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ABSTRACT: Nontarget high-resolution mass spectrometry
screening (NTS HRMS/MS) can detect thousands of organic
substances in environmental samples. However, new strategies are
needed to focus time-intensive identification efforts on features
with the highest potential to cause adverse effects instead of the
most abundant ones. To address this challenge, we developed
MLinvitroTox, a machine learning framework that uses molecular
fingerprints derived from fragmentation spectra (MS2) for a rapid
classification of thousands of unidentified HRMS/MS features as
toxic/nontoxic based on nearly 400 target-specific and over 100
cytotoxic endpoints from ToxCast/Tox21. Model development
results demonstrated that using customized molecular fingerprints
and models, over a quarter of toxic endpoints and the majority of the associated mechanistic targets could be accurately predicted
with sensitivities exceeding 0.95. Notably, SIRIUS molecular fingerprints and xboost (Extreme Gradient Boosting) models with
SMOTE (Synthetic Minority Oversampling Technique) for handling data imbalance were a universally successful and robust
modeling configuration. Validation of MLinvitroTox on MassBank spectra showed that toxicity could be predicted from molecular
fingerprints derived from MS2 with an average balanced accuracy of 0.75. By applying MLinvitroTox to environmental HRMS/MS
data, we confirmed the experimental results obtained with target analysis and narrowed the analytical focus from tens of thousands of
detected signals to 783 features linked to potential toxicity, including 109 spectral matches and 30 compounds with confirmed toxic
activity.
KEYWORDS: ToxCast, Tox21, toxicity prediction, HRMS/MS, supervised classification, extreme gradient boosting, SIRIUS

■ INTRODUCTION
Environmental pollution, fueled by growing chemical produc-
tion and discharge of domestic, agricultural, and industrial
wastes, significantly increased in the 20th century affecting
biodiversity and causing contamination of the food chains and
lack of potable water. While more than 200 million compounds
have been registered by Chemical Abstracts Service (CAS) to
date and an estimated 30,000−70,000 chemical species are
used in households alone, only a few hundred are monitored
worldwide via target analytical approaches.1 Advances in
modern analytical methods such as high-resolution mass
spectrometry (HRMS/MS) reveal that thousands of anthro-
pogenic pollutants with poorly understood toxicological
properties are released to the aquatic environments daily.2

To map the complexity of global pollution, sophisticated
nontarget screening (NTS) data processing workflows3−7 have
been developed for HRMS/MS. These approaches employ
numerous computational and machine learning (ML)
tools8−18 to identify and quantify novel organic pollutants in
the environment based on their MS1 (abundance of parent
ions) and MS2 (fragmentation spectra). Although thousands

of molecular HRMS/MS features in complex aquatic mixtures
can be routinely discerned and processed via NTS, a complete
elucidation (unequivocal identification and quantification) of a
large number of signals is not yet feasible due to the necessity
of manual validation and confirmation with reference stand-
ards.19 Most commonly, the unidentified features are
prioritized in NTS based on the intensity of the measured
signal as a proxy of abundance. Given that intensity does not
necessarily reflect the concentration,17 the conventional
prioritization strategy fails to capture the environmental
exposures of unknown compounds. Moreover, it also lacks a
toxicological element, thus entirely disregarding environmental
risks (= exposure × hazard) of emerging pollutants. For
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example, endocrine-disrupting compounds20 and pyreth-
roids,21 which are extremely harmful to aquatic organisms at
very low (10−12 g/L) levels, would not be revealed with the
abundance-based prioritization.
Establishing toxicological relevance in HRMS/MS analysis is

a complex task. So far, only a few hundred chemicals have been
comprehensively studied due to the time-consuming, ex-
pensive, and ethically questionable nature of the traditional in
vivo toxicity testing on animals.22 So even if an emerging
pollutant can be identified, its toxicity data is most likely
unavailable. Even fewer resources exist to assess the toxicity of
complex environmental samples revealed by NTS HRMS/MS.
Efforts have been extended to link composition (from HRMS/
MS) to the toxic effect of complex mixtures via effect-directed
analysis (EDA),23,24 which aims at a deductive identification of
the compounds in sample fractions with a particular toxic
outcome. Toxicity in EDA is most often assessed via in vitro
bioassays on, e.g., cell cultures for indirectly evaluating hazard
potentials by focusing on single cellular mechanisms instead of
overall toxic outcomes.22 To decrease the manual workload
during EDA, high throughput (HT-EDA) was developed in
recent years.25 However, not all assays can be used in the HT-
EDA mode. Furthermore, due to the low potency and
abundance of the majority of unidentified HRMS/MS features,
HT-EDA is unsuitable for processing thousands of NTS signals
typically detected in complex matrices.
In high throughput screening (HTS), thousands of in vitro

bioassays can be conducted with a combination of robotics,
automated analysis, and data processing, giving rise to high-
volume toxicity data. Since the publication of the landmark
report Toxicity Testing in the 21st Century: Vision and Strategy
in 2007 by the U.S. National Academy of Sciences,22 a major
paradigm shift in toxicity testing resulted in the development
of HTS toxicity databases such as ToxCast and Tox21
(invitroDB26,27). While the primary aim of HTS was to
replace in vivo studies on animals with in silico and mechanistic
studies, it also opened new exciting opportunities for ML-
based predictive computational toxicology, particularly for
predicting toxicity from structure via molecular fingerprints

with QSARS (Quantitative Structure−Activity Relationships).
Molecular fingerprints are mathematical representations of
molecules encoding the structures as binary vectors of fixed
length where each bit describes the presence (1) or absence
(0) of a particular substructure. Using in vitro data for
predicting toxicity is based on the assumption that molecular
toxic effects are activated by relatively simple interactions
between specific chemical moieties and, e.g., a receptor during
a molecular initiating event (MEI) starting a series of key
events (KE) in cells that may lead to an adverse outcome
pathway (AOP) on the organ or organism level. According to a
recent review,28 542 papers utilizing invitroDB have been
published since 2006, covering topics such as toxic potential of
chemicals, identification of contaminants for environmental
monitoring, and computational toxicity prediction. The
majority of invitroDB-based ML applications developed to
date focused on relatively few target-specific endpoints and
cytotoxicity.29−45 Endocrine receptor systems, in particular,
androgen and estrogen receptors, as well as carcinogenicity,
hepatic steatosis, hepatotoxicity, immunotoxicity, developmen-
tal toxicity, neurotoxicity, and cardiotoxicity were the most
widely studied adverse outcomes.46

ML-based toxicity prediction has shown potential, as
demonstrated by the successes of the Tox21 Data Challenge
2014.47 However, low transferability and a lack of mechanistic
model interpretation have constrained this approach’s wide-
spread use in adjacent scientific fields. In this work, we
developed a hazard-driven prioritization of unidentified NTS
HRMS/MS signals based on ML-based toxicity prediction to
improve the mapping of toxicologically relevant pollution in
aquatic environments. Unlike traditional QSARs that rely on
predicting activities based on molecular fingerprints derived
from structures, MLinvitroTox was trained on structures but
applied to molecular fingerprints predicted from the
experimentally measured MS2 spectra via CSI:FingerID/
SIRIUS.15 SIRIUS is a software package for annotating small
molecules from nontarget HRMS/MS. CSI:FingerID is a
machine-learning tool SIRIUS uses to predict molecular
fingerprints from fragmentation spectra. Compared to similar

Figure 1. Workflow for developing and validating machine learning-based prediction of molecular toxicity for unidentified HRMS/MS features.
MLinvitroTox models were trained on invitroDB, validated using the MassBank spectral library, and tested on environmental HRMS/MS
measurements from Neale et al.51
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efforts in the field where ecotoxicity was predicted from MS2
based on in vivo data,48−50 in the current work, the invitroDB
toxicity database was used to train supervised classification
models for hundreds of available toxicity endpoints ensuring
broad toxicological coverage of the combined ML framework,
termed MLinvitroTox. Modeling of previously unexplored
invitroDB endpoints was in the current work enabled by
developing a custom curation of structural and toxicological
data designed to address challenges from modeling dirty,
sparse, and imbalanced data sets. Extensive development of
MLinvitroTox was followed by validation with MassBank
spectral library and testing on environmental samples studied
previously,51 including a mechanistic elucidation of the ML
models in terms of structural moieties’ contribution to toxicity.
Figures 1 and SF1 conceptualize MLinvitroTox.

■ MATERIAL AND METHODS
Toxicity Data. For toxicity modeling, the high-throughput

screening (HTS) in vitro toxicity database (invitroDB v3.3, 10.
23645/epacomptox.6062623.v6,27 https://www.epa.gov/
chemical-research/exploring-toxcast-data-downloadable-data)
from the Environmental Protection Agency (U.S. EPA) was
downloaded as MySQL and installed locally. The invitroDB
data spanned nearly 800 HTS bioassays covering 1473
molecular toxicity endpoints tested selectively across more
than 10k chemicals, resulting in more than 3.72 million toxicity
data points. Each point represented a unique chemical/
endpoint pair and was associated with a particular toxic
outcome (expressed with specific points of departure [e.g.,
AC50 is the concentration of a chemical producing 50% of the
maximal effect]) and a binary toxicity call [hitc = 1 for toxic
and hitc = 0 for nontoxic]), as well as metadata such as fitted
models, parameters, warning flags, fit categories, and
uncertainty estimates. The toxicity data covered a range of
high-level cell responses corresponding to nearly 70 mecha-
nistic targets and more than 300 signaling pathways associated
with nearly 400 AOPs linking the molecular activities to
adverse effects on the organ or organism level. The data were
processed in R (v4.0.3.) with the standardized data analysis
pipeline tcpl R package.52 In short, multiple concentration
toxicity data was used to build dose−response curves with
baseline median absolute deviation (BMAD) as three times the
median absolute deviation (3·MAD) and ACC (concentration
at the user-defined cutoff value) computed at 6·BMAD. Three
models were fit (constant, gain-loss, and hill), a winning model
was chosen based on AIC (Akaike Information Criterion), and
corresponding points of departure (e.g., AC50 and ACC) were
calculated. A dose−response series was assigned an active
(toxic) hit-call label (hitc = 1) when either the hill or gain-loss
was the winning model and both the modeled curve fit top
(modl_tp) as well as at least one concentration median
response value exceeded the efficacy cutoff (ACC). The
applied methodology inferred that a positive (toxic) hit call
was not derived based on a calculated AC50 value but rather
from the curve characteristics, particularly the signal measured
above the noise levels and relative to controls. Thus, generated
toxicity tables with active hits were further filtered for false
positives resulting from cytotoxicity according to two
approaches: (1) strict cytotoxicity burst filtering developed
previously53 (the resulting data set is referred to as +CTB) and
(2) a milder filtering procedure removing only the most
extreme false positives (the resulting data set is referred to as
−CTB). Since tcpl pipeline is semiautomated and data is fitted

without manual inspection, modeling outcomes could be
artifacts of the curve-fitting workflow. To address that issue,
cytotoxicity filtering was followed by a quality evaluation based
on caution flags (assigned using measurement and processing
meta-data) on the curve-fitting and quantitative uncertainty
associated with the curve-fitting. The applied filtering was a
modified version of the preprocessing described by Paul
Friedman et al.54 In addition to the filtering, the data for
endpoints covering the same intended biological targets were
concatenated. Thus, generated toxicity data were not equally
distributed across different endpoints. The number of samples
(chemicals) available per endpoint varied from less than 100 to
more than 8k. Similarly, the abundance of active hit calls, i.e.,
toxic cases, for some endpoints was less than 1%, while others
reached more than 50% of the available samples. Only
endpoints with more than 500 chemicals and more than
0.1% active hits per endpoint were used for modeling. The final
data sets (Figures SF2 and SF3) covered 505 (−CTB) and 474
(+CTB) unique endpoints (395 were target-specific, the rest
related to viability). In addition to the custom invitroDB data
processing and filtering strategy described above and used for
model development, a precurated version of the invitroDB
from the National Toxicology Programme of the U.S.
Department of Health and Human Services (NICEATM)
was obtained from the Integrated Chemical Environment
(ICE) toolbox (https://ice.ntp.niehs.nih.gov/Tools55) and
used as a supplementary data set for validation and
environmental application of MLinvitroTox. While the ICE
data set was significantly reduced in sample size compared to
the source data, the data were annotated with the mechanistic
target, which can be interpreted as the intended biological
effect of each endpoint, such as oxidative stress response or
cytotoxicity. More information about the toxicity data and
processing can be found in SI (Section Data Processing).

Structural Data. Structural data for the modeling was
obtained from the U.S. EPA’s CompTox Chemicals Dashboard
(downloaded as DSSTox_v2000_full.zip via FTP from
https://gaftp.epa.gov/). The .sdf file containing structural,
chemical, and metadata for approximately 800k chemicals (as
of 02.05.2019) was filtered according to the DTXSID
(universal compound identifier in the invitroDB and DSSTox),
resulting in a list of 10,201 entries. Although the availability of
chemical data sets in the public domain, including CompTox,
has skyrocketed in recent years, the data contained in such
databases is often partially erroneous. The implemented
structure cleanup strategy covered the removal of structures
that cannot be appropriately handled by conventional
cheminformatics techniques (e.g., inorganic and organo-
metallic compounds, counterions, salts, and mixtures) followed
by structure standardization and validation (removal of H, ring
aromatization, normalization of specific chemotypes, curation
of tautomeric forms, and the deletion of duplicates). The code
for the cleanup of structures is available in GitLab (https://
renkulab.io/gitlab/kasia.arturi/generating-fingerprints.git).
Postcuration, the list of chemicals available for modeling
decreased to 8k.
Since structures can not be used directly for modeling, they

were translated into ML-suitable input: sets of structural and
topological molecular fingerprints. Although MACCS and
PubChem fingerprints are most commonly used in computa-
tional toxicology,56 there is little scientific evidence that these
fingerprints yield optimal outcomes. For the development of
MLinvitroTox, 23 types of fingerprints (Table ST1) were
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tested and evaluated for predicting activity endpoints covered
in invitroDB. The following fingerprints were computed: (1)
CDK (Chemistry Development Kit)57 via CDK Nodes for
KNIME, (2) RDkit (research development kit)58 via RDKit
Nodes for KNIME, (3) OpenBabel fingerprints59 via Pybel,60

(4) ToxPrint (https://toxprint.org/) via ChemoTyper
(https://chemotyper.org/),61 and (5) SIRIUS/CSI:FingerID
fingerprints14,15,62−65 (referred here simply as SIRIUS finger-
prints) via PaDEL66 and OpenBabel.59 While tools 1−3
generate standard structural or topological molecular finger-
prints, ToxPrints, and SIRIUS fingerprints are unique
implementations. ToxPrints are a publicly available set of
structural keys targeting chemical chemotypes relevant for
toxicity according to databases and regulatory invento-
ries.54,61,61,67−70 SIRIUS fingerprints are a compilation of
structural fingerprints (MACCS, PubChem, OpenBabel,
extended connectivity [ECFP], Klekota Roth, custom-made
SMARTS, and ring systems). While the 23 types of fingerprints
were used for understanding what input is optimal for
predicting different types of toxic outcomes, for practical
purposes of obtaining molecular fingerprints from fragmenta-
tion spectra, SIRIUS/CSI:FingerID fingerprint was the focus
of the current work. The code for generating SIRIUS
fingerprints is available in GitLab (https://renkulab.io/
gitlab/kasia.arturi/generating-fingerprints.git).
Machine Learning and Data Mining. Approach.

Machine learning was applied to train binary classifiers for
single invitroDB toxic activity endpoints based on molecular
fingerprints of structures. The ML workflow utilized in this
study, along with the underlying logic and applied parameters,
is shown in Figure SF4. The toxicity data files postcuration
(binary hit calls, hitc = 1 for toxic and hitc = 0 for nontoxic
outcomes for 474 and 505 endpoints in + CBT and −CBT,
respectively) were combined with 23 molecular fingerprint
types (Table ST1), resulting in more than 20k files for
MLinvitroTox development and optimization. Each file was
preprocessed (removal of features [in ML context features are
variables used for training of the model, i.e., molecular
fingerprint bits corresponding to specific substructures], with
variability [<5%] and high intercorrelation [>95%]) signifi-
cantly reducing the number of ML variables to an average of
200−400 per endpoint. The binary classification was chosen in
this work to infer toxic behavior over a quantitative regression
predicting AC50 or ACC based on the research goals, i.e.,
prioritization of unidentified signals for further investigation
rather than quantification of toxic effects. Although “the dose
makes the poison” (Paracelsus), invitroDB chemicals were
tested in the same concentration range (0.1 to 100 μM71), so a
direct comparison is conceivable. Furthermore, chemicals with
LC50 values greater than 100 mg/L (equivalent to 200 μM for
a compound with a molecular weight of 500 Da) are
considered practically nontoxic in aquatic toxicology.72 Despite
being less commonly employed for toxicity prediction, recent
studies have demonstrated that classification can be an
accurate and valuable tool for assessing toxicity.50 In addition
to investigating the impact of molecular fingerprint type and
cytotoxicity filtering on toxicity modeling, we also methodically
varied the model type as well as oversampling and resampling
strategies.

Modeling Details. In the initial modeling phase, the Caret
package73 was employed in R to develop classifiers using 20
different models (method = CSimca, RRF, AdaBoost,
bayesglm, deepboost, gaussprRadial, gbm, glmnet, pcaNNet,

regLogistic, rf, svmPoly, svmRadialCost, kernelpls, kknn,
avNNet, nnet, glmStepAIC, AdaBag, xgbTree) for predicting
130 molecular toxicity endpoints from the −CTB data set
(mild cytotoxicity filtering). To account for sparse (low
number of samples) and imbalanced (low availability of
positive [toxic] training examples) endpoints, five over-
sampling (none, down, ROSE,74 SMOTE,75 up) and three
resampling (boot = bootstrapping, LGOCV = leave-group-out
cross-validation, and repeatedcv = repeated random 10-fold
cross-validation) strategies were tested. For each combination
of endpoint, model, fingerprint, oversampling, and resampling,
a separate model was optimized, including an automated
hyperparameter tuning with random grid searching (tune
length = 10 based on default values for each model
parameters) nested within the validation procedure (resamp
parameter above), and fully independent testing on new
samples (80/20 split for training/testing partitions). Test sets
for each partition were withdrawn from the data prior to
oversampling. Oversampling was nested within resampling.
Cross-validation of each model was nested within hyper-
parameter tuning with random grid searching. The computing
was performed on Piz Daint, a supercomputer (Cray XC40/
XC50, XC40 compute nodes Intel Xeon E5−2695 v4 @ 2.10
GHz [2 × 18 cores, 64/128 GB RAM] 1813 Nodes) from the
Swiss Super Computing Center (CSCS) in Lugano (Switzer-
land). Shell scripts were set up to automatically run the
modeling in small batches on multicore (mc) multithread (2−
8 CPUs per node) on 10−50 nodes. The total processing time
amounted to nearly 20,000 node hours. As each fingerprint/
endpoint combination required at least 300 models (20 model
types × 5 oversampling strategies × 3 resampling strategies) to
be trained (excluding cross-validation and hyperparameter
tuning), training classifiers for all combinations of endpoints
(−CTB and +CTB) and molecular fingerprints was deemed
unfeasible due to computational limitations. Instead, the
collected data was used as a representative sample to
understand the modeling requirements (relevant model
types, optimal oversampling, and resampling strategies) for
invitroDB data. A custom KNIME workflow was subsequently
built based on autoML76 for fine-tuning, validation, and
environmental testing in the second modeling stage. For that
purpose, 9 models (naive Bayes [NB, 0.004 < def_prob < 0.1],
logistic regression [LG, 0.001 < step_size < 0.1], generalized
linear models [GLM, 0 < α < 1, 0 < λ < 1], decision tree [DT,
2 < min_num_rec < 20], random forest [RF, 4 < tree_depth <
20, 10 < node_size < 25, 25 < no_of_trees < 200], gradient
boosted trees [GBT, 10 < num_trees > 100], extreme gradient
boosted trees [XGB, 1 < max_depth < 10, 0.01 < η < 0.3],
neural networks [NN, 1 < num_layers < 5, 5 < num_networks
< 50], and deep learning with Keras architecture [DL, 10 <
num_neurons < 100, 10 < num_networks < 100]) were
trained in parallel with repeatedcv resampling (k = 10) and
SMOTE oversampling for all endpoint/fingerprint combina-
tions and the winning model was found based on F-measure.
In this case, hyperparameter tuning grids were defined
manually for each model, as indicated above, and searched
randomly for n = 50 with early stopping at 20. The
computations were executed in KNIME on a Windows Server
2012 (64-bit operating system, Intel(R) Core(T.M.) i7-8700K
CPU @ 3.70 GHz with 64 GB RAM). Total processing time
amounted to more than 150,000 core hours. The same core
principles of testing, oversampling, hyperparameter tuning, and
cross-validation were applied in all modeling phases.
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Evaluation. The modeling resulted in more than 500k data
points, i.e., metrics for the performance of the models for each
combination of endpoint, cytotoxicity (+CTB and −CTB,
respectively), molecular fingerprint, model, oversampling, and
resampling. The results for different models, each representing
a particular algorithm, were summarized (averaged) with
model classes: tree (simple tree models), boost-tree (boosted
tree models), xboost-tree (extreme gradient boosted tree
models), linear (linear regression models), simca (simca
classification algorithm), knn (knn classification algorithm),
pls (multivariate models), svm (support vector machines
models), Gaussian (Gaussian models), and deep (neural
networks models). Similarly, the 23 fingerprint types used
were concatenated according to the fingerprint type, i.e., CDK,
RDKit, ToxPrint, and SIRIUS. The large volume of the
generated modeling results was used to infer a general set of
rules guiding the modeling of invitroDB data, including the
sparse and imbalanced end endpoints often omitted from
modeling but included here as part of the data-mining-driven
approach. The results were reported according to the
guidelines for reporting QSARs.77 The models were evaluated
based on F-measure (also known as F1 score = 2 × precision ×
sensitivity/[precision + sensitivity]), which focuses on max-
imizing the detection of true toxic cases (maximizing true
positives) instead of optimizing the overall model performance
via, e.g., AUC (area under the ROC curve [receiver operating
characteristic curve]). The plots with modeling results are
based on sensitivity, precision, and balanced accuracy (1/2·
[TP/[TP+FN]+TN/[TN+FP]). While sensitivity (TP/[TP
+FN], TP-true positives, FN-false negatives) indicates the rates
of true toxic cases detected, precision (TP/[TP+FP], FP-false
positives) shows the rates of toxic predictions being true. The
combined optimized models are termed MLinvitroTox, a
toolbox taking molecular fingerprints as input and outputting
toxicity fingerprints, where each bit represents a particular toxic
activity behavior.
Validation with MassBank MS2 Spectra. To verify

MLinvitroTox with real-life spectral data, the models were
applied on the open-source spectral library MassBank
(https://MassBank.eu/MassBank/, release version 2021.12)
compiled for identifying small molecules of relevance in
metabolomics and exposomics. The MassBank database was
filtered from the available 85k MS2 spectra to 40k [M + H]+
high-resolution spectra obtained from ESI-Q-TOF and ESI-
ITFT instruments. Low-resolution spectra were excluded.
Molecular fingerprints for each compound with viable spectra
were predicted by SIRIUS v. 5.5.7 with standard settings and
10 ppm mass accuracy. Each spectrum was processed
separately, i.e., spectra for the same compound, but different
collision energies were treated as separate instances. Per each
processed spectrum, a maximum of 10 fingerprints was
allowed. As shown by Peets et al.,48 SIRIUS fingerprints
calculated from the same MS2 are similar, even when an
incorrect molecular formula is assigned to the spectrum.
Multiple spectra per compound and fingerprints per spectrum
resulted in synthetic replicates of fingerprints for each
compound (range 1−67, average 8). For each processed
spectrum, SIRIUS produced 3878 (pos) bits posterior Platt
probabilities, i.e., the probability that a molecular property is
present, that were converted to binary SIRIUS molecular
fingerprints with a 0.5 threshold (≤0.50 = 0, >0.50 = 1). The
following fingerprint types from SIRIUS were used: Open-
Babel FP3, OpenBabel FP4, MACCS, PubChem, Klekotha-

Roth, custom SMARTS, and ring systems. ECFP fingerprints
were omitted as the publicly available cheminformatic packages
can not easily compute them. The final number of fingerprint
bits available to MLinvitroTox was 2363 (positive mode). In
addition, true molecular fingerprints were generated for each
MassBank compound from chemical structures via Padel66 and
Pybel59,60 cheminformatic packages and compared to the
predicted fingerprints to assess the accuracy of SIRIUS
predictions. The generated sets of predicted and true
molecular fingerprints for MassBank compounds were used
as input to MLinvitroTox to predict the corresponding toxicity
fingerprints that were subsequently compared to invitroDB
records for performance validation. MLinvitroTox was
retrained with optimal configuration (xboost model, 5-fold
cross-validation with nested 20-step hyperparameter tuning
based on a random grid search, SMOTE oversampling) on a
combination of invitroDB and ICE data excluding all
MassBank compounds. The inclusion of ICE data enabled
grouping of endpoints based on their shared mechanistic
target, i.e., the intended biological effect. Although less than
half of the existing mechanistic targets are represented in
MassBank (23 out of 67), it is one of the most comprehensive
currently available open-source MS2 compilations. Each of the
retrained models was internally validated (cross-validation with
nested hyperparameter tuning on a random grid search) and
tested on an “independent” (pulled out of the full data set prior
to any modeling) during the classifier training/validation/
testing. The final hit call (toxicity) per compound was
established by voting from synthetic replicates. Although all
available invitroDB endpoints for various mechanistic targets
were trained in MLinvitroTox, only endpoints that demon-
strated testing sensitivity and precision greater than 0.65
during ML model training were permitted to contribute, i.e.,
vote on the outcome. The model performance for each
mechanistic target was averaged across its endpoints.

Application to Environmental Water Samples. Sam-
ples. MLinvitroTox functionality and performance were tested
on environmental real-life HRMS/MS raw data from samples
collected in 2014 at three wastewater treatment plants
(Birmensdorf, Muri, and Reinach) discharging to small streams
in the Swiss Plateau, as well as upstream and downstream of
the plants, as described in the work of Neale et al.51 In short,
the samples were prepared using online solid phase extraction
(SPE) and analyzed with reverse-phase liquid chromatography
high-resolution tandem mass spectrometry (LC-HR-MS/MS,
Q-Exactive Plus, Thermo Fisher Scientific). HRMS/MS
analysis was combined with bioassays to screen the samples
for specific toxic effects and determine which chemicals from a
list of 400 common target compounds could be responsible for
the measured effects. Initially, only target data processing was
performed in TraceFinder. In this study, raw data files were
processed using an NTS workflow in MS-DIAL to obtain MS1
feature lists and representative MS2 spectral records of the
measured signals. The representative MS2 spectra were
exported as mgf files and served as input for SIRIUS/
CSI:FingerID to generate corresponding molecular finger-
prints, subsequently used to predict the signals’ relevant toxic
activities via MLinvitroTox. The overall aim was to (1)
confirm with MLinvitroTox the outcomes of experimentally
obtained target analysis results and (2) explain the missing
(not covered by the target analysis) mixture toxicity caused by
unidentified NTS signals.
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MS-DIAL Processing. The HRMS/MS data were initially
recorded in data independent analysis (DIA) positive and
negative electrospray (ESI) mode as raw files, subsequently
converted to abf format (https://www.reifycs.com/
AbfConverter/). In the current study, the data were reanalyzed
using NTS workflow (peak-detection, alignment, and gap
filling) in MS-DIAL78 with a mass list (target compounds) and
reference spectral database (MassBank spectral database,
https://MassBank.eu/MassBank/, release version 2021.12,
msp format containing 90,190 unique spectra for 15,075
compounds). MS-DIAL settings recommended in the
literature78 were optimized based on the target compounds:
(a) Data collection: retention time (RT) begin [3 min], RT
end [28 min]; mass range begin [100 Da], mass range end
[1000 Da] (both MS1 and MS2), MS1 tolerance [0.01 Da],
MS2 tolerance [0.05 Da]; (b) Peak detection: smoothing level
[4 scans], minimum peak height [30,000 and 10,000 amplitude
in positive and negative mode, respectively], minimum peak
width [12 scans], mass slice width [0.1 Da]; (c) MS2Dec:
sigma [0.1], MS2 abundance cutoff [0]; (d) Identification:
accurate mass tolerance (MS1) [0.001 Da], accurate mass
tolerance (MS2) [0.005 Da], RT tolerance [0.5 min],
identification score cutoff: 85%. All available adducts
definitions were used. The features were aligned across
different samples (mass accuracy [0.001 Da], RT tolerance
[0.5 min]) and filtered (with the removal of features activated)
based on blank (sample/blank ratio 5-fold). SWATH-MS
experiment file with the following m/z ranges was extracted
from the raw data and provided during MS-DIAL setup:
SCAN 100−1000 m/z; SWATH: 95−180, 170−255, 245−
330, 320−405, 395−1005. Positive and negative mode
measurements were processed separately.

Feature Processing. The deconvoluted representative
spectra for the detected MS1 features (46k features: 18k
[neg] and 28k in [pos]) were exported as mgf, imported to
SIRIUS, and processed for positive and negative modes
together with the same parameters as in the validation with
MassBank spectra. Due to the lack of feature componentization
in MS-DIAL, replicate MS1 (and MS2) were present for some
features, requiring additional filtering. To address this, the MS1
peak lists (measured areas, peak shape information, and signal-
to-noise levels) were processed through several steps to refine
and consolidate the data. The features were componentized
into molecular ions [M + H]+ and [M − H]− (mass accuracy
[5 ppm] and RT tolerance [0.5 min]), and adducts were
removed. Features were then filtered based on their
identification status: targets with reference material confirming
the structure (from mass lists based on mass and RT,
confidence level 1 according to Schymanski et al.19), probable
candidates (spectral ID based on 85% match with MassBank
spectral database, confidence level 2a), and tentative
identifications (a partial match with MassBank spectral
database, confidence level 3). Quality filters were then applied
to any remaining unidentified signals, with only those
exhibiting a Gaussian peak shape > 0.8 and signal-to-noise
ratio > 10 being retained. This process prioritized 10k unique
MS1 signals that were subsequently used for filtering the
SIRIUS results computed for all MS2 spectra.

Processing in SIRIUS. All exported MS2 spectra were used
as input to SIRIUS to retain the information from the synthetic
replicates. From 46k deconvoluted MS2 exported as mgf, 42k
met the quality requirements and were imported successfully
to SIRIUS as ms. From 42k spectra, 26k had an [M + H]+/[M

− H]− MS1 precursor < 600 Da. Due to the significant
increase in processing time associated with larger molecular
weights of the precursor and the focus on small molecules in
this study, a reasonable limit of 600 Da was established to
avoid excessive computational demands. For 22k spectra, 150k
molecular fingerprints were computed. 54k of the 150k
generated molecular fingerprints belonged to 9.5k out of the
10k prioritized MS1 features and were used as input to
MLinvitroTox models. SIRIUS produced 3878 (pos) and 4072
(neg) bits posterior Platt probabilities for each processed
spectrum. 2363 and 2483 bits in the positive and negative
modes, respectively, were used in MLinvitroTox. In parallel to
the computation of predicted molecular fingerprints for NTS
signals via SIRIUS, true molecular fingerprints for each target
compound were computed as described above and used as
input to MLinvitroTox.

Processing in MLinvitroTox. In the current work, we
focused on 3 mechanistic targetscovered in invitroDB out of
the 13 effects from the original study, namely activation of the
aryl hydrocarbon receptor (AhR), activation of the androgen
receptor (AR), and oxidative stress response (OSR).
MLinvitroTox was retrained with optimal configuration
(xboost model, 5-fold cross-validation with nested 20-step
hyperparameter tuning based on a random grid search,
SMOTE oversampling) on a combination of invitroDB
(−CTB) and ICE data excluding all MassBank compounds
and the target list compounds. Overall, 20 unique endpoints
and 5 endpoint concatenations from invitroDB (AR: 18, AhR:
5, and OSR: 2) were used as distinct toxicity instances
representing the AR, AhR, and OSR effects. Only endpoints
with testing sensitivity and precision >0.65 (during ML model
training) were included in the analysis. Since a different set of
fingerprint bits are generated by SIRIUS for positive and
negative molecular ions (corresponding to separate models
trained for predicting the bits by SIRIUS/CSI:FingerID),
unique MLinvitroTox models had to be trained and tested for
[M + H]+ and [M − H]− per endpoint. The final toxic activity
hit call (hitc) per signal for each mechanistic target was
determined based on the majority votes from hundreds of
synthetic replicates created by (1) the presence of multiple
spectra per feature (features are not componentized in MS-
DIAL), (2) (max.) 10 fingerprints generated per spectrum, and
(3) numerous endpoints per mechanistic target. The voting
process was implemented to enhance the prediction robustness
by incorporating hundreds of data points. For example, if 5
spectra were detected for a compound, 10 fingerprints were
generated per spectrum, and 6 endpoints represented the
target effect, the toxicity hit was called based on 300 inputs.

Global Feature Importance. The MLinvitroTox models
developed for AR, AhR, and OSR were analyzed using global
feature importance79 methodology to extract structural
moieties responsible for the predicted toxic effect. In this
approach, a set of surrogate random forests was trained on the
same features as the xboost-trees, generating an interpretable
model that approximated the overall feature contributions of
the original black box from the xboost-tree. The structural bits
with the highest importance were extracted as SMARTS
(Smiles Arbitrary Target Specification) strings and interpreted
visually via SMARTS.plus package.80 For each studied effect, a
top 10 feature list was generated based on the combination of
recurrence (across different endpoints corresponding to the
same mechanistic target) of a feature with its value of global
importance.
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■ RESULTS AND DISCUSSION
Mining invitroDB. The goal of modeling invitroDB was to

determine which of the 395 target-specific and over 100
cytotoxicity-related invitroDB endpoints (derived from data
cleanup and processing) can be successfully predicted by ML.
The results confirmed that predicting toxic activity from the
structure is possible for the majority of endpoints and
mechanistic targets with optimized input and processing
(Figures SF5−SF8). The combination of xboost-trees and
SIRIUS fingerprints emerged as the most successful algorithm
and fingerprints, respectively, based on our analysis (Figure
SF9). This combination achieved the highest rates of
sensitivity (the proportion of toxic cases correctly detected)
and precision (the proportion of true positive predictions) for
the majority of single endpoints (Figure SF10), as well as for
endpoints grouped by their biologically interpretable mecha-
nistic targets (Figures 2 and SF11). xboost-tree models are a
special case of decision trees with random input features and
combining the outputs from the resulting classifiers for the
final decision through a democratic voting process (boosting).
In addition, the consecutive models’ parameters are adjusted
based on feedback from previous classifiers.81 Thanks to their
speed and efficiency, xboost-tree models are behind several
cutting-edge science48 and industrial applications. The success
of SIRIUS fingerprints in modeling invitroDB data confirmed
that, in theory, the prediction of toxicity based on fingerprints
generated from MS2 should be possible. Deep learning
methods performed well in precision but resulted in poor
sensitivity, most likely due to insufficient data. While certain
endpoints contained up to 8k training examples (chemicals),
the majority averaged 1−3k. The obtained results (Figure SF6)
also underline the importance of proper sparsity and imbalance
handling in predicting toxicity, as recently pointed out by Kim
et al.82 While several oversampling approaches resulted in
acceptable outcomes, doing nothing (oversampling none)

resulted in the least accurate models. Oversampling creating
jittered synthetic minority class samples (SMOTE) was the
most successful. The optimal ML configuration (xboost-tree
model, SIRIUS fingerprint, SMOTE oversampling, and
repeatedcv resampling) resulted not only in high detection
rates of toxic cases (sensitivity) but overall model performance
(accuracy and precision) as shown in Figure SF12 with a
consistent performance across the endpoints belonging to the
same mechanistic target. In addition, the obtained model
metrics have shown no strong correlation between the number
of chemicals available for training or the positive hit rates
(Figure SF13), indicating that successful models were
computed not only for endpoints with a lot of data available
but also the sparse and imbalanced data sets thanks to the
applied optimization and oversampling strategies.
The effect of cytotoxicity filtering on the modeling outcomes

was not as easily interpretable as the other studied parameters
(Figure SF8). A closer analysis of the results for single
endpoints and across mechanistic targets revealed a more
complex relationship between cytotoxicity filtering and model
metrics, primarily dependent on the data sample size and toxic
hit rates. For endpoints with a large sample size (8k) and a
significant number of toxic examples (percentage of positive hit
calls larger than 10%), cytotoxicity filtering had, as expected, an
overwhelmingly positive effect. In this case, the removal of false
positive chemicals diluting the patterns responsible for toxicity
out-weighted the removal of a few true positives. On the other
hand, for imbalanced (percentage of positive hit calls less than
1%) and sparse data sets (1k), removing even a few true cases
had a more distinct negative effect on the model metrics. In
summary, cytotoxicity burst filtering should be performed on
an endpoint basis. Alternative strategies, such as baseline
toxicity filtering,83,84 have shown promise for addressing
cytotoxicity in in vitro data and will be considered in the
future versions of MLinvitroTox.

Figure 2. Precision vs sensitivity plots showing MLinvitroTox performance for specific mechanistic targets: endocrine-relatednuclear receptor
activation(NRA), oxidative stress and inflammatory responses, and the p53 pathway, often associated with carcinogenicity. Each point on the plots
represents the average (across relevant endpoints) model metrics for a specific combination of parameters (model, data set [cytotoxicity],
molecular fingerprint, oversampling, and resampling). Figure SF11 shows the corresponding results for all modeled mechanistic targets.
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MassBank Validation. Although toxicity fingerprints were
successfully predicted by MLinvitroTox from structures,
predicting them from molecular fingerprints based on MS2
remained to be proven. For that purpose, MLinvitroTox was
externally validated on MassBank spectra (https://MassBank.
eu/MassBank/, release version 2021.12). In short, for 40k
MS2 spectra (corresponding to 4k unique compounds), 20k
fingerprints (corresponding to 2.5k unique compounds) were
generated in SIRIUS. The spectra quality of the missing 1.5k
compounds was insufficient (low resolution, too few fragments,
noisy) to generate molecular fingerprints via SIRIUS. Out of
the 2.5k compounds, 1k had existing records in invitroDB,
enabling a direct comparison of MLinvitroTox predictions with
experimental outcomes. In addition, for the 2.5k compounds,
the quality of the predicted SIRIUS fingerprints was compared
to the true fingerprints generated from structures. Although a
certain divergence between the predicted and true fingerprints
was observed (Figure SF14), the overall average accuracy for
the prediction of the presence and absence of different
substructures was satisfactory (balanced accuracy 98.5%,
sensitivity 90.8%, Tanimoto coefficient 0.89) varying depend-
ing on the combination of quality of the input MS2 spectra and
the intrinsic accuracy of SIRIUS predictors. The imperfect
input for validation mimicked a real-life application of
MLinvtroTox, where neither the structures nor the molecular
fingerprints for unidentified MS1 features are available. As
shown in Figure 3, MLinvitroTox exhibited a robust balanced
accuracy in predicting toxicity from both structures (0.75), as
well as MS2 (0.74) for the MassBank compounds despite the
flawed input. It is worth reminding that prior to model
development, feature filtering reduced the input from 2.5k to a
more manageable 200−400 variables per endpoint. While the
outlined DTXSIDs counts represented unique compounds, the
number of independent votes by synthetic replicates (multiple
spectra per compound and up to 10 fingerprints per spectrum
from SIRIUS) per endpoint was typically multiple times
higher, providing more confidence in the outcome. It should
be mentioned that SIRIUS was trained on a data set of 14k
compounds, which included 2k compounds from MassBank.
Of the 1k MassBank compounds that had invitroDB records
and were used to validate MLinvitroTox, 596 compounds were

also present in the training set of SIRIUS. Therefore, molecular
fingerprints’ predictions for this subset were potentially more
accurate than what could be expected from a truly independent
data set. After excluding the subset common for SIRIUS and
MassBank from the MLinvitroTox validation, we found that
the average accuracy of the models did not show a significant
decrease (Figure SF15).

Environmental Application. Although predicting toxicity
fingerprints from molecular fingerprints computed based on
relatively pure spectra, such as those present in the MassBank
spectral library, was successful, the ability of MLinvitroTox to
do the same using real-life environmental HRMS/MS data
remained to be demonstrated. Samples of wastewater and
surface water collected and analyzed by Neale et al.51 were
used to test MLinvitroTox in the environmental context. The
original study combined target HRMS/MS analysis of 400
common pollutants with 13 bioassays to explain mixture
toxicity. According to the results, for most of the studied toxic
outcomes, only a fraction of the measured effect could be
explained by the detected targets, indicating the presence of
additional/more potent pollutants in the samples. In the
current study, MLinvitroTox was applied to confirm the target
analysis and find unidentified features potentially responsible
for the missing mixture toxicity in AR (androgen receptor),
AhR (aryl hydrocarbon receptor), and OSR (oxidative stress
response). From the 46k MS1 features detected via the NTS
processing workflow in MS-DIAL, 9.5k were prioritized based
on ID and signal quality and the availability of experimentally
predicted SIRIUS fingerprints (54k molecular fingerprints).
The distribution of IDs among the prioritized features was as
follows: (A) 268 targets (235 [pos] and 33 [neg]) with
confidence level 1 according to Schymanski et al.19 (confirmed
with reference standard); (B) 109 signals automatically
matched to MassBank library records providing a confidence
level 2a (probable structure) identification; (C) 2k features
with tentative identification (MS1 match, partial MS2 match,
confidence level 3); and (D) 7k signals without any
identification.
The results for the MLinvitroTox target analysis are

summarized in Figure 4 and Figure SF16. For AR and AhR,
MLinvitroTox confirmed the toxicity of all relevant targets

Figure 3. Comparison of MLinvitroTox performance (average balanced accuracy across relevant endpoints) for classifying MassBank compounds
as toxic/nontoxic according to 23 mechanistic targets with structures (True, based on 1.5k MassBank structures with invitroDB records) and MS2
(Pred, based on 1k MassBank spectra with invitroDB records for which molecular fingerprints could be generated in SIRIUS) as input. The exact
number of chemicals available for validation per mechanistic target is provided above the columns. ANG, Angiogenic process; AR, Androgen
receptor; ARO, Aromatase; CC, Cell cycle; CDP, Cell death; CVP, Cell viability; DNA, DNA damage; DS, Developmental signaling; EM,
Extracellular matrix; EMP, Energy metabolism; ER, Estrogen receptor; FAS, Fatty acid signaling; GLC, Glucocorticoid receptor; HM, Histone
modification; IR, Inflammatory response; MOA, Monoamine oxidase; NT, Neurotransmission; OSR, Oxidative stress response; PRG,
Progesterone receptor; StH, Steroid receptor; TF, Transcription factors; ThR, Thyroid receptor; XM, Xenobiotic response; p53, p53 pathway.
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(explaining less than 1 and 30% of the total mixture toxicity in
the original study) using the true and predicted molecular
fingerprints as input. For OSR, the toxicity of 13 out of 24
compounds (Table ST2) was predicted correctly, including 7
out of 9 of the most potent ones. For one of the compounds
(caffeine), the toxicity could not be confirmed via either the
true or the predicted fingerprints. Although a reasonably good
model performance was obtained for the oxidative stress
response mechanistic target (Figure 2), modeling OSR may be
more challenging since it is not a molecular initiating event
(MIE) like AR or AhR, but a key event (KI). For telmisartan,
no molecular fingerprints were generated. Out of the 24 OSR-
active compounds from the original analysis, molecular
fingerprints were predicted by SIRIUS for 18 (13 in positive
and 5 in negative mode). The spectra’s quality was insufficient
to generate molecular fingerprints for the remaining 6 OSR-
relevant compounds detected in the negative ESI mode. In
general, obtaining correct predictions was likely more
challenging because the MS2 spectra were obtained in DIA
(data-independent analysis mode), for which raw data
processing is considered less reliable than DDA (data-
dependent mode).
MLinvitroTox was not only able to confirm the majority of

chemical/endpoint interactions for targets detected by
HRMS/MS but also tag 783 additional NTS features
(corresponding to 868 chemical/target interactions) as toxic
in AR, AhR, or OSR, including 109 features (Table ST3) with
a spectral match (corresponding to 198 chemical/target
interactions), thus potentially explaining the missing mixture
toxicity (Figure 4). For 30 out of 109 compounds with spectral
matches, the predicted toxicity in AR, AhR, and OSR could be
confirmed by invitroDB data (corresponding to 46 toxic
chemical/endpoint interactions). Nine additional compounds
were falsely predicted to be toxic according to invitroDB
records, showing a moderate false discovery rate (FP/[TP
+FP]) of 23%. With minimal effort, the pool of potentially
toxic compounds from the original analysis was increased

significantly by applying MLinvitroTox. We suggest mining
various online databases for additional toxicity information for
the tentatively identified compounds without invitroDB
records. A tentative identification via a traditional NTS
pipeline is necessary for the unidentified features with potential
toxicity. Since the quality of a spectral match can vary (Figures
SF17−SF19), following the application of the MLinvitroTox
and data mining of the outcomes, an in-depth analysis adding
mechanistic context to the results should take place, resulting
ultimately in confirmation or rejection of the predictions.
The models developed for AR, AhR, and OSR and tested on

the environmental data were further analyzed using the global
feature importance (GFI) methodology79 to extract structural
moieties responsible for the predicted toxic effect. The aim was
to explain the modeling mechanistically beyond the typical ML
black box outcome. Figure SF20 shows the distribution of the
obtained importance values across all input features and the
recurrence of bits across the endpoints for each mechanistic
target. On average, 200−400 substructures per endpoint were a
standard input to the modeling and the global feature
importance analysis. Overall, the distribution of the GFI values
in the range of 0−1.75 was skewed heavily to the left,
indicating a decreasing number of bits (structures) of
increasing importance. The number of substructure recur-
rences (the same structures were tagged as important for one
mechanistic target by multiple endpoints) varied between 1
and 13, depending on the effect. The complete list of
substructures generated a top 10 ranking for each mechanistic
target (Figure SF21). The overall insights were not surprising:
(A) Heterogeneity, i.e., the presence of N and O, in particular,
seemed to be associated with toxic effects in general; (B)
Matching similar structural moieties was significant for the
corresponding mechanistic targets in both directions, i.e.,
agonist (gain) and antagonist (loss), indicating a certain
chemical specificity of a particular receptor; (C) AR was
activated by heavily substituted aromatics, in particular,
phenols; (D) AhR seemed to be activated by aliphatic
compounds with nitrogen (agonist) and oxygen (antagonist);
(E) OSR seemed to be associated with less substituted
aromatics, but it should be kept in mind that OSR is a KE and
not MIE, so the predictions are not directly linked to chemical
structures. Although fully explaining particular toxicity based
on a limited number of substructures is likely too simplistic,
gaining mechanistic insights has many possible applications,
e.g., translation of the identified toxic substructures into
spectral features would enable near real-time (i.e., during
HRMS/MS measurements) detection of potentially harmful
compounds, as demonstrated previously by Meekel et al.85

Limitations and Applicability. While MLinvitroTox has
successfully predicted toxic activities in various molecular
endpoints and mechanistic targets based on both structural as
well as MS2 data, it is important to note that, like all modeling
approaches, it is not without limitations. First and foremost,
the predictions represent molecular toxicity events at a cellular
level that do not necessarily result in adverse outcomes on the
organ or organism level. To connect HTS bioassays with
toxicity in aquatic and human organisms, AOPs are being
developed. Second, MLinvitroTox is a binary classifier, i.e., it
calls a toxic/nontoxic hit on the tested unidentified features
but currently lacks a potency element. Predictions from
MLinvitroTox are thus only meaningful for toxicants exhibiting
undesirable effects in the concentration range tested in
invitroDB,71 i.e., approximately 0.1 to 100 μM.72 Overall, the

Figure 4. A summary of MLinvitroTox performance for predicting
AR, AhR, and OSR for HRMS/MS features from environmental
samples. MLinvitroTox predictions were consistent with the
experimental results obtained by Neale et al.51 for Confirmed targets.
In addition, 783 NTS signals were linked to potential toxicity in AR,
AhR, or OSR, divided on the figure into Spectral match (automatic
MassBank reference database match by MS-DIAL) and Unidentified
features. The dark portion of the bars represents the portion of
compounds for which the predicted toxicity matched with invitroDB
records.
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accuracy of MLinvitroTox predictions is limited by the quality
of the provided MS2 spectra. Poor MS2 spectra (noisy with
few fragments) are an inadequate basis for generating
molecular and toxicity fingerprints. Similarly, since the models
were trained and optimized for molecular fingerprints
generated from structural data but are applied to fingerprints
generated from MS2, their accuracy is limited by the accuracy
of SIRIUS fingerprint prediction. Most importantly, MLinvi-
troTox was developed for prioritization, i.e., it should be used
as the basis for further analysis and not final decision-making.
Ideally, applying MLinvitroTox and mining the outcomes
should be followed by an in-depth analysis adding research
context and expert knowledge to the results, ultimately
resulting in an analytical confirmation (or rejection) of the
identity and toxicity of the prioritized features. An open-source
version of the core elements of the current version of
MLinvitroTox (v1.0) implemented in KNIME can be obtained
from 10.25678/0007QS along with the HRMS/MS data used
for the environmental application and supplementary R scripts.
To enhance the integration of MLinvitroTox, we are currently
developing an automated pipeline EXPECTmine (Mining
Toxicity and Mass Spectrometry Data for Linking Exposures to
Effects), equipping the hazard-driven prioritization provided by
MLinvitroTox with a potency element and incorporating it
into the existing NTS framework for tentative identification
and quantification for purposes of, e.g., a risk-based early
warning system.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.est.3c00304.

MLinvitroTox principles, data processing, MLinvitroTox
development, MassBank validation, and environmental
application (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Katarzyna Arturi − Department of Environmental Chemistry,
Swiss Federal Institute of Aquatic Science and Technology
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(64) Böcker, S.; Dührkop, K. Fragmentation trees reloaded. Journal
of Cheminformatics 2016, 8, 5.
(65) Böcker, S.; Letzel, M. C.; Lipták, Z.; Pervukhin, A. SIRIUS:
decomposing isotope patterns for metabolite identification. Bio-
informatics 2009, 25, 218−224.
(66) Yap, C. W. PaDEL-descriptor: An open source software to
calculate molecular descriptors and fingerprints. J. Comput. Chem.
2011, 32, 1466−1474.
(67) Wang, J.; Hallinger, D. R.; Murr, A. S.; Buckalew, A. R.; Lougee,
R. R.; Richard, A. M.; Laws, S. C.; Stoker, T. E. High-throughput
screening and chemotype-enrichment analysis of ToxCast phase II
chemicals evaluated for human sodium-iodide symporter (NIS)
inhibition. Environ. Int. 2019, 126, 377−386.
(68) Kosnik, M. B.; Strickland, J. D.; Marvel, S. W.; Wallis, D. J.;
Wallace, K.; Richard, A. M.; Reif, D. M.; Shafer, T. J. Concentration−
response evaluation of ToxCast compounds for multivariate activity
patterns of neural network function. Arch. Toxicol. 2020, 94, 469−
484.
(69) Nelms, M. D.; Lougee, R.; Roberts, D. W.; Richard, A.;
Patlewicz, G. Comparing and contrasting the coverage of publicly
available structural alerts for protein binding. Computational
Toxicology 2019, 12, 100100.
(70) Nyffeler, J.; Willis, C.; Lougee, R.; Richard, A.; Paul-Friedman,
K.; Harrill, J. A. Bioactivity screening of environmental chemicals
using imaging-based high-throughput phenotypic profiling. Toxicol.
Appl. Pharmacol. 2020, 389, 114876.
(71) Richard, A. M.; Huang, R.; Waidyanatha, S.; Shinn, P.; Collins,
B. J.; Thillainadarajah, I.; Grulke, C. M.; Williams, A. J.; Lougee, R. R.;
Judson, R. S.; et al. The Tox21 10K compound library: collaborative
chemistry advancing toxicology. Chem. Res. Toxicol. 2021, 34, 189−
216.
(72) Escher, B.; Neale, P.; Leusch, F. In Vitro Assays for the Risk
Assessment of Chemicals; IWA Publishing, 2021; pp 143−168.
(73) Kuhn, M. Building predictive models in R using the caret
package. Journal of statistical software 2008, 28, 1−26.
(74) Lunardon, N.; Menardi, G.; Torelli, N. ROSE: A Package for
Binary Imbalanced Learning. R Journal 2014, 6, 79−89.
(75) Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; Kegelmeyer, W. P.
SMOTE: synthetic minority over-sampling technique. Journal of
Artificial Intelligence Research 2002, 16, 321−357.
(76) Nagarajah, T.; Poravi, G. A Review on Automated Machine
Learning (AutoML) Systems. 2019 IEEE 5th International Conference
for Convergence in Technology (I2CT) 2019, 1−6.
(77) ECHA. Practical Guide 5: How to Use and Report QSARs, 2016.
https://echa.europa.eu/documents/10162/13655/pg_report_qsars_
en.pdf/407dff11-aa4a-4eef-a1ce-9300f8460099.
(78) Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.;
Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL:
data-independent MS/MS deconvolution for comprehensive metab-
olome analysis. Nat. Methods 2015, 12, 523−526.
(79) Bowen, D.; Ungar, L. Generalized SHAP: Generating multiple
types of explanations in machine learning. arXiv 2020,
No. 2006.07155.
(80) Ehrt, C.; Krause, B.; Schmidt, R.; Ehmki, E. S.; Rarey, M.
SMARTS.plus−A Toolbox for Chemical Pattern Design. Molecular
Informatics 2020, 39, 2000216.
(81) Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho,
H.; Chen, K. Xgboost: extreme gradient boosting, R package version 0.4-
2, 2015.
(82) Kim, C.; Jeong, J.; Choi, J. Effects of Class Imbalance and Data
Scarcity on the Performance of Binary Classification Machine

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c00304
Environ. Sci. Technol. 2023, 57, 18067−18079

18078

https://doi.org/10.1093/toxsci/kfaa014
https://doi.org/10.1016/j.envint.2020.105557
https://doi.org/10.1016/j.envint.2020.105557
https://doi.org/10.1016/j.envint.2020.105557
https://doi.org/10.3389/fenvs.2015.00085
https://doi.org/10.3389/fenvs.2015.00085
https://doi.org/10.3389/fenvs.2015.00085
https://doi.org/10.3389/fenvs.2015.00085
https://doi.org/10.1021/acs.est.2c02536?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c02536?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c02536?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D0RA05906D
https://doi.org/10.1039/D0RA05906D
https://doi.org/10.1039/D0RA05906D
https://doi.org/10.1021/acs.est.2c07353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c07353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c07353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c07353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c07353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.scitotenv.2016.10.141
https://doi.org/10.1016/j.scitotenv.2016.10.141
https://doi.org/10.1016/j.scitotenv.2016.10.141
https://doi.org/10.1093/bioinformatics/btw680
https://doi.org/10.1093/bioinformatics/btw680
https://doi.org/10.1093/toxsci/kfw092
https://doi.org/10.1093/toxsci/kfw092
https://doi.org/10.1093/toxsci/kfw092
https://doi.org/10.1093/toxsci/kfz201
https://doi.org/10.1093/toxsci/kfz201
https://doi.org/10.1016/j.comtox.2021.100184
https://doi.org/10.1016/j.comtox.2021.100184
https://doi.org/10.1109/BIBM47256.2019.8982990
https://doi.org/10.1109/BIBM47256.2019.8982990
https://doi.org/10.1021/ci025584y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci025584y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.rdkit.org/RDKit_Docs.2012_12_1.pdf
https://www.rdkit.org/RDKit_Docs.2012_12_1.pdf
https://doi.org/10.1186/1752-153X-2-5
https://doi.org/10.1186/1752-153X-2-5
https://doi.org/10.1093/bioinformatics/btx660
https://doi.org/10.1093/bioinformatics/btx660
https://doi.org/10.1021/ci500667v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci500667v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci500667v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41587-020-0740-8
https://doi.org/10.1038/s41587-020-0740-8
https://doi.org/10.1186/s13321-016-0174-y
https://doi.org/10.1186/s13321-016-0174-y
https://doi.org/10.1186/s13321-016-0116-8
https://doi.org/10.1093/bioinformatics/btn603
https://doi.org/10.1093/bioinformatics/btn603
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1016/j.envint.2019.02.024
https://doi.org/10.1016/j.envint.2019.02.024
https://doi.org/10.1016/j.envint.2019.02.024
https://doi.org/10.1016/j.envint.2019.02.024
https://doi.org/10.1007/s00204-019-02636-x
https://doi.org/10.1007/s00204-019-02636-x
https://doi.org/10.1007/s00204-019-02636-x
https://doi.org/10.1016/j.comtox.2019.100100
https://doi.org/10.1016/j.comtox.2019.100100
https://doi.org/10.1016/j.taap.2019.114876
https://doi.org/10.1016/j.taap.2019.114876
https://doi.org/10.1021/acs.chemrestox.0c00264?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.0c00264?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.32614/RJ-2014-008
https://doi.org/10.32614/RJ-2014-008
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/I2CT45611.2019.9033810
https://doi.org/10.1109/I2CT45611.2019.9033810
https://echa.europa.eu/documents/10162/13655/pg_report_qsars_en.pdf/407dff11-aa4a-4eef-a1ce-9300f8460099
https://echa.europa.eu/documents/10162/13655/pg_report_qsars_en.pdf/407dff11-aa4a-4eef-a1ce-9300f8460099
https://doi.org/10.1038/nmeth.3393
https://doi.org/10.1038/nmeth.3393
https://doi.org/10.1038/nmeth.3393
https://doi.org/10.48550/arXiv.2006.07155
https://doi.org/10.48550/arXiv.2006.07155
https://doi.org/10.1002/minf.202000216
https://doi.org/10.1021/acs.chemrestox.2c00189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.2c00189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c00304?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Learning Models Developed Based on ToxCast/Tox21 Assay Data.
Chem. Res. Toxicol. 2022, 35, 2219−2226.
(83) Escher, B. I.; Glauch, L.; König, M.; Mayer, P.; Schlichting, R.
Baseline toxicity and volatility cutoff in reporter gene assays used for
high-throughput screening. Chem. Res. Toxicol. 2019, 32, 1646−1655.
(84) Escher, B. I.; Henneberger, L.; König, M.; Schlichting, R.;
Fischer, F. C. Cytotoxicity burst? Differentiating specific from
nonspecific effects in Tox21 in vitro reporter gene assays. Environ.
Health Perspect. 2020, 128, 077007.
(85) Meekel, N.; Vughs, D.; Béen, F.; Brunner, A. M. Online
prioritization of toxic compounds in water samples through intelligent
HRMS data acquisition. Analytical chemistry 2021, 93, 5071−5080.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c00304
Environ. Sci. Technol. 2023, 57, 18067−18079

18079

https://doi.org/10.1021/acs.chemrestox.2c00189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.9b00182?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.9b00182?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1289/EHP6664
https://doi.org/10.1289/EHP6664
https://doi.org/10.1021/acs.analchem.0c04473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c04473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c04473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c00304?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

