-based analytical methods at such frequencies are impractical 
due to high costs. Consequently, online monitoring of the microbial 
water quality becomes indispensable for high-risk applications. 

Soft sensors are software-based models, which are increasingly used 
to predict response variables that are difficult to measure with data that 
can be obtained by more easily applicable methods (Haimi et al., 2013). 
Soft sensors have been developed for monitoring the effluent quality of 
drinking water (Aliashrafi et al., 2021) and on-site wastewater treat-
ment plants (Haimi et al., 2013; Schneider et al., 2019). So far, such 
soft-sensing approaches have primarily been used to predict physico-
chemical water quality parameters or fecal indicator bacteria such as 
E. coli. For instance, Bedell et al. (2022) use fluorescence measurements 
with an ensemble learning method to detect and quantify E. coli in a 
drinking water supply. Similarly, Foschi et al. (2021) use a range of 
conventional measurements, including pH, conductivity, turbidity, and 
UV absorbance, and neural networks to predict E. coli in wastewater 
disinfection inflow. 

In MBR+Cl2 systems, fecal indicator bacteria are not the most critical 
group of enteric pathogens, because they are mostly retained by the 
membrane in contrast to enteric viruses, which are smaller and more 
resistant to many treatment processes (Zhu et al., 2020). Even if enteric 
pathogens are removed by the treatment process, bacteria, including 
opportunistic pathogens, can regrow in the treated water without a 
disinfection residual (Garner et al., 2019; Nocker et al., 2020). 

The present study aims to develop a methodology that couples risk- 
based approaches with machine learning algorithms to issue an alarm if 
microbial water quality targets for minimum virus removal and 
maximum bacterial regrowth are not met. We compare the predictive 
power for virus removal and bacterial regrowth in MBR+Cl2 systems of 
three typological machine learning algorithms: logistic regression, 
support vector machine, and random forest. We used data from inex-
pensive and commercially available online sensors: free chlorine (FC), 
oxidation–reduction potential (ORP), pH, turbidity, conductivity, and 
temperature. The models are trained to prioritize human health by 
minimizing predictions that water is safe for reuse when it is not, and we 
also make a detailed analysis of the consequences of this conservative 
approach for the frequency of false alarms. 

In a related paper, Reynaert et al. (2023) provide sensor setpoints 
that allow tuning the chlorination to a certain water quality (e.g., a 
certain log-removal value for viruses). But these sensor setpoints are 
valid for standard operation, i.e., for situations during which the water 
reuse system are operating under non-disrupted conditions only. The 
setpoints can thus not be used to predict the water quality in real time. 
The present study aims to fill this gap and provide a real-time prediction 
of the microbial water quality under dynamic operation. 

2. Materials and methods 

2.1. MBR+Cl2 system: Water Wall 

The MBR+Cl2 system used in this study is referred to as the Water 
Wall (Reynaert et al., 2020). The Water Wall (see Fig. 1) consists of two 
main components: the core treatment takes place in a biologically 
activated membrane bioreactor (BAMBi, Künzle et al., 2015), after 
which the water is polished and disinfected in the second component, a 
clean water tank. 

The BAMBi reactor contains a standing sandwich membrane module 
(Microclear MCXL, Newterra, Langgöns, Germany) with a 150 kDa 
polyethersulfone ultrafiltration membrane (Microdyn-Nadir, Wiesba-
den, Germany). Aeration is introduced directly below the membrane 
module. The reactor is operated in a gravity-driven membrane config-
uration in which the pressure on the membrane is supplied only by the 
water head (Peter-Varbanets et al., 2010). Water that passes through the 
membrane is collected in a permeate reservoir (10 cm polyvinyl chloride 
pipe connected to the membrane module permeate outlet, holding vol-
ume of 4 L), from where it is pumped through a granular activated 
carbon filter (Norit 830, ~1.5 mm grain diameter, Cabot, Boston, USA) 
to the clean water tank. In the clean water tank, a concentrated NaOCl 
solution (1750 mg Cl2/L) is pumped into the tank at regular intervals (3 s 
on/250 s off) to reach a concentration of 1 mg/L of free chlorine. Mixing 
in the clean water tank is ensured through a submersed pump that 
operates for 30 s every 5 min. Water from the clean water tank is 
constantly recirculated through three sensor flow cells at a rate of 0.5 
L/min. The tank volumes are 60 L water for the reactor and 25 L for the 
clean water tank, and average hydraulic residence times are 19 h in the 

Fig. 1. Experimental setup for the biologically activated membrane bioreactor 
(BAMBi) configured with granular activated carbon (GAC) and chlorination 
post-treatment with a concentrated NaOCl solution. The clean water tank 
(CWT) is positioned above the BAMBi so that the overflow water from the CWT 
flows into the BAMBi. Water from the CWT is constantly pumped through flow 
cells containing five commercially available online sensors. In this laboratory 
setup, concentrated feed, representing handwashing or source-separated toilet 
flush water, was added to the BAMBi, with the same quantity of water being 
removed from the CWT as waste. 
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reactor and 5 h in the clean water tank. 
A total of 3.75 L/day of concentrated feed is pumped into the reactor 

in 50 feedings evenly distributed throughout the day. This daily feed 
represents the loading that would be introduced by a total of 75 L of 
water of real hand washing or source-separated toilet flush water, 
equivalent to the usage of a 10-person household. The same amount of 
water is removed from the system to maintain a constant volume. 

2.2. Standard operation of the Water Wall 

Two full-scale Water Walls were operated in this study: one 
mimicked the recycling of source-separated toilet flush water separated 
from the majority of urine and feces (WWTF) and the other handwashing 
greywater (WWHW). The composition of the 20 × concentrated feed 
solutions is presented in the Supplementary Information (SI 1). The 
Water Walls were operated for several days under stable conditions as 
described above, with constant feed and 1 mg/L of chlorine in the 
treated water, before they were subject to the disruptions described in 
section 2.1.2. 

2.3. Disruptions of operation 

Failure mode and effects analysis is a systematic method for identi-
fying the possible failures that pose the most significant overall risk to a 
process. We used this type of analysis to estimate four human-health- 
relevant failures per year and identified the most problematic failure 
modes (more information in SI 2). The following disruptions were 
experimentally simulated and are ordered according to their risk pri-
ority number (occurrence × severity × effort for remediation):  

1. “Aeration off”: Breakdown of the aeration for example due to pump 
breakdown or clogging of the aeration tubes, leads to ammonia in the 
permeate due to incomplete nitrification, which consumes the free 
chlorine in the clean water tank. The aeration pump was manually 
deactivated to simulate the breakdown of the aeration.  

2. “Chlorine off”: Breakdown of the chlorination, for example due to 
pump breakdown, tube clogging, or no refill of chlorine solution, 
leads to a decrease of chlorine concentrations in the treated water. 
The pump was manually deactivated to simulate a breakdown of the 
chlorine pump.  

3. “Power off”: A power outage can cause elevated concentrations of 
organics and ammonia in the permeate, which consumes the free 
chlorine once the power is back and permeate is pumped into the 
clean water tank. The aeration pump and the permeate pump were 
manually deactivated to simulate a power outage.  

4. “High usage”: High usage of the systems, for instance during a party, 
can cause elevated concentrations of organics and ammonia in the 
permeate. High usage of the system was simulated through a 15-fold 
increase of the concentrated feed.  

5. “Membrane damage”: Membrane damage can lead to direct passage 
of contaminants into the treated water. Membrane damage was 
simulated by pumping liquid from the reactor into the clean water 
tank at a flow rate of 1.6 L/h, simulating a 0.5 mm-diameter hole in 
the membrane.  

6. “Toxic substance”: A spill of a toxic substance into the biological 
treatment tank can be harmful to the biomass in the reactor and can 
result in increased concentrations of organics and ammonia in the 
permeate. This disruption was simulated by the instantaneous 
addition of 1 L of a cleaning substance (0.5% sodium hypochlorite) 
into the reactor. 

During the disruptions, frequent samples were taken to assess the 
microbial water quality (see Section 2.2). Sampling started before the 
start of the disruption and continued until the microbial water quality 
was stable, i.e. there was no further deterioration of the water quality. 
For all disruptions, it took several hours after the start of the disruption 

for the water quality to deteriorate due to the robustness of the Water 
Wall technology. Disruptions were mimicked between December 2021 
and March 2022. After each disruption, the Water Walls were given at 
least three days to recover before the next disruption was simulated 
(timeline of experiments presented in SI 3). 

3. Data 

3.1. Online sensors 

We investigated established commercially available sensors with 
promising mechanistic relationships with microbial water quality and 
excluded sensors that we considered too costly for small-scale applica-
tions. Five sensors were installed in sensor flow cells to monitor the 
water quality: ORP, FC, pH and temperature, turbidity, and conductivity 
(Table 1). Promising new sensing approaches, such as online ATP 
measurements or online flow cytometry, were excluded in this study 
focusing on on-site reuse systems, due to high costs and requirement for 
qualified operating personnel and consumables. Reference measure-
ments were taken with the recommended buffer solutions for ORP (220 
mV) and pH (pH 4 and 7). The pH sensors were calibrated whenever the 
drift was larger than 0.2. The FC sensor was calibrated with reference- 
free chlorine measurements (Hach DPD test kits, 0–2 mg/L free chlo-
rine, Hach, Loveland, USA) at the flow cell. Turbidity, conductivity, and 
temperature sensors were not calibrated during the experiments. Sensor 
measurements were automatically logged at 5-min intervals. 

3.2. Microbial water quality 

Microbial water quality was evaluated for the removal of enteric 
pathogens and regrowth of pathogens in the treated water. 

We used the bacteriophage MS2 as an indicator of the removal of 
enteric viruses. A concentrated solution of MS2 was spiked into the feed. 
The log-removal value (LRV) was calculated as 

Table 1 
Specifications and expected links to microbial water quality of the sensors 
installed in the Water Wall. All sensors were purchased from Endress+Hauser, 
Reinach, Switzerland.  

Measurement Sensor 
specification 

Measurement 
principle 

Mechanistic 
relationship with the 
microbial water 
quality 

Conductivity Condumax 
CLS21D 

Electric current 
carried by charged 
ions 

Information on 
changes in the water 
composition 

Free chlorine 
(FC) 

Digital free 
chlorine sensor 
Memosens 
CCS51D 

Closed, membrane- 
covered measuring 
cell; reduction of free 
chlorine at the 
cathode 

Direct measurement 
of free chlorine 
concentration 

Oxidation- 
reduction 
potential 
(ORP) 

Ceragel 
CPS72D 

Ceramic diaphragm 
double chamber and 
double gel reference- 
platinum ring 

Measurement of the 
oxidative capacity of 
all chlorine species 

pH Orbisint 
CPS11D 

Gel compact 
electrode with PTFE 
ring diaphragm 

Information on 
speciation and thus 
disinfection 
potential of free 
chlorine 

Temperature Orbisint 
CPS11D 

Change in electrical 
resistance 

Information on 
speciation and 
efficacy of chlorine; 
influence on 
regrowth of bacteria 

Turbidity Turbimax 
CUS52D 

Nephelometric 
turbidity sensor (90◦

scattering) according 
to ISO7027 

Turbidity can be 
linked to bacteria 
concentrations  
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LRVMS2 = − log10
CCWT

Cfeed
/

fconc
(1)  

where CCWT is the MS2 concentration in the clean water tank, Cfeed the 
MS2 concentration in the concentrated feed, and fconc is the concentra-
tion factor of the feed. The double agar layer method was used to 
enumerate MS2 as described in detail in Reynaert et al. (2023). 

Regrowth was quantified as the total concentration of bacterial cells 
with an intact membrane and measured using flow cytometry as 
described in Reynaert et al. (2023). The regrowth of human enteric 
pathogenic viruses in the treated water is not anticipated due to the 
absence of host cells (Zhu et al., 2020). 

3.3. Development of prediction models 

The overall goal of this study was to predict whether microbial water 
quality targets are met using machine learning algorithms. In machine 
learning, simplifying assumptions made by a model to make the target 
function easier to learn result in a model bias. The amount that the es-
timate of the target function will change if different training data is used 
is termed the variance. The model bias can only be decreased at the cost 
of a higher variance, or vice versa, resulting in a bias–variance tradeoff 
(Briscoe and Feldman, 2011). In this study, we selected three commonly 
used algorithms with differing bias–variance tradeoffs:  

• Logistic regression (logit) has high bias and low variance. It models 
the probability of the water quality meeting the microbial target as a 
logistic (sigmoid) function of a linear combination of one or more 
features. Logit represents the most basic regression method for bi-
nary classification and was used as a benchmark method against 
which the other algorithms were compared. For models using only 
one feature as input, the logicistic regression comes down to fixing a 
threshold for this feature. 

• Support-vector machine (SVM) has intermediate bias and interme-
diate variance. It separates the water quality into two classes. Unlike 
logit, the separation does not need to be linear. SVM creates a hy-
perplane (decision boundary) by applying transformations to the 
input data if the data is not linearly separable (kernel trick).  

• Random forest (RF) has low bias and high variance. It is an ensemble 
learning method that randomly sets up a large number of decision 
trees made of sequential binary decisions. The final prediction is then 
calculated as the average from the final predictions of all trees. 

The development of prediction models using these three algorithms 
is illustrated in Fig. 2 and described in the following subsections. All 
models were implemented using the scikit-learn 1.1.2 package (Pedre-
gosa et al., 2011) for Python 3 (Van Rossum and Drake, 2009). The code 
can be downloaded from https://doi.org/10.25678/000885. 

3.4. Microbial water quality targets 

To assess the microbial quality of reclaimed water, water reuse 
frameworks specify various LRTs for the removal of enteric pathogens 
depending on the contamination of the wastewater and the reuse 
application. Monitoring needs to be optimized for specific water quality 
targets (Reynaert et al., 2021). To demonstrate the applicability of the 
approach to various water quality requirements, we present results for 
two virus LRTs (LRT = 5 and 6) and two maximum concentrations of 
intact cells (ICC, log10ICC = 4 and 5), from which the microbial water 
quality was classified into two categories: “safe,” meeting the target, and 
“unsafe” not meeting the target. For LRT, the lower value represents a 
less stringent target. LRT = 5 can represent the virus removal required 
when reusing greywater from a 1000-people collection system for toilet 
flushing, and LRT = 6 can represent the removal required when reusing 
the same water for indoor reuse (Schoen et al., 2017). For ICC, the lower 
value represents a stricter quality target. We cannot define risk-based 

targets here, as the ICC reflects the entire bacterial community and is 
not representative of pathogens. However, it is possible to define typical 
ICC values for a specific system (Van Nevel et al., 2017). 

3.5. Standardization of sensor data 

Before being used as input to the machine learning algorithms, the 
sensor measurements were standardized to zero mean and one standard 
deviation. 

3.6. Training, validation, and testing 

The disruption dataset was balanced, meaning that the numbers of 
safe and unsafe data points were similar. The percentages of safe data 
points were 58% (LRT MS2 ≥ 6), 60% (LRT MS2 ≥ 5), 74% (log10ICC ≤
5), and 51% (log10ICC ≤ 4). 

The data was divided into a training & validation dataset and a test 
dataset, as presented in Table 2. 

For testing, we used either the disruption data alone or an assembled 
test dataset representative of realistic operation:  

• Disruption test data: This dataset was balanced with respect to the 
numbers of safe or unsafe data points. Testing on the disruption test 
data provided information on the model performance during failures 
of the Water Wall and served to verify if all occurrences when the 

Fig. 2. Flowchart for developing machine learning (ML) models that predict 
the microbial water quality (MWQ) for one ML algorithm, one microbial indi-
cator, and one MWQ target. FPR: false positive rate. TPR: true positive rate. 
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water was not safe for reuse were correctly detected (user 
perspective).  

• Realistic test data: The disruption dataset is not representative of 
realistic operation, where the water is safe over 99% of the time. 
Therefore, we assembled a dataset from sensor data from standard 
undisrupted operation combined with four disruptions per year (see 
Section 2.1.2). From baseline measurements of the microbial water 
quality, the water was assumed to always be safe in standard oper-
ation. The 13 disruptions included in the test dataset allowed stan-
dard operation to be simulated for 3.25 years. Testing with the 
realistic dataset served to verify that the percentage of false alarms 
remained low in long-term operation (operator perspective). 

3.7. Feature engineering and hybrid modeling 

Principal component analysis (PCA) was used to reduce the dimen-
sionality of the sensor measurements (Khalid et al., 2014). The optimal 
number of principal components was chosen using cross-validation 
during the parameter optimization of the machine learning models 
(see Section 2.3.5). 

Additionally to sensor measurements, the rate of change of sensor 
measurements over time, termed sensor slope, was used to include 
mechanistic knowledge about the system dynamics. The temporal dy-
namics of LRV MS2 and log10ICC differ depending on the system state. 
Deterioration of the water quality is a relatively slow process, as it takes 
time for MS2 to enter the clean water tank, and thus for LRV MS2 to 
decrease, and for bacterial cells to grow in the clean water tank, and thus 
for log10ICC to increase. For instance, it will take at least one HRT for the 
water in the clean water tank to be replaced, and thus for the LRV MS2 to 
decrease to 0. In contrast, the water quality can be improved almost 
instantly if sufficient chlorine is added to disinfect it. Combining this 
process knowledge with the machine learning approach was a first test 
whether hybrid modeling is promising for MBR+Cl2 systems. Hybrid 
modeling here means the combination of data-driven and mechanistic 
models (Schneider et al., 2022). 

3.8. Model optimization 

Model performance was evaluated using the confusion matrix pre-
sented in Table 3. 

The true positive rate (TPR) and false positive rate (FPR) were 
calculated using the following equations: 

TPR =
TP

TP + FN
(2)  

FPR =
FP

FP + TN
(3) 

Optimal model hyperparameters, confidence thresholds, and number 
of components from PCA were identified using a grid search with 
reasonable parameter values. The assumption underlying this parameter 
optimization was that a low FPR is more important, because these are 
false predictions that will put users’ health at risk. The TPR was given 
second priority, thus reducing the number of FNs and associated false 
alarms. 

The models were trained and validated with leave-one-out cross- 
validation, in which replicates of one disruption type for each reactor, 
together termed a disruption set, were removed from the training 
dataset at each iteration and used to validate the model. Leave-one-out 
cross-validation is a resampling technique appropriate for relatively 
small datasets when a highly accurate estimate of model performance is 
required (Wong, 2015). 

3.9. Selection of FPR (operating point) 

We computed optimization curves representing the highest TPR 
achieved for a certain FPR, and evaluated the gain in TPR per increase in 
FPR. Based on the optimization curves, we selected an FPR that was 
enforced during model training and validation. 

3.10. Model evaluation 

The FPR and TPR were reported on both the training and validation 
dataset and the test datasets comprising disruption test data and realistic 

Table 2 
Overview of disruptions used for the training and validation of the machine learning models and for the testing. Water Walls (WW) treating source-separate toilet flush 
(TF) water or handwashing water (HW). t: duration of the disruption, n: number of data points for removal of MS2 and intact cell concentration (ICC), op: operation.  

Training & validation dataset Test dataset 
Disruption WW t [h] n (MS2) n (ICC) Disruption WW t [h] n (MS2) n (ICC) 

Aeration off 1 TF 24 15 14 Chlorine off 5 TF 28 12 12 
Aeration off 2 TF 24 9 9 Chlorine off 6 TF 27 23 21 
Aeration off 3 HW 24 15 14 Chlorine off 7 HW 27 19 21 
Aeration off 4 HW 24 14 14 Chlorine off 8 HW 26 16 18 
Chlorine off 1 TF 26 16 18 Chlorine off 9 HW 7 10 15 
Chlorine off 2 TF 25 15 19 Chlorine off 10 HW 12 12 25 
Chlorine off 3 HW 30 22 22 Chlorine off & restart 1 TF 16 12 12 
Chlorine off 4 HW 30 29 27 Chlorine off & restart 2 HW 16 12 12 
Chlorine restart 1 TF n/a 11 15 High usage 3 HW 6 9 10 
Chlorine restart 2 TF n/a 7 8 High usage 4 HW 6 13 14 
Chlorine restart 3 HW n/a 10 11 Power outage 5 HW 12 12 13 
Chlorine restart 4 HW n/a 8 10 Power outage 6 HW 12 17 16 
Memb. damage 1 HW 36 15 15 Toxic subst. 1 HW n/a 15 11 
Memb. damage 2 HW 48 24 24 Total: 13 disruptions  182 200 
High usage 1 TF 6 9 10      
High usage 2 TF 6 12 14      
Power outage 1 TF 12 11 11      
Power outage 2 TF 12 13 13 Standard op. data 1 TF 12 12 12 
Power outage 3 HW 36 28 28 Standard op. data 2 HW 12 12 12 
Total: 19 disruptions  283 296 Total: standard op. data  24 24  

Table 3 
Confusion matrix.    

Actual condition   
Positive (safe) Negative (unsafe) 

Predicted condition Positive True positive (TP) False positive (FP) 
Negative False negative (FN) True negative (TN) 

Note that the use of “positive” to describe safe water and “negative” to describe 
unsafe water differs from the terminology used in medical testing, where a 
positive outcome typically refers to a detection. 
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test data. For the best-performing models, the detailed analysis included 
(1) decision boundary maps to visualize the test datasets and for easier 
interpretability of model predictions, and (2) time series of predictions 
for a closer evaluation of the occurrence of FPs and FNs. Note that the 
FPR on the test datasets is not suitable to compare the actual perfor-
mance of the different models, but rather to verify that the FPR selected 
as an operating point (see Section 2.3.6) is achievable. 

4. Results 

4.1. Experimental data: effect of disruptions on the microbial water 
quality 

Understanding the relations of sensor measurements to water quality 
is critical to the success of predictive models. One major outcome of this 
study is a large dataset consisting of 32 disruptions (> 500 data points) 
with detailed information on changes in microbial water quality (LRV of 
MS2 and log10ICC) and sensor measurements. Fig. 3 shows the standard 

operation and typical effects of the six types of disruption simulated and 
the restart of chlorination on microbial water quality and on the sensor 
measurements. The complete dataset for all 32 simulated disruptions to 
two reactors is available at https://doi.org/10.25678/000885. 

Fig. 3 shows that ORP values and FC concentrations both consistently 
decreased with deteriorations in the microbial water quality. Turbidity 
measurements also varied during some of the disruptions (e.g., mem-
brane damage) but not for all, and not in a way that was consistent with 
the changes in microbial water quality. Conductivity only changed 
during the toxic substance scenario. Finally, neither the pH nor the 
temperature varied more in disruptive operation than during the stan-
dard operation. 

Without disruptions, the microbial water quality was stable 
throughout the testing, with LRV MS2 > 6.4 and log10ICC < 2.7 (Fig. 3, 
standard operation). 

Fig. 3. Effect of treatment disruptions on the 
microbial water quality (log-removal value LRV 
of MS2, log10-value of ICC) and sensor mea-
surements (normalized to 1 compared to t = 0, 
except chlorine restart: normalized to 1 for t =
6 h). Dashed lines on microbial data represent 
expected interpolation. Vertical dotted lines 
represent the start of the disruption and, when 
applicable, the end of the disruption. For plots 
with only one vertical line, Water Walls were 
exposed to continued disruption.   
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4.2. Selection of suitable FPR (operating point) 

Fig. 4 shows the optimization curves that were used to select a 
suitable FPR. The optimization curve represents the optimized TPR for a 
certain FPR, determined from a grid search of possible model parame-
ters. Each point on an optimization curve thus represents different 
hyperparameters and confidence thresholds from the other points. These 
optimization curves differ from commonly-used receiver operating 
characteristic (ROC) curves that are computed for one model, i.e. one set 
of hyperparameters. FPR and TPR results are reported on the training 
and validation dataset using leave-one-out validation. Models can use all 
possible combinations of sensor measurements as input. For instance, for 
an SVM algorithm trained to predict meeting a LRT MS2 of 6 using 
measurements from six sensors, the optimized TPR is 46% if no FP are 
allowed, 58% if an FPR of 1% is allowed, and 68% if an FPR of 2% is 
allowed (Fig. 4.A). For a FPR above 2%, the TPR only increases slowly, 
meaning that we have to allow a significantly higher FPR to increase the 
TPR. 

The optimization curves serve two purposes:  

1. Selection of operating points: When selecting operating points, the 
goal was to keep the FPR as low as possible. Fig. 4 indicates that 
selecting a FPR of 0% is not an appropriate choice, as this is asso-
ciated with very low TPRs. Allowing the FPR to increase to 1% or 2% 
is associated with significantly higher TPRs. For a FPR above 2%, the 

gain in TPR per increase in FPR is much lower. A FPR of 2% was thus 
selected as a sensible choice for training the monitoring algorithms.  

2. Performance comparison of logit, SVM, and RF: Fig. 4 shows that 
logit and SVM often overlap. Therefore, they perform similarly, 
whereas RF is associated with lower TPRs. 

Consequently, further model analysis was conducted for operating 
points at FPR = 2%. 

4.3. Comparison of TPRs from different models 

Table 4 shows the FPRs and TPRs of models using single sensors, two 
sensors, and all sensors as features. All models were trained to meet an 
FPR ≤ 2%. The single-sensor models with the highest TPR were ORP and 
FC, and two-sensor combinations with the highest TPR were ORP+FC. 
Results are reported for the training and validation data, the disruption 
test data, and the realistic test data. To be classified as performing well 
(highlighted in green), models needed to satisfy two conditions: (i) FPR 
≤ 2% in the disruption test datasets and (ii) classification of the standard 
operation data as safe in the realistic test dataset. The FPR on the test 
datasets cannot be used to compare the performance of different models, 
as long as the condition from (i) is met (see Section 2.3.7). Four key 
results emerge from Table 4:  

1. Logit and SVM were associated with higher TPRs than RF. Although 
RF performed relatively well on the training and validation data, the 
RF models seem to overfit: the performance significantly decreased 

Fig. 4. Optimization curves for best-performing models (highest true positive rate for a certain false positive rate) using input from all six sensors. Each point on an 
optimization curve represents different hyperparameters and confidence thresholds from the other points. False positive: prediction is safe when the actual condition 
is unsafe. Logit: logistic regression. SVM: support vector machine. RF: random forest. 
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on the test datasets, with the FPR frequently exceeding 2%, and the 
standard operation data being misclassified. Comparing the less 
complex logit with the more complex SVM, we can observe that in 
this study, based on an inherently small dataset, the model 
complexity has neither a positive nor a negative effect on the TPR.  

2. For most models considered, the TPR was > 99% when calculated for 
the realistic test dataset. This result shows that most models correctly 
classified the standard operation data as safe (exception: see point 3 
below).  

3. The monitoring algorithm development requires correctly classifying 
the standard operation data as safe. None of the models tested per-
formed well for a log10-ICC of 4, where the models incorrectly clas-
sified the standard operation data as unsafe, resulting in a low TPR 
on the realistic test dataset.  

4. Compared to single-sensor models, the combination of information 
from ORP and FC improved the models’ predictive capacity for both 
aspects: keeping the FPR below 2% in the test dataset and correctly 
classifying the standard operation data as safe. However, including 
more sensors did not generally improve the TPR: we even observed a 
tipping point beyond which including all sensors reduced perfor-
mance compared to the ORP+FC-based models. 

Logit-based models using ORP+FC as input perform as well as SVM 
but are less computationally intensive. Therefore, a detailed evaluation 

of logit-based models using ORP+FC is presented in the following 
sections.1 

4.4. Decision boundary maps 

High performance is required not only on the training and validation 
dataset but also on the test dataset. Table 4 has already indicated that 
the models can achieve a low FPR and high TPR in the test datasets as 
well. Fig. 5 enables more detailed evaluation from decision boundary 
maps. The decision boundary maps show the probability of water being 
safe (gray shaded area) and the decision boundaries selected for the 
logit-based models using ORP+FC as input. The maps visualize how the 
models classify the water quality as safe (area right of the decision 
boundary) or unsafe (area left of the decision boundary), and allow 
evaluating how well the models are able to separate the two water 
quality classes. In Fig. 5A1-C1 (LRT MS2 6 and 5, log10-target of 5 for 
ICC), all cases where the water was unsafe in the disruption test dataset 
are classified correctly (no FPs, represented as red triangles), but some 
occurrences of water being safe are classified incorrectly. These incor-
rect classifications illustrate the consequence of selecting conservative 
decision boundaries. In contrast, there were three FPs for a log10-ICC of 4 
(Fig. 5D1). The decision boundary would have had to be considerably 
more conservative to avoid these FPs at the cost of a low TPR. Inter-
estingly, the best-performing SVM models also had linear decision 

Table 4 
True positive rate (TPR) and false positive rate (FPR) for models trained with one sensor (oxidation–reduction potential ORP or free chlorine concentration FC), two 
sensors, and all sensors. TPR and FPR are reported for the training and validation dataset, the disruption test dataset, and the realistic dataset (disruption test data +
standard operation data). Selected operating point for training and validation: FPR = 0.02. Green and bold: well-performing models with FPR ≤ 0.02 in the realistic test 
dataset and correctly classification of all standard operation data as safe. Yellow: FPR ≤ 0.02, but false classifications of the standard operation data. Orange and italics: 
FPR exceeds 0.02. LRV MS2: log-removal value of MS2. log10ICC: log10-value of the intact cell concentration (ICC).  

1 Note: Figure 4 in Section 3.2 presents optimization curves for models using 
six sensors. The optimization curve presented in SI 5 confirms that a FPR of 2% 
for the training and validation stage is also a sensible choice for models based 
only on ORP+FC. 
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boundaries, which explains why both SVM and logit have similar per-
formance (results shown in SI 6). 

Minimizing FPR at the cost of the TPR of the disruption dataset, relies 
on the algorithm always classifying the water correctly as safe in stan-
dard, undisrupted operation. From the high TPR on the realistic dataset, 
we can see that this is the case for all scenarios except for a log10-ICC of 4 
(see Table 4). Fig. 5A2-D2 provide more detail on the classification for 

the standard operation. All points in standard operation are located far 
from the decision boundary in plots A2-C2, implying a low probability of 
misclassification. In contrast, plot D2 (log10-ICC of 4) shows that the 
data from the standard operation is close to the decision boundary, with 
a few occurrences where the model misclassifies the standard operation 
data (FNs represented as orange triangles). 

Fig. 5. Decision boundary maps for the disruption test dataset (A1-D1) and the standard operation test dataset (A2-D2). Logistic-regression-based models using two 
sensors (ORP+FC). The decision boundaries were set to keep the false positive rate below 2%. TP: true positive. TN: true negative. FP: false positive. FN: 
false negative. 

Fig. 6. Typical examples of prediction errors 
for logit-based models developed for microbial 
water quality for log-removal target of MS2 =
6, based on two sensors (ORP+FC). A: aeration 
off scenario for a Water Wall treating toilet 
flush water (WWTF) (replicate 1). B: chlorine off 
scenario for a Water Wall treating handwashing 
water (WWHW) (replicate 4). C: no false posi-
tives in the test dataset. D: chlorine off scenario 
for a Water Wall treating toilet flush water 
(WWTF) (replicate 4). TP: true positive. TN: true 
negative. FP: false positive. FN: false negative.   
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4.5. Time series of predictions 

Table 4 indicates that we can achieve TPRs between 64% and 82% in 
the disruption test datasets (logit using ORP+FC as inputs) while 
meeting the selected FPR of 2%. However, even low rates of FNs can lead 
to high operation costs caused by false alarms and a loss of trust in the 
system by the user. It is thus important to understand more precisely 
when FPs and FNs occur to determine a management strategy. 

Fig. 6A and Fig. 6B show examples of prediction errors for an FP and 
FNs during training and validation of a logit-based model using ORP+FC 
as input. Fig. 6A indicates that the confidence in the water being safe is 
around the same for the TPs as for the FP (~0.75). Optimizing the model 
(meeting a MS2 LRT of 6) to have zero FPs instead of one through an 
increase of the decision boundary (dashed line) would massively 
decrease the TPR due to an increase of FNs. Results are reported on the 
training & validation dataset because there are no FPs in the test dataset 
for the two-sensor models predicting MS2 LRT. Conversely, Fig. 6B. 
(training & validation dataset) and Fig. 6D. (test dataset) show that FNs 
occur before the water quality falls below the treatment target, and thus 
represent early alarms. Unlike false alarms that occur randomly, an 
appropriate alarm management can mitigate these early alarms, for 
instance by using them for early interventions. This implies that the 
early alarms can become an asset when handled properly. The time se-
ries of predictions for both MBR+Cl2 systems and all simulated disrup-
tions can be found in SI 4. 

4.6. Hybrid models 

The data-driven approach presented in the previous sections was 
combined with mechanistic knowledge in a hybrid approach by 
including the sensor slopes. Sensor slopes allow the models to distin-
guish between deterioration and improvement of water quality. Table 5 
presents the TPRs and changes in TPR compared to the results from the 
data-driven model in Table 4 for logit-based hybrid models, including 
ORP slopes (slope over 90 min) and/or FC slopes (slope over 210 min). 
Results for all models, including SVM and RF, are presented in SI 7. The 
time intervals used for the slope calculation were chosen to maximize 
the TPR. 

Table 5 shows that the TPR can be increased by up to 25 percentage 

points on the training and validation dataset, often even with a lower 
FPR (see SI 7). For hybrid models using ORP+ORP slope, the perfor-
mance on the test dataset can almost match the performance of the 
ORP+FC-based data-driven models. 

However, Table 5 also shows that this increase in TPR cannot always 
be transferred to the disruption test dataset. Although there is an in-
crease in TPR for models using ORP+ORP slope and FC+FC slope, the 
TPR of the models using both ORP+FC and their respective slopes has a 
substantially lower TPR on the test dataset than the purely data-driven 
model. One reason for this decrease in TPR may be an overfit of the 
model during the training and validation stage. 

5. Discussion 

5.1. Selection of machine learning algorithms: no tradeoff between bias 
and variance 

Although the dataset generated for this study (~500 data points from 
32 disruption events) can be considered large for microbial water 
quality measurements, it is not comparable to typical volumes and ve-
locities of “big data” (Zhou et al., 2017). In their review on data-driven 
modeling of drinking water treatment, Aliashrafi et al. (2021) show that 
neural networks are most commonly used to model water quality, fol-
lowed by SVM, decision trees, and RF. Logistic regression has not been 
widely used, because most studies focus on regression rather than 
classification. In this study, we did not include neural networks because 
their training data requirement is substantially larger than those of SVM 
and RF (Osisanwo et al., 2017). 

Our results show that more easily interpretable logit-based models 
performed on par with the more complex black box model (SVM), and 
RF-based models had lower TPRs than both. Consequently, this dataset 
produced no tradeoff between bias and variance: logit-based models 
with low bias also had the lowest variance. The similar performances of 
logit and SVM might be due to the limited size of the dataset, because 
overfitting issues can arise when applying more complex machine 
learning algorithms to small datasets. Small datasets are a common 
challenge in water quality modeling (Aliashrafi et al., 2021). An addi-
tional challenge is the variability of water quality measurements 
inherent in microbial indicator measurements such as MS2 (Levy et al., 

Table 5 
True positive rate (TPR) for models trained with one sensor, two sensors, or all sensors, including ORP and FC slopes (hybrid models). The 
TPR is reported for the training and validation dataset, the disruption dataset, and the realistic dataset. TPR diff refers to the difference in 
TPR compared to the purely data-driven models from Table 4. Selected operating point for training and validation: false positive rate (FPR) 
= 2%. Color code: green = increase of TPR; yellow = no change; red = decrease of TPR.  
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2012). Therefore, a general advantage might be gained by using simpler 
models that reduce the risk of overfitting, allow better interpretability, 
and require less computational power. This is especially true for 
controlled environments such as the MBR+Cl2 systems investigated in 
this study, where we do not expect complex underlying patterns that can 
be encountered in natural systems. 

In MBR+Cl2 systems, the inactivation of viruses and prevention of 
bacterial regrowth is mostly achieved with chlorination. Thus, we ex-
pected that ORP and FC sensors, which measure the disinfection ca-
pacity and the concentration of chlorine, respectively, would be 
promising predictors of the microbial water quality (Reynaert et al., 
2023). In this study, we observed that models using two sensors 
(ORP+FC) or even only one sensor (ORP+ORP slope) performed better 
on the test dataset than models including all sensors. Possible reasons for 
the lower performance of models using all sensors may include (1) the 
low enforced FPR, as the first classification errors occurred very soon 
when using all sensors, whereas higher FPRs models including all sen-
sors had TPRs similar to the two-sensor models, and (2) the small size of 
the dataset, which increases the risk of overfitting when using input 
from multiple sensors. 

The outputs from machine learning models need to be interpretable. 
Humans need to understand the reasoning behind the model outcome if 
they are to trust it, and the use of blackbox models in health-relevant 
applications is linked with concerns around accountability, safety, and 
liability (Aliashrafi et al., 2021). However, increased interpretability can 
come at the cost of lower accuracy, a tradeoff that has been observed, for 
instance, in a study aiming to predict E. coli concentrations in agricul-
tural water (Weller et al., 2021). The present study’s identification of an 
easily interpretable algorithm in combination with only one or two 
sensors in a known mechanistic relationship yielding the highest TPRs is 
a very positive outcome: it shows that we can have both high accuracy 
and good interpretability with the same models. As an additional 
advantage, logit is less computationally intensive and can easily be 
implemented in practical applications. 

5.2. Conservative training: no tradeoff between detecting all failures and 
false alarms 

Detecting all failures is crucial to limiting microbial risk, but 
avoiding false alarms is also important for operation costs (Storey et al., 
2011) and, presumably, user acceptance of water reuse systems. While 
there are no studies on the effect of false alarms on user acceptance, 
studies have reported technology failure as a cause for a detrimental 
effect on the public acceptance of small-scale water reuse systems 
(Domènech and Saurí, 2010). Our results show that we can reach TPRs 
of between 70% and 80% when enforcing a conservative FPR of 2%. An 
important question is whether this TPR is sufficiently high to keep 
operational costs and the deterioration of user acceptance caused by 
false alarms reasonably low. Our results indicate that this is the case for 
two reasons: 

1. FNs did not occur randomly but were usually early alarms. Appro-
priate alarm management can mitigate these early alarms and even 
use the early alarms as an asset. For instance, reactive systems could 
increase chlorination when a deterioration of the water quality is 
detected, either preventing a health-critical deterioration or 
providing additional time for intervention.  

2. Because MBR+Cl2-based water reuse systems such as the Water Wall 
provide robust treatment, they are in standard, undisrupted opera-
tion most of the time, with water quality meeting the microbial 
quality targets (Schoen et al., 2018). The TPR for realistic operation, 
standard operation with four disruptions per year, was thus > 99% in 
most cases. These results also highlight the importance of training 
and validating models on a disruption dataset and using the FPR and 
TPR to evaluate model performance. Because of the high number of 
cases classified as safe in the realistic operation dataset, a trivial 

classifier that predicts every case as safe could still have achieved a 
very high overall accuracy but missed all the cases when the water 
did not meet the microbial quality targets (Monard and Batista, 
2002). 

It is possible that model performance could be further improved 
through an optimized sampling strategy. In this study, it was not always 
possible to capture the exact moment of change in microbial water 
quality, leading to a datasets that mostly consists of very good or very 
poor water quality but misses intermediate water qualities. This is for 
example visible in Fig. 6.A, where the single false positive prediction 
was for an intermediate water quality. The prediction models developed 
in this study could be used to inform researchers or practicioners when 
changes in microbial water quality are most likely and additional sam-
ples should be taken. 

5.3. Prediction models have to be trained for specific microbial water 
quality targets 

In this study, we trained models for two virus LRTs and two 
maximum concentrations of intact cells. For actual deployment, the 
models must be trained for system-specific microbial water quality tar-
gets. For virus removal, the LRTs will depend on the wastewater 
composition, reuse application, and scale of the water reuse system and 
can be taken from water reuse frameworks (if the specific wastewater 
compositions and reuse applications are covered) or calculated using 
quantitative microbial risk assessment (WHO, 2016). Water reuse 
frameworks typically include no requirements for the ICC, as the ICC is 
not representative of pathogens. However, several studies have sug-
gested that the ICC can be used to measure process performance 
(Cheswick et al., 2019; Van Nevel et al., 2017). Here, baseline mea-
surements of ICC during standard operation can provide information on 
the variability of anticipated ICC levels and help select appropriate 
targets. 

In the present study, we observed that it is possible to train the 
models for a range of microbial water quality targets. However, the 
models could no longer distinguish between safe and unsafe states for 
the more stringent water quality target for ICC (log10ICC ≤ 4). This 
result highlights one requirement for the prediction: the quality target 
cannot be too close to the standard operation data, or standard operation 
is classified wrongly too often. Monitoring models can be trained for a 
range of microbial water quality targets, but water quality targets 
cannot be arbitrarily chosen for a given system. For the log10ICC ≤ 4 
target, the distinction between safe and unsafe system states would have 
been difficult even for humans, as ICC values sometimes rose above the 
set threshold in standard operation. 

6. Limitations and future directions 

6.1. Generalizability 

Many machine learning models can yield good results with training 
data but perform poorly on new or unseen samples, because the ability 
of conventional models to extrapolate to data outside of the training 
range is limited. In this study, we tested two setups of the Water Wall 
treating different wastewater inputs. Our results indicate that the algo-
rithms can be applied to different water types. We divided the disruption 
dataset into a training and validation dataset and a test dataset. 
Consequently, by including only one disruption type in the test dataset, 
we were able to verify that the models can predict unseen experiments. 
However, the experimental setup used here does not enable us to assess 
the generalizability of the models to completely new reactors. 

The best-performing models rely solely on ORP and FC measure-
ments that have mechanistic relationships with the microbial water 
quality, and we therefore expect the models to be generalizable to new 
MBR+Cl2 systems. In this study, including sensor slopes did not 
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significantly increase the TPR for models using ORP+FC measurements 
as inputs. We term the inclusion of sensor slopes hybrid modeling, as 
these engineered features allowed the models to differentiate between 
two system states, namely deterioration (typically a slow process) and 
improvement (typically a fast process) of the microbial water quality. 
However, we hypothesize that hybrid modeling might also increase 
transferability to new systems, because other MBR+Cl2 systems may 
have other baseline values during standard operation, especially for 
ORP. This could not be tested in the present study, as both Water Walls 
had similar ORP levels. Schneider et al. (2020) showed the feasibility of 
monitoring the physicochemical water quality of on-site wastewater 
treatment plants using engineered features such as inflection points of 
sensor measurements without plant-specific retuning of the soft sensors. 

Assessing the generalizability of these models to new MBR+Cl2 
systems and ensuring their applicability to real-life contexts will require 
them to be validated in operational MBR+Cl2 water reuse systems. One 
particular challenge will be verifying virus removal, as the spiking of 
MS2 is not possible in such systems. Here, using indicators such as 
coliphage that are naturally present could be an alternative but will 
likely need to be coupled with concentration methods due to low con-
centrations in the wastewater that do not allow the verification of high 
log-removals. 

6.2. Increasing the redundancy of the monitoring system 

Our results quantify how a decrease in the number of sensors 
(FC+ORP vs. ORP alone) increases the rate of false negative predictions, 
but they also show that these FNs are effectively early alarms. For the 
actual deployment of such monitoring approaches, selecting the most 
suitable models and developing alarm management strategies will 
depend on the monitoring and maintenance scheme envisioned (Bedell 
et al., 2022). This study shows that it is possible to achieve the highest 
TPRs with only a few sensors (e.g., ORP+FC, or ORP alone). This is 
beneficial in terms of cost and model interpretability, but predictions 
rely more heavily on single sensors, with unclear consequences for 
long-term implementation where sensors might drift or even fail at some 
point. In on-site water reuse systems, regular checks and maintenance by 
humans are a challenge (Schneider et al., 2019), but several solutions 
may be implemented for increased robustness in real-life deployments: 

1. Add monitoring redundancy by implementing several identical sen-
sors. This is a particularly interesting option for ORP-based models 
because ORP sensors are relatively inexpensive, making this a 
financially more viable option than FC+ORP-based models. Moni-
toring redundancy can be helpful when reconstructing sensors: 
where a sensor validation system detects faulty sensors, the 
remaining measurements can be used to reconstruct the faulty sen-
sors, thus allowing more robust process monitoring (Yoo et al., 
2008). 

2. Include plausibility checks by including anomaly detection strate-
gies, for instance by using active learning with human expert label-
ing (Russo et al., 2020) or automatically evaluating credible values 
and their mutual compatibility (Isermann, 2011). For instance, in 
monitoring systems using ORP and FC sensors, the Nernst equation, 
which permits the calculation of the reduction potential of a reac-
tion, can be used to verify the compatibility between the two 
measurements. 

3. Introduce deliberate system dynamics to test that sensors are react-
ing as expected, for instance by registering a daily chlorine peak. This 
strategy has been suggested by Thürlimann et al. (2019). They ach-
ieved long-term stability of a urine nitrification process that relied on 
pH control by introducing regular intended changes in pH and using 
information about the sensor’s reaction to correct for sensor drift. 

7. Conclusion  

• When working with microbial water quality data, the inherently 
small size of such laboratory-analysis-derived datasets will constrain 
the selection of suitable machine learning algorithms. In this study, 
we show that simple models using logistic regression predicted the 
microbial water quality in MBR+Cl2 water reuse systems as well as 
did more complex black box models, with the additional advantages 
of better interpretability and, potentially, transferability to other 
systems.  

• The main goal of the monitoring models developed here was to 
ensure user safety by limiting false positive predictions that water is 
safe when actually it is unsafe. We observed that the monitoring 
models are well-suited for early warning systems, as the resulting 
false negative predictions that water is unsafe when actually it is 
were not only false alarms but also early warnings.  

• Monitoring algorithms need to be trained for specific applications. In 
this study, we successfully trained and tested models for microbial 
water quality targets corresponding to different reuse applications. 
However, the results also illustrate the limitation of this approach, 
with false classifications occurring when the microbial water quality 
targets are too close to the standard operation data.  

• For some models, the TPR was improved by including sensor slopes, 
an engineered feature selected through mechanistic understanding 
of the system. Although this study does not systematically investigate 
the application of engineered features, the results highlight the po-
tential of hybrid models that include system understanding to 
improve prediction accuracies and reduce costs by requiring fewer 
sensors. 
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