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Abstract
Karst aquifers are important sources of fresh water on a global scale. The hydrological modelling of karst spring discharge, 
however, still poses a challenge. In this study we apply a transfer function noise (TFN) model in combination with a bucket-
type recharge model to simulate karst spring discharge. The application of the noise model for the residual series has the 
advantage that it is more consistent with assumptions for optimization such as homoscedasticity and independence. In an 
earlier hydrological modeling study, named Karst Modeling Challenge (KMC; Jeannin et al., J Hydrol 600:126–508, 2021), 
several modelling approaches were compared for the Milandre Karst System in Switzerland. This serves as a benchmark 
and we apply the TFN model to KMC data, subsequently comparing the results to other models. Using different data-
model-combinations, the most promising data-model-combination is identified in a three-step least-squares calibration. To 
quantify uncertainty, the Bayesian approach of Markov-chain Monte Carlo (MCMC) sampling is subsequently used with 
uniform priors for the previously identified best data-model combination. The MCMC maximum likelihood solution is used 
to simulate spring discharge for a previously unseen testing period, indicating a superior performance compared to all other 
models in the KMC. It is found that the model gives a physically feasible representation of the system, which is supported by 
field measurements. While the TFN model simulated rising limbs and flood recession especially well, medium and baseflow 
conditions were not represented as accurately. The TFN approach poses a well-performing data-driven alternative to other 
approaches that should be considered in future studies.
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Introduction

Karst aquifers contain important fresh water resources for 
about 10 % of the world’s population (Stevanović 2018) and 
act as a major resource for ecosystems, economic activities, 

agriculture, tourism, and recreation (Bakalowicz 2005; 
Martos-Rosillo et al.  2015; Olarinoye et al.  2020). Their 
highly heterogeneous and hierarchically organized subsur-
face structure originates from small-scale primary porosity 
in the soluble rock matrix, secondary porosity of fissures 
and fractures, and the large-scale tertiary porosity in con-
duits and larger voids. This structure gives rise to particular 
groundwater flow phenomena (e.g., Bakalowicz 2005; Hart-
mann et al.  2014). These manifest themselves in dynamic 
dualities of recharge processes, groundwater flow fields, and 
(spring) discharge (Kiraly 1998; Hartmann et al.  2013). Due 
to these dualities, the presence of turbulent flow, and thresh-
old effects, karst system discharge responds non-linearly to 
precipitation (Pinault et al.  2001b; Bakalowicz 2005; Cuchi 
et al.  2014). Generally, karst system hydraulic behaviour 
during recession may be characterized by an exponential or 
generalized power-law function (Maillet 1905; Dewandel 
et al.  2003; Hergarten and Birk 2007; Kovács and Sauter 
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2008; Birk and Hergarten 2010); the detailed modelling of 
karst systems is, however, complicated due to heterogeneity, 
data scarcity, and system non-linearity.

Various different methods were developed to model 
karst system hydraulics and karst system spring discharge. 
Lumped models, such as bucket-type or time series and 
transfer function models, assume that karst systems trans-
form the input signal (e.g., precipitation) into an output sig-
nal (i.e., spring discharge) without explicitly representing the 
(spatially distributed) physical processes of this transforma-
tion. Distributed models represent the system in a spatially 
distributed way, enabling a process-based representation 
and insight into hydraulic parameter fields. Summaries and 
descriptions of the different methods can be found in, for 
example, Goldscheider and Drew (2014), Hartmann et al.  
(2014) and Jeannin et al.  (2021).

To compare the performance of different modelling 
approaches for forecasting spring discharge, the Karst Mod-
elling Challenge (KMC) (Jeannin et al.  2021) was initiated. 
There, 13 different models—from neural networks over 
bucket-type models to distributed models—were compared 
by calibrating all models on the same data sets (meteoro-
logical forcing data and spring discharge data). The different 
approaches were then compared on a previously unused and 
unknown testing period where only meteorological forcing 
data were given. Other than neural networks, no time series 
approaches were compared in the KMC.

The objective of this paper is to assess the suitability 
of time series models, specifically transfer function noise 
(TFN) models using impulse response functions in continu-
ous time, for the simulation of karst spring discharge. Time 
series models —and transfer function approaches specifi-
cally—are lumped models and they have been shown in the 
past to perform well at modelling karst system spring dis-
charge (e.g., Labat et al.  1999, 2000; Pinault et al.  2001a, 
c; Denić-Jukić and Jukić 2003; Jukić and Denić-Jukić 2004, 
2006; Ladouche et al.  2014; Cuchi et al.  2014). Transfer 
function approaches are most commonly utilized to study 
linear time invariant (LTI) systems (e.g., Ljung 1999) but it 
is common practice to approximate non-linear systems, such 
as karst systems, with linear methods. This approximation is 
motivated by karst systems being time invariant over human 
time scales (Cuchi et al.  2014) and by the successful appli-
cation of linear methods for karst systems (see references 
above). The transfer function noise modelling approach used 
in this study has been used in the past for modelling heads 
in unconsolidated aquifers (e.g., von Asmuth et al.  2002) 
but has never been tested for karst system spring discharge 
simulation. Furthermore, TFN modelling is coupled in this 
study with a bucket-type recharge model to account for the 
nonlinear response of recharge to precipitation (Peterson and 
Western 2014; Collenteur et al.  2021), which is an addi-
tional novelty in karst hydrological modelling.

A common notion in model calibration is to minimize 
the series of residuals between simulated outputs and obser-
vations. Many minimization and uncertainty quantification 
methods rely on the assumption that the residuals are inde-
pendent and identically (normally) distributed (IID) (e.g., 
Nocedal and Wright 2006; Sullivan 2015; Ghanem et al.  
2017). In hydrological modelling, however, residuals are 
often autocorrelated and not normally distributed (e.g., von 
Asmuth and Bierkens 2005; Evin et al.  2013, 2014). Nev-
ertheless, minimization algorithms are still ubiquitously 
applied, despite the assumptions often not being met or 
checked. To make robust parameter inferences in the inverse 
problem, a noise model is employed on the residual series in 
this study. This simultaneously aims at reducing autocorrela-
tion in the residual series and at meeting the assumption of 
IID residuals (von Asmuth et al.  2002; Vrugt 2016; Vrugt 
et al.  2009; Collenteur et al.  2019).

For solving inverse problems, i.e., model calibration, ana-
lyzing parameter and simulation uncertainties is vital for 
model performance assessment (Gupta et al.  2005; White 
et al.  2014, 2016; Teixeira Parente et al.  2019). Model 
structural or conceptual uncertainties were analyzed in the 
past for lumped (e.g., Hartmann et al. 2013; Hartmann 2018; 
Schuler et al.  2020) and distributed (Fandel et al.  2021) 
models for karst spring discharge. Model parameter uncer-
tainty and the resulting simulation uncertainty, however, 
are rarely quantified (e.g., Teixeira Parente et al.  2019). 
A Bayesian framework of uncertainty quantification (UQ) 
is adopted in this study. The beliefs about the prior model 
parameter distributions are conditioned on observed data to 
obtain posterior parameter distributions, which are sampled 
via Markov-chain Monte Carlo (e.g., Sullivan 2015; Ghanem 
et al.  2017; Teixeira Parente et al.  2019). Noise is incorpo-
rated in the likelihood function for Bayesian inversion, better 
meeting the underlying assumptions of IID residuals (e.g., 
Vrugt 2016; Vrugt et al.  2009; Evin et al.  2013, 2014).

In this study, the applicability of TFN models using 
predefined response functions together with a non-linear 
bucket-type recharge model is tested to simulate karst spring 
discharge. The methodology of TFN model calibration and 
Bayesian UQ is applied to the KMC data, enabling the com-
parison of the obtained results to various other modelling 
approaches.

Materials and methods

Study site

The methods of TFN modelling and inversion are tested 
on the shallow and well-karstified Milandre Karst System 
(MKS), which has been intensively modelled and investi-
gated in previous studies (Grasso and Jeannin 1994; Jeannin 
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1998; Kovács and Jeannin 2003; Perrin 2003; Perrin et al.  
2003). The MKS is also the study area for the Karst Mod-
eling Challenge (KMC) (Jeannin et al. 2021). We refer the 
reader to Jeannin et al.  (2021) and references therein for a 
more detailed description of the case study area. The MKS 
is located in northern Switzerland on the north-western side 
of the Jura mountains. In Fig. 1, the study site as well as its 
main characteristics are presented.

The recharge area can be characterized as a limestone 
plateau, which is covered by forests, pastures and cultivated 
land, each at approximately 30% of the total area, while 
approximately 5% of the area is covered by urban regions. 
95% of the limestone area are covered by soil. The soil thick-
ness ranges from 0.3 to 0.5 m in the forests, whereas in the 
cultivated land the thickness can be up to 2.0 m (Jeannin 
et al.  2021). Perrin et al.  (2003) characterized the soil to 
consist mainly of cohesive silt loam. The recharge regime 
of the MKS is completely autogenic and diffuse, i.e., no 
swallow holes or surface streams are present. According to 

Perrin et al.  (2003), the unsaturated zone has a thickness 
in the range of 40–80 m, whereas the saturated zone has a 
thickness of a few tens of meters.

Available data

Jeannin et al.  (2021) found the data of the Fahy meteoro-
logical station, located at about 7 km from the catchment 
center, to be most useful for the purpose of reliable simula-
tion of spring discharges. Therefore, the analysis presented 
here was restricted to data from Fahy station. Time series 
of meteorological measurements were available from 1992-
01-01 to 1995-12-31, from 2014-01-01 to 2015-12-31, and 
from 2016-01-01 to 2016-12-31 with an hourly frequency 
for precipitation and air temperature and daily frequency for 
evapotranspiration measurements. Total spring discharge, 
discharge water temperature, and electrical conductivity 
data were available from 1992-09-24 to 1995-03-28 and 
from 2014-01-01 to 2015-12-31 in hourly frequency. Data 

Fig. 1  Map of the study site of the Milandre karst system catchment with its main characteristics (Jeannin et al. 2021)
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from 1992 to 1995 and from 2014 to 2015 could be used for 
calibration, data from 2016 could be used for testing (see 
“Least-squares optimization and noise modeling”). The data 
available in the present study is equivalent to the data avail-
able for participants in the KMC, enabling the comparison of 
results. During the testing period, no data was available for 
spring discharge, electrical conductivity, and discharge water 
temperature. Therefore, the model could not be evaluated by 
the authors of this study but evaluation of model results was 
performed by the main author of the KMC, P.-Y. Jeannin.

In this study, precipitation, evapotranspiration, and spring 
discharge data was used with hourly frequency. Therefore, 
daily evapotranspiration measurements were resampled to an 
hourly frequency through linear interpolation. All data that 
were used are shown in Fig. 9 and summarized in Table 1.

Transfer function noise model

Modeling framework

In this study, the TFN model, proposed by von Asmuth 
et al.  (2002) to simulate hydraulic heads, is adapted for 
the purpose of modelling spring discharge. The TFN model 
relates a system output time series (here, spring discharge) 
to an arbitrary number of system inputs or stresses (here, 
evapotranspiration and precipitation). Spring discharge 
QS(t) [L

3T−1] is modelled as the sum of all M contributions 
Qm(t) [L

3T−1] from the different stresses m ( Sm(t) [LT−1] ), 
a base flow component Qb [L

3T−1] and the residual series 
r(t) [L3T−1] (Eq. (1)). It is noted that the dimensions of the 
terms or variables may change, depending on the context 
of the problem studied. Residuals r(t) are calculated by 
subtracting simulated values from observed values. Fur-
thermore, stresses may be used multiple times to compute 
different contributions as shown in Fig. 2.

The contribution Qm(t) is calculated by the convolution of 
a stress time series with an impulse response function (von 
Asmuth et al.  2002), given in discrete time as

where �m(t) is the impulse response function describing how 
the system reacts to an infinitely short pulse of stress Sm.

A step response Θ(t) can be obtained by integrating the 
impulse response function over time. The step response rep-
resents the system response due to a constant stress (e.g., 
continuous precipitation at a unit rate) starting at t = 0.

The step response eventually converges to a steady state 
response as t → ∞ , giving the maximum gain of the 
response. The gain may be interpreted here as the result-
ing spring discharge contribution if it precipitates at unit 
rate infinitely in time. The response function represents the 
unit response of certain reservoirs or combinations of those 
(Denić-Jukić and Jukić 2003).

Recharge representation

The karst system recharge process has to be represented 
using multiple response functions due to the correspond-
ing duality (direct and indirect/diffuse recharge) (Pinault 
et al.  2001c, a; Ladouche et al.  2014). To make hydrau-
lic heads non-linearly related to precipitation and potential 

(1)QS(t) =

M∑
m=1

Qm(t) + Qb + r(t).

(2)Qm(t) =

t∑
�=0

Sm(�)�m(t − �),

(3)Θ(t) = ∫
t

0

�m(t)dt.

Table 1  Overview of available 
data with associated periods of 
availability

Precipitation Evapotranspiration Spring discharge Use

1992-01-01–1995-12-31 1992-01-01–1995-12-31 1992-09-24–1995-03-28 Calibration
2014-01-01–2015-12-31 2014-01-01–2015-12-31 2014-01-01–2015-12-31 Calibration
2016-01-01–2016-12-31 2016-01-01–2016-12-31 – Testing

Fig. 2  Recharge and TFN 
model structure; a non-linear 
two-component recharge model 
(NLRM), the root zone storage 
is implemented as a non-linear 
reservoir; b complete model 
structure, each NLRM in (b) 
represents (a); all symbols are 
explained within the text
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evaporation, Peterson and Western (2014) proposed and 
tested the use of a soil–water balance approach for the cal-
culation of recharge. Collenteur et al.  (2021) tested this 
approach for hydraulic heads in Austria and obtained good 
results. The bucket-type non-linear recharge model devel-
oped in Collenteur et al.  (2021) is extended in this study to 
represent the two flow components of recharge, i.e., the dual-
ity of the recharge process in karst aquifers. One response 
function is subsequently applied for each flow component, as 
done in previous studies (Pinault et al.  2001c, a; Ladouche 
et al.  2014). A schematic representation of the extended 
recharge model is presented in Fig. 2a.

A detailed description of the recharge model can be found 
in Collenteur et al.  (2021), an explanation is given for the 
recharge model adaption here. After the maximum capacity 
of the interception storage Si,max [L] is reached, additional 
precipitation overflows as effective precipitation Pe [LT

−1] . 
Instead of routing Pe entirely to the root zone storage as in 
the original formulation, Pe is divided into a quick recharge 
component Rquick [LT

−1] (see Eq. (10)) and a diffuse effec-
tive precipitation component Pe,diff [LT−1] (see Eq. (7)). The 
latter is routed to the root zone storage and the division or 
fractionation is controlled by the factor �f [−] . The intercep-
tion storage reservoir of the recharge model is governed by 
the following equations:

where Si [L] is the current water level in the interception 
storage, P [LT−1] is the precipitation flux, Ei [LT

−1] is the 
interception evaporation flux, Emax = kvEp, [LT

−1] is the 
vegetation-corrected evaporation flux with kv [−] being the 
vegetation factor and Ep [LT

−1] being the potential evapo-
ration flux. The root zone storage reservoir of the recharge 
model is governed by the following equations:

(4)
ΔSi

Δt
= P − Ei − Pe,

(5)EiΔt = min(EmaxΔt, Si),

(6)Pe =

{
Si − Si,max if Si > Si,max

0 if Si ≤ Si,max

,

(7)
dSr

dt
= (Pe(1 − �f )) − Et,s − R,

(8)Et,s = (Emax − Ei)min

[
1,

Sr

lpSr

]

(9)Rdiff = Ks

(
Sr

Sr,max

)�

where Sr [L] is the water level in the root zone storage, 
Sr,max [L] is the storage capacity of the root zone storage 
reservoir, lp [−] gives the fraction of Sr,max at which the soil 
evaporation is limited, Ks [LT

−1] is the saturated hydraulic 
conductivity of the soil, � is the exponent controlling the 
flow non-linearity, and Rdiff [LT−1] is the slow or diffuse 
recharge component.

Initially, at t = 0 , the saturation in the root zone storage 
is set to Sr(t = 0) = 0.5 Sr,max and the interception storage is 
empty ( Si(t = 0) = 0 ). After the calculation of the recharge 
fluxes, each recharge flux gets convoluted according to Eq. 
(2) with the corresponding response function for the quick or 
diffuse flow component, respectively.

Response functions

Predefined impulse response functions are used to transform 
the computed recharge components (fast and slow flow) from 
the recharge model to the final discharge contributions (see 
also Eq. (2)). As such, the response functions account for the 
effect of the porous medium. Predefined response functions 
have the advantage of a smaller number of parameters com-
pared to models using discrete non-parametric response func-
tions (von Asmuth et al.  2002; Neuman and De Marsily 1976; 
Dreiss 1989). Using response functions in continuous time 
allows to calculate the system response at arbitrary time steps 
(von Asmuth et al.  2002). These aspects are also part of the 
well-established general theory on system identification and 
the reader is referred to Ljung (1999) for more information.

While the medium and late recession behaviour of karst 
spring discharge can be represented by an exponential func-
tion with a corresponding recession coefficient (Maillet 1905; 
Kovács and Sauter 2008), the early recession behaviour may be 
better represented following a power-law function (Hergarten 
and Birk 2007; Birk and Hergarten 2010). Following this, we 
use a scaled exponential function (Eqs. (11), (13)) and a scaled 
Dagum probability density function (Kleiber 2008) (Eqs. (12), 
(14)), which follows a power-law, as impulse response func-
tions. The response functions are shown with typical parameter 
values in Fig. 3.

(10)Rquick = �f Pe,

(11)�exp(t) =
A1

a1
e−t∕a1 ,

(12)�dag(t) = A2

b2c2

t

⎛
⎜⎜⎜⎜⎝

�
t

a2

�b2c2

��
t

a2

�b2
+ 1

�c2+1

⎞
⎟⎟⎟⎟⎠
,
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where A1 [L
3T−1] and A2 [L

3] are the scaling parameters and 
a1 [T] , a2 [T] , b2 [−] , and c2 [−] are shape parameters.

In the modelling approach used here, the step responses 
are used for the computations, which are given in Eqs. (13) 
and (14).

The physical interpretability of Eq. (13) is given by 
the relation of a1 to the recession coefficient of the system 
(Maillet 1905; Kovács and Sauter 2008). Eq. (14) can be 
physically interpreted as well, where A2 controls the overall 
scale of the response, a2 controls the overall length of the 
response, b2 controls the lag time of the response and c2 is a 
damping parameter. However, no analogy to a certain reser-
voir type can be given as in Denić-Jukić and Jukić (2003); 
Ladouche et al.  (2014).

All previously mentioned models and methods were 
implemented in an adapted version of the time series analy-
sis software Pastas (Collenteur et al.  2019), based on 
version v0.16.0 (Collenteur et al.  2020). The code and 
scripts are available as supplementary materials (see Sup-
plementary information).

Model structure

To represent the karst system conceptually, we employ an 
approach similar to Denić-Jukić and Jukić (2003), represent-
ing the response to diffuse and direct recharge individually. 
To account for conceptual or structural variability of the 
model, we employ two parallel recharge models (see Fig. 2) 
with two response functions for each recharge model, where 
one recharge model gets attributed with two exponential 

(13)Θexp(t) = ∫
t

0

�exp(t)dt = A1(1 − e−t∕a1 ),

(14)Θdag(t) = ∫
t

0

�dag(t)dt = A2

(
1 +

(
t

a2

)−b2
)−c2

.

response functions (one for direct, one for diffuse discharge 
behaviour) and the other recharge model gets attributed with 
two Dagum response functions (one for direct, one for dif-
fuse discharge behaviour).

Because all response functions feature a scale param-
eter ( A1,A2 in Eqs. (11), (12)), the overall contribution of 
processes related to exponential or power-law behaviour is 
variable. Furthermore, the contribution of diffuse or direct 
system behaviour is correspondingly variable as well, ena-
bling the representation of complex recession behaviour that 
dynamically changes from a power-law to an exponential. 
Therefore, although the structure of the recharge model is 
fixed, the parallel setup together with variable representation 
of system behaviour allows for a high degree of flexibility. 
The model structure is shown in Fig. 2b.

Solving the inverse problem

General methodology

Ultimately, the goal of inversion in this study is to obtain 
the most probable simulations during calibration and testing 
periods together with associated uncertainty bounds. This 
can be achieved via Bayesian inversion, which is, however, 
computationally intensive. Multiple calibration data sets are 
available for the studied case, and thus different data-model-
combinations exist. It is of interest (especially for practical 
applications) to avoid the computationally costly Bayesian 
inversion for all data-model-combinations. This is achieved 
by performing less computationally costly least-squares cali-
bration first for all data-model-combinations and selecting 
the most promising data-model-combination afterwards. 
Then, Bayesian inversion is only performed for this most 
promising data-model-combination (see “Bayesian inversion 
and uncertainty quantification”). This general workflow is 
shown in Fig. 4.

Three different data-model-combinations are tested dur-
ing least-squares calibration, using identical model struc-
tures (see also Fig. 9): for data-model-combination 1, system 

Fig. 3  Response functions used 
with plausible shapes; a impulse 
response functions, b step 
response functions; response 
functions are abbreviated for 
Dagum (dag) and exponential 
(exp)
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input and output data is used from 1993-01-01 00:00:00 to 
1994-12-31 23:00:00; for data-model-combination 2, system 
input and output data from 2014-01-01 00:00:00 to 2015–12-
31 23:00:00 is used; data-model-combination 3 considers 
both previously mentioned data sets. In the remainder, these 
three different data sets are termed calibration data.

Because the water levels in the reservoirs of the recharge 
models are initialized at the beginning of the simulation 
to an arbitrary level, a warmup period is used. Three full 
cycles of calibration data are prepended to the calibration 
period as a warmup period. Subsequently, a warmup period 
of 3650 days is used for all models during calibration. For 
data-model-combination 1 and data-model-combination 2, 
mean values are used to fill the remaining beginning of the 
warmup period.

For convenience, all spring discharge data units are 
transformed as (m3s−1) → (103 m3s−1) before calibration. 
The total number of calibration parameters is m = 28 for 
all data-model-combinations ( 2 × 7 recharge model param-
eters, 2 × 4 parameters for the Dagum response function, 
2 × 2 parameters for the exponential response function, 1 
base flow parameter, 1 noise model parameter; see Table 3).

Previous studies with the Pastas package and the 
examples from the package documentation (Collenteur et al.  
2020) suggest that it may have aggravating effects to simulta-
neously optimize all model parameters at once, starting from 
initial values, or to optimize model parameters together with 
the noise model parameter. Therefore, the least-squares cali-
bration is divided into three consecutive steps. First, a run 
without a noise model is performed, having the parameters 
�f = 0.1, Sr,max = 250.0 mm, lp = 0.25, Si,max = 2.0 mm, kv = 1.0 
fixed in both parallel recharge models. This is motivated by 
substantial correlation between the parameters and the cor-
responding aggravating effects of non-uniqueness and equi-
finality (Beven 2006; Gupta et al.  2009). In the second step, 

the calibration is continued reusing the optimized parameter 
set from the first step but varying all model parameters, still 
without a noise model. In the third and final step, the results 
from step 2 are used again together with a noise model, 
where the noise model parameter is optimized.

Afterwards, the calibration results from the third step 
of least-squares calibration are evaluated according to 
fit metrics for the calibration period for all data-model-
combinations. Bayesian inversion (see “Bayesian inversion 
and uncertainty quantification”) is then performed with 
the most promising data-model-combination (see “Model 
fit metrics”) to obtain final simulations for the calibration 
and testing periods. Testing period performance for 2016 
is finally assessed by the main author of KMC (P.-Y. Jean-
nin) and given in this study (Jeannin et al.  2021).

Least‑squares optimization and noise modeling

The sum of the squared residual series from Eq. (1), r(t) 
, is minimized during least-squares optimization, obtain-
ing a set of calibrated parameters. A noise model can be 
employed on r(t) to better meet statistical assumptions for 
parameter inference and uncertainty quantification (von 
Asmuth et  al.  2002; von Asmuth and Bierkens 2005; 
Nocedal and Wright 2006; Vrugt 2016; Vrugt et al.  2009; 
Evin et al.  2013, 2014; Sullivan 2015; Ghanem et al.  
2017). The equation for the autoregressive lag-1 (AR1) 
noise modelled residual series can be written as (e.g., von 
Asmuth et al.  2002)

where �(t) is the noise or future prediction error, i.e., the 
effect of random noise on the residuals between the time 
steps t − Δt and t. There, Δt is the time step length and � is 
a decay constant of the effect, which has to be calibrated.

To optimize the model parameters, the residual or noise 
series (see “General methodology”) is then minimized (Eqs. 
(16), (17))

where x ∈ X ⊆ Rm is the vector of model parameters where 
the subscripts opt, res, and noise denote the optimal solution, 
residuals, and noise, respectively. m is the number of model 
parameters and (bl, bu) are the vectors of lower and upper 
bounds of the parameters (see Table 3), respectively. A non-
linear least-squares algorithm, as implemented in the Python 
library Scipy (version 1.9.0) (Virtanen et al.  2020), is used 
to minimize the respective series.

(15)�(t) = r(t) − e−Δt∕� r(t − Δt),

(16)xopt, res = min
x∈X

{r(x, t)2 ∶ bl ≤ x ≤ bu},

(17)xopt, noise = min
x∈X

{�(x, t)2 ∶ bl ≤ x ≤ bu},

Fig. 4  Inverse problem solution strategy; MCMC stands for Markov-
chain Monte Carlo sampling as a method of Bayesian inversion; the 
numbers in the box for least-squares calibration represent the three 
steps described in “General methodology”, which are carried out with 
each data-model-combination
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Model fit metrics

Four fit metrics are used to evaluate the model performance 
during the calibration period for each data-model-combi-
nation according to criteria suggested in the KMC (Jeannin 
et al.  2021). The volume conservation criterion ( VCC , see 
Eq. (20) in the Appendix) is the ratio of the simulated flow 
volume and the observed one, where a value of 1 is the opti-
mal outcome. The Nash-Sutcliffe efficiency (NSE, see Eq. 
(21) in the Appendix) incorporates the mean squared error 
as well as the variance and ranges between −∞ < NSE ≤ 1 , 
where a value higher than ≈ 0.75 indicates a reliable model 
(Nash and Sutcliffe 1970; Jeannin et al.  2021). The line-
arized version of the NSE ( NSElin , see Eq. (22) in the Appen-
dix) is used as well, which is not as sensitive to outliers 
as the original NSE (Legates and McCabe Jr. 1999). The 
Kling-Gupta efficiency (KGE, see Eq. (23) in the Appendix) 
is related to NSE but normalized to the range 0 ≤ KGE ≤ 1 
(Gupta et al.  2009). After the three-step least-squares cali-
bration described in “General methodology”, the best per-
forming data-model-combination is selected according to the 
combined VCC,NSE,NSElin& KGE criteria and considered 
for Bayesian inversion.

Bayesian inversion and uncertainty quantification

Contrary to the deterministic approach of finding a single 
optimal parameter set with least-squares calibration, Bayes-
ian inversion is a statistical approach based on Bayes’ theo-
rem (Eq. (18)). There, the prior parameter distribution p(x) 
describes the belief about model parameters before taking 
any observed data, here D = {QS,t}

N
t=0

 , into account. p(x) is 
then conditioned on observed data via the likelihood func-
tion p(D ∣ x) , which represents the probability of the model 
parameters when comparing the corresponding model simu-
lation with observed data. This conditioning results in the 
posterior parameter distribution p(x ∣ D) . Therefore, param-
eter uncertainty can be directly quantified and model struc-
tural uncertainty is indirectly accounted for by using two 
parallel model parts (see “Model structure”). The present 
noise model furthermore indirectly introduces effects of data 
uncertainty (Vrugt 2016; Vrugt et al.  2009).

Markov-chain Monte Carlo (MCMC) sampling is a highly 
popular method to sample from the (unnormalized) posterior 
density (e.g., Vrugt 2016; Vrugt et al.  2009; Teixeira Parente 
et al.  2019; Sullivan 2015), which is also used in this study. 
The general mechanism of MCMC is that a Markov-chain 
is generated in the parameter space (characterized by the 

(18)p(x ∣ D) =
p(D ∣ x)p(x)

p(D)
∝ p(D ∣ x)p(x).

prior distribution) by successively generating or proposing 
a new state (or sample) based on the previous state of the 
chain. A proposed state is then either accepted (resulting in 
a posterior sample) or rejected (resulting in a new proposal 
being made). Numerous MCMC algorithms are available; 
Pastas uses the emcee package (Foreman-Mackey et al.  
2013) as given by the lmfit wrapper package (Newville 
et al.  2020). A parallelized affine-invariant ensemble sam-
pler (AIES) algorithm is used (Goodman and Weare 2010), 
which runs multiple chains simultaneously. A uniform prior 
p(x) is assumed and the parameter prior ranges are given in 
Table 3. It is also assumed that the residuals are independent 
and follow a normal distribution, leading to the log-likeli-
hood function lnL(x,D) = lnp(D ∣ x):

where �2
t
[L6T−2] is the data variance. Using the noise series 

in place of the residuals ensures that the effect of noise is 
incorporated in Bayesian inversion. Therefore, the assump-
tion of independent and identically (normally) distributed 
residuals can be met more accurately when using the noise 
series �(x, t) compared to using the residual series r(x, t) 
(Vrugt 2016; Vrugt et al.  2009; Evin et al.  2013, 2014).

All 28 parameters are varied using 100 walk-
ers (chains), 12,000 steps, a burn-in period of 4000 
steps together with a thinning of 4. MCMC sampling 
thus produces an array of samples with dimensions 
[nsamples × nwalkers × nparameters] = [2000 × 100 × 28] , giving 
a total of 2 ⋅ 105 samples from the parameter space. A final 
model simulation is then performed for the testing period 
using the parameter maximum likelihood estimates (MLE) 
from the MCMC sampling.

Results

Least‑squares calibration

For an initial assessment of model performance of the 
three data-model-combinations, results are summarized in 
Table 2. More detailed results for data-model-combination 
2 are given in Fig. 5. Detailed results for data-model-com-
binations 1 and 3 can be found in the Appendix in Figs. 10 
and 11.

From Figs. 5, 10, and 11 and the VCC-values > 1 in 
Table 2 it was evident that flow was generally simulated 
too high, especially for moderate and base flow conditions. 
Peak flows were generally underestimated in data-model-
combinations 1 and 3, whereas in data-model-combina-
tion 2 peak flows were represented more accurately. Even 

(19)lnL(x,D) = −
1

2

N∑
t=0

(
(�(x, t))2

�2
t

+ ln(2��2
t
)

)
,
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though a warmup period was used, the first ≈ 5 months in 
the calibration periods were not simulated well; data-model-
combination 1 resulted in flows being too high, data-model-
combinations 2 and 3 resulted in flows being too low.

Taking the model calibration fit metrics in Table 2 into 
account, data-model-combination 2 was selected for further 
analysis (see “Model fit metrics”).

Bayesian model calibration and uncertainty 
quantification

For the MCMC sampling with multiple chains, the mean 
acceptance fraction was ≈ 10% . The maximum likelihood 
estimates (MLE) and the standard errors of the parameters 
are shown in Table 3. Results using the parameter MLE are 
shown in Fig. 6. Simulation uncertainty and median simu-
lated flow are shown in Fig. 12.

Compared to the least-squares calibration results (see 
“Least-squares calibration”), the overestimation of flow 
as represented by the VCC criterion could be substantially 
reduced and the NSE and KGE criteria could be increased 

with Bayesian inversion (see Table 2). The MLE simula-
tion showed a system behaviour with steeper early reces-
sion and a less rapid change towards exponential recession. 
The MLE simulation is dominated by quick exponential 
and power-law related behaviour during early recession.

As shown in Figs. 6 and 12, simulation uncertainty is 
larger during recession periods compared to peak flow esti-
mates. During the first ≈ 2 months of 2014, flow was sys-
tematically underestimated, similarly to the least-squares 
calibration results. The 5 − −95%-quantile range generally 
covers the data well during the calibration period. However, 
during late 2014 and early 2015, observed late recessions are 
not well covered and flow is generally overestimated.

Detailed results of model performance as well as flow 
contributions from the different flow paths are shown in 
Fig. 7. From Fig. 7c, the representation of hydrological pro-
cesses can be observed via the different contributions of the 
response functions to total spring discharge. It is noted that 
flow contributions of Qm = 0 ⋅ 103 m3 s−1 vanish in logarith-
mic scale and appear as gaps.

Table 2  Calibration fit metrics 
for all data-model-combinations 
(DMCs)

DMC VCC [−] NSE [−] NSElin [−] KGE [−]

DMC1 (1993–1994) 3.050 0.206 – 0.043 0.631
DMC2 (2014–2015) 1.388 0.543 0.445 0.736
DMC3 (1994–1995 & 2014–2015) 1.694 0.449 0.323 0.680
MCMC (DMC2, 2014–2015) 1.188 0.598 0.512 0.779

Fig. 5  Results for data-model-combination 2 (utilizing data from 
2014–2015) after least-squares calibration; response functions are 
abbreviated for Dagum (dag) and exponential (exp); a observed and 

simulated spring discharge, the vertical dashed line separates cali-
bration and testing period; b residuals and noise; c calibrated step 
response functions
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The parameters of recharge model 1 (see Table 3) show 
a recharge regime reacting on shorter time scales compared 
to recharge model 2, having smaller root zone storage Sr,max , 
higher hydraulic conductivity Ks , and larger exponent of 
non-linearity � . The interception storage Si,max is larger com-
pared to recharge model 2. Root zone evaporation limitation 
lp was small for both recharge models but the vegetation 
factor kv was found unrealistically large for recharge model 
2. The nearly unlimited root zone evaporation effectively 
reduces the diffuse recharge flux during long dry periods. 
The small recharge fractionation parameter � represents a 
recharge regime dominated by diffuse recharge.

Similarly, the global flow regime is controlled by dif-
fuse response functions (Fig. 7c). Quick flow components 
and early recession are dominantly represented by the 
quick flow Dagum response function, which largely fluc-
tuates on short time scales. Exponential quick flow shows 
the smallest mean contribution and fluctuates on short time 
scales as well but not as largely. The diffuse flow Dagum 
response function contribution represents intermediate 

flow conditions, reacting on longer time scales. Later 
recession is dominantly represented by the diffuse flow 
exponential response function, having the largest mean 
contribution over the calibration period and reacting 
slowly to recharge events.

A substantial reduction in residual autocorrelation was 
apparent when using a noise model (Fig. 7a and b). With 
that, the assumption of uncorrelated residuals (see sec-
tion 2.4.2) could be met more accurately. The noise dis-
tribution (Fig. 7b) had smaller variance compared to the 
raw residuals but was still far from a normal distribution 
as shown by the Gaussian kernel density estimates (KDE).

Especially large parameter standard errors were observed 
for Aq,1,2, aq,1,2, lp,2, Si,max,2, �f ,2 , and d. The large uncer-
tainty in Aq,1,2, aq,1,2 can be explained through the small �f ,2 ; 
the quick flow fraction is so small that those values hardly 
affect total spring discharge and are hard to infer. Even 
though �f ,2 has a large standard error as well, such relative 
changes from the MLE do not dominate the residual series 

Table 3  Inferred parameter 
values from Bayesian inversion 
with MCMC sampling; the 
second subscript of response 
function parameters denotes 
either quick (q) or diffuse 
(d) behaviour, the last 
subscript always denotes 
the corresponding recharge 
model number (i.e., 1 or 2); 
the standard error is given 
with respect to the MLE; 
abbreviations: Dagum response 
function (Dag.), exponential 
response function (exp.), root 
zone / interception storage 
(RS / IS), diffuse (diff.), 
limitation (lim.), saturated 
hydraulic conductivity (SHC), 
fractionation (fract.)

Parameter Description Units Prior range MLE value Standard error

A2,q,1 Scale (quick Dag.) [103 m3s−1] [0.00, 100.00] 33.2 19.0 (57.2%)

a2,q,1 Shape (quick Dag.) [s] [10−5, 5 ⋅ 103] 0.20 0.11 (55.1%)

b2,q,1 Shape (quick Dag.) [−] [10−5, 5 ⋅ 103] 1.78 0.59 (33.2%)

c2,q,1 Shape (quick Dag.) [−] [10−5, 5 ⋅ 103] 5.25 3.67 (70.0%)

A2,d,1 Scale (diff. Dag.) [103 m3s−1] [0.00, 100.00] 1.54 0.27 (17.7%)

a2,d,1 Shape (diff. Dag.) [s] [10−5, 5 ⋅ 103] 0.38 0.25 (65.4%)

b2,d,1 Shape (diff. Dag.) [−] [10−5, 5 ⋅ 103] 0.96 0.33 (34.5%)

c2,d,1 Shape (diff. Dag.) [−] [10−5, 5 ⋅ 103] 2.23 1.74 (77.9%)

Sr,max,1 RS height [mm] [10−5, 104] 145.2 36.0 (24.8%)

lp,1 RS evap. lim [−] [10−5, 1.00] 0.02 0.01 (68.8%)

Ks,1 SHC [mm   h −1] [1.00, 104] 2686.6 1462.5 (54.4%)

�1 Flow exponent [−] [10−5, 50.0] 36.4 12.4 (34.1%)

Si,max,1 IS height [mm] [10−5, 10.00] 9.04 1.53 (17.0%)

kv,1 Evap. factor [−] [10−6, 102] 0.88 0.07 (7.53%)

�f ,1 Recharge fract [−] [0.00, 1.00] 0.016 0.01 (62.5%)

A1,q,2 Scale (quick exp.) [103 m3s−1] [10−5, 2074.76] 1.42 6.55 (461.2%)

a1,q,2 Shape (quick exp.) [−] [0.01, 103] 5.62 7.56 (134.5%)

A1,d,2 Scale (diff. exp.) [103 m3s−1] [10−5, 1005.76] 4.91 0.91 (18.4%)

a1,d,2 Shape (diff. exp.) [s] [0.01, 103] 69.8 16.6 (23.8%)

Sr,max,2 RS height [mm] [10−5, 5 ⋅ 104] 847.5 280.5 (33.1%)

lp,2 RS evap. lim [−] [10−5, 1.00] 0.03 0.06 (217.9%)

Ks,2 SHC [mm   h −1] [1.00, 104] 1032.1 979.5 (94.9%)

�2 Flow exponent [−] [10−5, 50] 3.67 1.31 (35.6%)

Si,max,2 IS height [mm] [10−5, 10.00] 2.43 3.65 (150.5%)

kv,2 Evap. factor [−] [10−6, 102] 3.75 1.11 (29.6%)

�f ,2 Recharge fract [−] [0.00, 1.00] 0.003 0.01 (233.3%)

Qb Base-flow [103 m3s−1] [0.00, 0.10] 0.002 0.01 (700.0%)

� Noise decay [h] [10−5, 5 ⋅ 103] 30.6 20.2 (66.1%)
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Fig. 6  Results for data-model-combination 2 (utilizing data from 
2014–2015) after Bayesian inversion with 5 − 95%-quantile range 
obtained from 1000 randomly selected posterior samples; response 
functions are abbreviated for Dagum (dag) and exponential (exp); 

a observed and simulated spring discharge, the vertical dashed line 
separates calibration and testing period; b residuals and noise; c cali-
brated step response functions

Fig. 7  Model diagnostics for data-model-combination 2 (utilizing 
data from 2014–2015) after Bayesian inversion using the parameter 
MLE; a autocorrelation functions for the residuals and the noise; b 
histograms and Gaussian kernel density estimates (KDE) of the resid-
ual and noise distributions; c contributions to total spring discharge 

associated with different response functions, the vertical dashed line 
separates calibration and testing period; response functions are abbre-
viated for Dagum (dag) and exponential (exp), subscripts denote cali-
bration (c) and evaluation/testing (e)
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and therefore the likelihood in Eq. (18). Because no long 
dry base flow period was apparent in the calibration period, 
the base flow parameter Qb is similarly not well informed.

Model performance for the testing period

The final simulation for the testing period was performed 
using the parameter MLE; fit metrics are shown in Tables 4 
and 5. It is noted that in Table 4, the overall score is com-
puted as score = 0.4 ⋅ KGE + 0.4 ⋅ VCC + 0.2 ⋅ NSE . The 
effort in Table 4 refers to the time needed to develop and 
calibrate the model (Jeannin et al.  2021); model devel-
opment took approx. 12 h, least-squares calibration took 
approx. 30 min for all models combined, and MCMC sam-
pling took approx. 9 h, resulting in an effort of approx. 1 
day. Having a total score of 0.90, the TFN model of this 

study outperformed all other models from the Karst Model-
ling Challenge. This could be attributed to the good volume 
conservation performance of the TFN model compared to 
other models. Volume conservation was especially well met 
in rising limbs and flood recession (see Table 5), while base 
flow and undetermined flow were still overestimated. Similar 
characteristics were observed for the KGE, while NSE values 
did not indicate a superior performance. Table 5 suggests 
that the TFN model performs especially well for dynamic 
periods, while base flow cannot be represented as accurately.

To incorporate the uncertainty from Bayesian inversion 
into the analysis of model simulation during the testing 
period, simulations were carried out for the testing period 
using 1000 randomly chosen posterior samples. Mean and 
median spring discharge were computed for every time 
step as well as a 5–95%-quantile ranges (Fig. 8). Mean and 

Table 4  Comparison of global evaluation fit metrics of the TFN 
model to the two best performing models from the Karst Modelling 
Challenge (Jeannin et al.  2021); the evaluation fit metrics were pre-

pared by the main author of the KMC, P.-Y. Jeannin, for the testing 
period; see Jeannin et al.  (2021) for the results of other studies

Study Model KGE [−] VCC [−] NSE [−] Effort Score

This Study Pastas 0.86 1.03 0.73 1 day 0.90
BRGM France Gardenia 0.83 0.85 0.83 1 day 0.84
Uni-Freiburg Varkarst 0.80 0.85 0.79 1 day 0.82

Table 5  Comparison of flow-component specific evaluation fit met-
rics of the TFN model to the two best performing models from the 
KMC (Jeannin et al.  2021); the evaluation fit metrics were prepared 
by the main author of the Karst Modelling Challenge, P.-Y. Jeannin, 

for the testing period; flow components are abbreviated for rising 
limb (RL), flood recession (FR), base flow (BF), and undetermined 
flow (UF); see Jeannin et al.  (2021) for the detailed results of other 
studies

Study VCC [−] NSE [−] KGE [−]

RL FR BF UF RL FR BF UF RL FR BF UF

This study 0.92 0.95 1.45 1.22 0.68 0.58 0.52 0.73 0.90 0.93 0.31 0.77
Gardenia 0.89 0.83 0.89 0.85 0.80 0.71 0.80 0.83 0.82 0.82 0.83 0.80
Varkarst 0.95 0.87 0.72 0.73 0.71 0.73 – 0.72 0.51 0.70 0.76 0.48 0.66

Fig. 8  Simulations for data-
model-combination 2 (utilizing 
data from 2014–2015) after 
Bayesian inversion for the 
testing period in 2016, showing 
the simulation mean, median, 
5%-95%-quantiles, and the 
simulations obtained with the 
parameter MLE
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median simulated flow were generally higher compared to 
the MLE simulation, which was especially evident during 
recession periods. The width of the uncertainty interval 
increased with the duration of flood recession. Peak flows 
were generally estimated similarly for MLE simulation, 
mean, and median simulated flow. The peak flow event in 
May 2016 was estimated higher with mean values of flow 
and lower with median values. Subsequent peak flow events 
in June 2016 were estimated to be larger by the MLE simu-
lation compared to mean values. Those deviations of the 
MLE simulation results all lie within the 5–95%-quantile 
range of simulated flows, and can thus be said to be reliable 
estimates.

Discussion

Calibration and uncertainty quantification

Least‑squares calibration

It has been shown with least-squares calibration that the 
choice of the calibration data set affects the (initial) model 
performance assessment (see “Least-squares calibration”). 
It has furthermore been shown that the chosen three step 
optimization scheme for the least-squares calibration was 
not sufficient to find the (single) parameter set, which best 
reflects the observations during calibration. This is sup-
ported by the improvement of calibration fit metrics show in 
Table 2. Bayesian inversion with MCMC resulted in a single 
best parameter set used for final simulation during the testing 
period, which performed better than least-squares estimates. 
Furthermore, MCMC sampling provided rigorous estimates 
of parameter and simulation uncertainty without the limiting 
assumptions of a linear model or a pre-defined parameter 
(posterior) distribution type. Particularly in the light of equi-
finality, a strong argument is made that UQ should always be 
included in a thorough modelling study involving TFN mod-
els (e.g., Gupta et al.  2009). Even though the computational 
cost for MCMC sampling is magnitudes larger compared 
to least-squares optimization, the small computational cost 
of a single model run motivates Bayesian inversion for a 
single data-model-combination. Computational cost may be 
reduced by shortening the warmup period but still ensuring 
a physically viable state of the recharge model prior to the 
calibration period.

Comparison to other modelling approaches from the KMC

Different calibration strategies were followed by the two 
modelling approaches of the KMC which are compared 
in detail to the TFN modelling approach in this study (see 
Tables 4 and 5). While for the Gardenia model (lumped 

reservoir model), an iterative optimization—similar to least-
squares optimization—was used, for the Varkarst model 
(semi-distributed model), an MCMC algorithm was adopted 
(see the supplementary materials in Jeannin et al.  (2021)). 
Conceptually, those approaches have different backgrounds 
and in the present study, a combination of these approaches 
was used. This suggests that the choice of the specific cali-
bration methodology (i.e., least-squares-type or Bayesian) 
not necessarily pre-determines performance of a modelling 
approach during a testing period. It is possible, however, that 
the performance of the VarKarst and Gardenia models could 
be improved by implementing the same parameter estima-
tion strategy used in the present study.

The TFN model presented in this study has substan-
tially more parameters compared to the Gardenia ( m = 9 ) 
and Varkarst ( m = 8 ) models. Other lumped modelling 
approaches presented in the karst modeling challenge use a 
similar or even larger number of parameters compared to the 
TFN model. Generally, there is no clear correlation between 
a decreasing number of parameters and increasing model 
performance. With the present TFN model, a trade-off is 
being made by introducing more parameters but enabling 
the model to represent more complex system and recession 
behaviour, which has been shown to produce good results.

Bayesian inversion and uncertainty quantification

The resulting MCMC posterior 5–95%-quantile range of 
flow simulation (Fig. 12) during the calibration period 
failed to cover several peak flow events and recession peri-
ods, which was especially evident from mid 2014 to mid 
2015. It was observed in that period that the lower and upper 
quantile range limits followed a power-law during late reces-
sions, while late recession behaviour in other periods with 
generally less total spring discharge were exponential. The 
quantile range limits therefore do not represent the general 
behavioural limits (e.g., exponential or power-law related 
recession) of the model in periods with generally more total 
spring discharge, but are biased towards power-law related 
behaviour. This was alleviated for periods with generally 
lower discharge, e.g., from mid 2015 to late 2015, where the 
upper limit followed an exponential law during late reces-
sion and the lower limit followed a power-law recession for 
longer. Therefore, the dynamic deviation from power-law to 
exponential recession is critical in representing spring dis-
charge dynamics, which could in theory not be represented 
with one single instance of the non-linear recharge model. 
These observations motivate the (implicit) incorporation of 
structural variability in the TFN model structure with two 
recharge models, as this source of uncertainty could not have 
been incorporated in a structurally rigid model.

While the 5–95%-quantile range around the mean and 
median simulated flow are narrow in the calibration and 
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testing periods, the uncertainty in flow simulation generally 
increased with the duration of recession periods, indicating 
uncertainty in the tail of the response functions. This was 
previously observed in similar studies (e.g., Denić-Jukić and 
Jukić 2003; Jukić and Denić-Jukić 2006) and can hardly be 
alleviated in practical applications as all response functions 
represent aggregated system behaviour and as linearity as 
well as time invariance is assumed.

The TFN model furthermore suggests a diffuse recharge 
regime for both recharge models after Bayesian inversion 
(see “Bayesian model calibration and uncertainty quantifica-
tion”), which can be supported by field measurements (Per-
rin et al.  2003; Jeannin et al.  2021). During early recession, 
power-law related behaviour is dominant and subsequently 
followed by exponential behaviour during later recession. 
This representation of hydrological processes is in agree-
ment with the findings of Hergarten and Birk (2007); Birk 
and Hergarten (2010). In the TFN model output, discharge 
contributions related to diffuse processes show fluctuations 
with lower frequency and smaller magnitude compared to 
their quick-flow counterparts, which agrees with general 
karst system functioning (see section (Bakalowicz 2005; 
Hartmann et al.  2014)). Consequently, the TFN model can 
be said to give a conceptually feasible and realistic system 
representation. This is furthermore supported by the fact 
that the base flow parameter Qb was inferred to be virtu-
ally zero (see Table 3), indicating an autogenic recharge 
regime, which corresponds to field observations (Jeannin 
et al.  2021).

It has been shown in Fig. 7 that noise modelling greatly 
reduced residual autocorrelation, better meeting the assump-
tion of independent residuals during least-squares calibration 
and Bayesian inversion. However, the noise model was not 
capable of making the residual series normally distributed, 
although the distribution showed a smaller variance compared 
to the raw residuals (see Fig. 7). Still, the reduced autocor-
relation was assumed to improve model calibration and inver-
sion robustness by better meeting the assumptions of residual 
independence. Independently of the modelling approach used, 
noise modelling can always be performed to improve model 
calibration or inversion robustness and rigor (von Asmuth 
et al.  2002; von Asmuth and Bierkens 2005) and our results 
encourage the utilization of noise modelling in future studies.

Limitations and transferability of TFN models 
to other systems

From the analysis of model performance in the calibration 
(see “Least-squares calibration”) and testing periods (see 
“Bayesian model calibration and uncertainty quantification”) 
it can be said that the TFN model is applicable to simulate 
spring discharge of the Milandre karst system, also for previ-
ously unseen conditions (testing period).

While model performance was shown to be good accord-
ing to various criteria, the general lumped approach of TFN 
modelling naturally comes with corresponding drawbacks. 
The conduit network structure of the karst system could 
neither be explicitly represented nor be inferred or charac-
terized with the TFN approach. Approaches exist in that 
respect, relating karst system structure to recession behav-
iour (Kovács 2003; Kovács and Sauter 2008; Hergarten and 
Birk 2007; Birk and Hergarten 2010), which might be incor-
porated or reflected in the definition of response functions 
in future studies.

The diffuse recharge regime of the studied karst system 
results in specific hydrological behaviour and only repre-
sents a single set of characteristics from the wide range of 
karst system characteristics (Bakalowicz 2005; Hartmann 
et al.  2014; Stevanović 2015). It thus cannot be concluded 
that the TFN modelling approach used here is applicable to 
all kinds of karst systems and recharge regimes; further stud-
ies for other karst systems are needed to show wide-range 
and general applicability. For subsequent studies, the large 
database of Olarinoye et al.  (2020) offers a great possibility 
to test the approach on a number of different karst systems 
globally.

Conclusions

It has been shown that the TFN model was able to simulate 
karst spring discharge well according to multiple fit metrics, 
outperforming all other models from the Karst Modelling 
Challenge. Model calibration via Bayesian inversion resulted 
in a more reliable parameter set compared to least-squares 
calibration and offered insight into parameter, conceptual, 
and simulation uncertainty.

Model diagnosis showed that the TFN modelling 
approach resulted in a realistic representation of the recharge 
process, where the observed diffuse system behaviour was 
reflected in parameter values and simulation outcomes.

Early recession periods were dominated by power-law 
behaviour and medium to late recession periods were more 
dominantly represented by exponential behaviour, giving an 
appropriate and conceptually feasible system representation. 
It was found that the uncertainty in simulated flow gener-
ally increased with the duration of long recession periods, 
indicating uncertainty in the tail of the response functions, 
which was previously observed from other transfer function 
model studies.

TFN modelling holds much potential for further develop-
ment, extending it with, e.g., non-linear behaviour or alterna-
tive recharge representations. The great model performance 
for simulation during previously seen and unseen periods, the 
physical interpretability, and the low computational cost of 
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the approach ultimately motivate the utilization of TFN mod-
elling in future studies and for other types of karst systems.

Supplementary information

All data as well as a Jupyter Notebook containing 
the Python code necessary to run the models is avail-
able together with the adapted version of Pastas that 

supports the two-component non-linear recharge model 
under https:// doi. org/ 10. 5281/ zenodo. 77150 00.

Appendix

See Figs. 9, 10, 11 and 12.

Fig. 9  System input and output 
data used for calibration, Bayes-
ian inversion, and testing

Fig. 10  Results for data-model-combination 1 (utilizing data from 
1993–1994) after least-squares calibration; response functions are 
abbreviated for Dagum (dag) and exponential (exp); a observed and 

simulated spring discharge, the vertical dashed line separates cali-
bration and testing period; b residuals and noise; c calibrated step 
response functions

https://doi.org/10.5281/zenodo.7715000
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(20)VCC =
1

N

N∑
t=0

Vsim,t

Vobs,t

,

(21)NSE = 1 −

∑N

t=0
(Qsim,t − Qobs,t)

2

∑N

t=0
(Qobs,t − Qobs)

2
,

(22)NSElin = 1 −

∑N

t=0
∣ Qsim,t − Qobs,t ∣∑N

t=0
∣ Qobs,t − Qobs ∣

,

where the subscript t denotes the time index, subscripts sim, 
obs denote simulated and observed values, respectively, Q is 
the mean flow, r is the linear correlation coefficient between 
observations and simulations and � is the discharge stand-
ard deviation. VCC is not bounded and can take any value 
in (−∞,∞) . NSE, NSElin , and KGE can take any value in 
(−∞, 1].

(23)

KGE = 1 −

√√√√√(r − 1)2 +

(
�sim

�obs
− 1

)2

+

(
Qsim

Qobs

− 1

)2

,

Fig. 11  Results for data-model-combination 3 (utilizing data from 
1993–1994 and 2014–2015) after least-squares calibration; response 
functions are abbreviated for Dagum (dag) and exponential (exp); 

a observed and simulated spring discharge, the vertical dashed line 
separates calibration and testing period; b residuals and noise; c cali-
brated step response functions

Fig. 12  Simulation results for 
data-model-combination 2 
(utilizing data from 2014–2015) 
after Bayesian inversion for 
the calibration period, show-
ing the simulation median, 
5–95%-quantiles, and the results 
obtained with the parameter 
MLE
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