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Abstract  (150 words) 39 
In many domains of Geosciences, Process-Based Modeling (PBM) offers benefits in interpretability 40 

and physical consistency but struggles to efficiently leverage large datasets. Machine Learning (ML) 41 
methods, especially deep networks, have strong predictive skills, yet lack the ability to answer specific 42 
scientific questions. In this Perspective, we present differentiable modeling (DM) in geosciences as a 43 
pathway that dissolves the perceived barrier between PBM and ML. “Differentiable” refers to accurately 44 
and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery 45 
of high-dimensional unknown relationships. DM involves connecting (arbitrary amounts of) prior physical 46 
knowledge to neural networks, pushing the boundary of physics-informed machine learning. Evidence 47 
suggests DM offers improved interpretability, generalizability, and extrapolation capability compared to 48 
purely data-driven ML, while approaching its accuracy. DM requires less training data while scaling 49 
favorably in performance and efficiency with data. Geoscientists can now ask questions, test hypotheses, 50 
and discover unrecognized physical relationships.  51 
  52 

Introduction  53 
Geoscientific models encompass a wide range of domains, with evolving scopes and ever-increasing 54 

societal importance, especially in the face of rapid climate change. For example, hydrologic models help 55 
manage water resources1,2 and plan for extremes such as floods and droughts3. Vegetation models can help 56 
predict the fate of the carbon and other key biogeochemical cycles on land4 or in the ocean5. Agricultural 57 
models can help estimate crop yields and environmental impacts6. Geophysical models aim to predict land-58 
surface changes via processes like landslides7, land subsidence8, the impact of future warming on glacial 59 
melt9, and earthquakes. Biogeochemical reactive transport models aim to understand and predict surface and 60 
subsurface water chemistry and quality10–12. Combining many such components, Earth System Models13–15 61 
and Integrated Assessment Models16–18 provide crucial climate projections and guidance for resource 62 
managers and policy makers19,20.   63 

Geoscientific models often share commonalities as they describe the temporally dynamic responses of 64 
systems to time-dependent forcings as modulated by static landscape attributes. Many such problems can be 65 
described as systems of nonlinear equations, or ordinary and/or partial differential equations (ODE/PDEs). 66 
The overall system can contain multiple processes, some of which are well understood while others are only 67 
empirically represented. Parameterizations (parametric representations of physical processes) are 68 
extensively employed21,22. Further, process representations and parameterizations are often subject to 69 
considerable uncertainty, some of which is related to the coarse scale of the models, and thus have significant 70 
room for improvement.  71 

The recent rapid growth of machine learning (ML) offers new opportunities for learning from big data 72 
and filling knowledge gaps in geoscientific models, in particular. While various forms of physics-informed 73 
ML have been proposed for several years, there has been a lack of recognition of one core strength of ML -74 
-- differentiable programming. Understanding this strength as well as its limitations will enable us to reframe 75 
how ML and physical models can best interact and synergize. 76 

In this Perspective, we argue that differentiable implementations of geoscientific models offer a 77 
transformative approach to simultaneously improve process representations, parameter estimation, 78 
knowledge discovery, and predictive accuracy, by connecting process-based and machine-learning-based 79 
model components. It offers immense potential to advance the wide variety of geoscientific domains. 80 
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PBMs and ML in the geosciences 81 
While process-based modeling (PBM) and pure machine learning (ML) are both valuable approaches 82 

to modeling, they each have their own limitations.  83 
Process-based geoscientific modeling  84 

The traditional process-based modeling (PBM) approach, which uses models derived deductively from 85 
physical laws or empirical relationships23,24, has helped improve our understanding of system functions and 86 
behaviors. Due to their deductive nature, they can be leveraged to test hypotheses or to assess the system’s 87 
response and causation relationships (see the Physical Laws row in Table 1). Further, they can simulate a 88 
wide range of observed (for example, discharge or leaf area index) and unobserved variables (for example, 89 
groundwater recharge or fine-root distribution). Such an ability is critical to both advancing scientific 90 
understanding and to providing a narrative when communicating with the public and stakeholders who are 91 
engaged in decision making25. It is possible to ask specific questions regarding processes within the modeled 92 
system, by progressively improving the representations of processes23,26–28 and evaluating them using 93 
controlled experiments.  94 

Despite these benefits, there remain important challenges with PBMs. Process-based models often 95 
cannot rapidly evolve with and fully exploit the information in “big data” due to the time needed to develop 96 
and test process representations and parameterizations29,30. The differences between model predictions and 97 
observations are first reconciled by parameter calibration, which can be non-trivial and can add significant 98 
uncertainty31 (more about this later). For model errors beyond parameter tuning, modelers need to 99 
hypothesize different causes (for example, missing processes in the governing equation), then implement 100 
structural changes and iteratively confront the updated model structure and underlying hypotheses with the 101 
validation data23. This iterative process is highly expensive (in both labor and time) and complex, and can 102 
be biased by a developer’s knowledge background32. Consequently, it is common that the structural 103 
representation of a specific process in a geoscientific model stagnates for years or decades33–36.  104 

One key reason for this stagnation is that process-based models are limited by knowledge gaps. 105 
Extensive physical, biological, and socioeconomic knowledge is required to achieve adequate model 106 
structure representations, and any deficiencies can amplify errors and ambiguity. Another major challenge 107 
is the interactions of processes across disciplinary boundaries37. For instance, vegetation, microbes, human 108 
management, and socioeconomic systems all interact with each other and affect the water and carbon and 109 
other biogeochemical cycles38–41. Interdisciplinary research is highly valuable but challenging, therefore 110 
limiting our progress toward accurate model prediction.   111 

  112 
Machine-learning-based geoscientific modeling  113 

Irrespective of the domain or application, there has been a rapid increase in the use of purely data-driven 114 
machine learning (ML) approaches, especially deep neural networks (NNs). NNs have highly generic model 115 
structure and many parameters that are determined from training on data. ML has been applied to a wide 116 
range of scientific applications37,42 (see Discussion A in Supplementary Information S1). In the geosciences, 117 
NNs have shown promise in predicting crop production43,44, precipitation fields45,46 and clouds47, water 118 
quality variables48,49 such as water temperature50–53, dissolved oxygen54,55, phosphorous56, and nitrogen57,58, 119 
and the full hydrologic cycle59 including soil moisture60–62, streamflow63–66, evapotranspiration67–69, 120 
groundwater levels70, and snow71, etc. Deep networks like long short-term memory (LSTM) networks72, 121 
transformers73,74, graph neural networks65, and convolutional neural networks (CNNs)75,76 have become 122 
widely known in geosciences. Many studies reported noticeably better performance than conventional 123 
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process-based or statistical models, revealing that earlier work did not fully exploit the information in the 124 
data29 (Table S1 in Supplementary Information S1).  125 

Nevertheless, there remain important challenges with purely data-driven ML:  126 

Machine learning is typically data hungry. The success of deep networks has relied on the availability 127 
of "big data”, which are, unfortunately, oftentimes not available in many geoscientific applications58,77, 128 
where variables are measured at only tens, hundreds, or thousands of sites. For example, water quality data 129 
are sparse and inconsistent in temporal and spatial coverage10,78. For rare and extreme events which critically 130 
impact human activities, such as floods, droughts, and earthquakes, available data is even scarcer.  131 

ML is not exempt from defaults and can struggle with data errors, incompleteness, out-of-sample or 132 
out-of-distribution predictions, or bias in the inputs or training data. The quality of ML models is therefore 133 
inherently limited by the quantity, diversity, and quality of the observations53,79,80. Since a purely data-driven 134 
model can, at best, nearly-perfectly replicate the patterns in the training data, it invariably inherits various 135 
issues from the training data including explicit or spurious biases, inadequate spatiotemporal resolutions 136 
(such as with satellite-based observations), and the inability to account for non-stationarity (shifting 137 
background statistical properties) or unseen extremes in time series due to the short data record.  138 

ML algorithms are based on correlations and not causality, regarding both attributes and temporal 139 
changes. There are oftentimes confounding factors in data, so that ML models can produce the “right” results 140 
for the wrong (causal) reasons, potentially making predictions less reliable when circumstances are changed 141 
or outside of the training domain. Although causal representation learning81 and explainable AI methods82–142 
84 have shown promise recently, challenges still remain with learning causality and interpretability. Parallel 143 
methods that can flexibly interrogate a model, encode causality and prior information, and identify missing 144 
physics anywhere in the model chain can be valuable.  145 

Finally, purely data-driven ML models cannot predict untrained variables (those not provided as 146 
training targets). Due to their very nature, ML-based models are designed to only output the training targets. 147 
It is difficult for them to reveal how events unfolded. For example, in a study where soil moisture is 148 
unobserved, pure ML models cannot state whether “the flood occurred because the soil was saturated”. This 149 
limits both the formation of hypotheses and communication with stakeholders.  150 

Differentiable programming  151 
Considering the successes and limitations of NNs, we seek to identify the foundational strengths of 152 

NNs and overcome its limitations. To this end, we argue that differentiable programming (explained below), 153 
is the computing paradigm that supports the efficient training of NNs which, when generalized, can deliver 154 
many philosophically and practically transformative outcomes to PBMs. Traditional process-based, 155 
statistical or hybrid modeling of Earth systems has been dealing with optimization problems for model 156 
parameter tuning (see the Similarity block in Table 1). However, only by exploiting the power of gradient-157 
based optimization, which updates weights by explicitly tracking their contributions to the outcome, have 158 
researchers been able to learn from big data and efficiently train the large numbers of weights (parameters) 159 
necessary to approximate complex unknown functions.  160 

The ability of generic NN architectures such as transformers, CNNs, and recurrent neural networks to 161 
approximate unknown functions has produced desirable outcomes (Figure 1 & Table 1). First, researchers 162 
from any field can concentrate on a few generic architectures, permitting cross-domain sharing of knowledge 163 
and experiences. Second, NNs can help identify previously unrecognized physical relationships. Third, NN 164 
training can scale up with the amount of data (in terms of accuracy, generalizability, and efficiency)79,85, 165 
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contrasting traditional modeling where the learning may quickly saturate after some limited calibration of 166 
parameters or functions53.  167 

All of these abilities are possible only because NNs can now be trained with a large number of weights, 168 
providing a large learnable function space86,87. The number of weights easily exceeds the optimization 169 
capabilities of conventional algorithms. The LSTM models widely employed in hydrology can contain 170 
~500,000 weights while recent large language models already have trillions of weights, which can lead to 171 
emergence of human-level abilities not observed at smaller scales88. In contrast, traditional evolutionary89–172 
91, or genetic92 or particle swarm optimization methods93 can hardly handle more than a few dozen 173 
independent parameters (Table 1).  174 

The computing paradigm behind training large amounts of weights is differentiable programming94,95 175 
(meaning that we design programs in a way that their outputs are differentiable with respect to inputs), as 176 
cheaply obtained gradients allow for parameter updates via various first-order gradient-descent methods96. 177 
In the context of ML, it is largely enabled by automatic differentiation (AD), which decomposes a complex 178 
algorithm into a sequence of elementary arithmetic operations, and then applies the chain rule of 179 
differentiation to compute the derivatives. Reverse- or forward-mode AD constitutes a powerful 180 
functionality provided by ML platforms like PyTorch97, JAX98, Julia99, and Tensorflow100. Models written 181 
on these platforms can be, often without much effort, programmatically differentiable even with 182 
mathematically indifferentiable operations (such as thresholding or if statements), as long as they are 183 
piecewise differentiable. 184 

This leads us to conclude that it is differentiable programming that distinguishes neural networks from 185 
other traditional models, due to its ability to efficiently harvest large amounts of data and tune a very large 186 
number of parameters. Recognizing that differentiable programming is not exclusive with process-based 187 
modeling, it can serve as the basis for unifying NN and process-based geoscientific modeling. As we will 188 
discuss next, this unification of PBM and ML requires only minor modifications to our conceptual modeling 189 
and implementation strategies, but can open new doors for scientific discovery. 190 
Differentiable modeling (DM) 191 

Here we expand the scope of our discussion beyond differentiable programming and AD, and use the 192 
term “differentiable modeling” (Figure 1) to refer to joint physics-ML modeling approaches that use any 193 
method to rapidly and accurately produce gradients for large-scale optimization of the combined system. A 194 
distinct feature of DM is its predominant programmatical differentiability – that is, the whole model needs 195 
to support gradient calculation from the start to the end of the workflow – to ensure that we can trained 196 
combined neural networks that can adapt to and evolve from data. Purely data-driven neural networks 197 
already use differentiable programming (almost entirely via AD), but here “differentiable modeling” also 198 
emphasizes the hybrid nature of the system. A non-AD example is that of adjoint methods, which solve 199 
accompanying equations (called adjoint equations)101–103 for the derivatives, and take advantage of the 200 
multiplicative nature of the chain rule to save computational time. AD differentiates through the low-level 201 
calculation, while adjoint methods differentiates through higher-level functions or mathematical 202 
equations104. Some other gradient estimation methods, like finite differences, are intractable for any 203 
reasonably-sized NNs (10,000 weights would require 10,001 forward model evaluations) and can be 204 
challenged by stiffness. Second-order methods, such as Newton Raphson, have not gained popularity for 205 
the training of NNs due to the costs and challenges of computing the Hessian matrix. The vast majority of 206 
NNs are implemented on platforms supporting differentiable programming, while most existing PBMs are 207 
not. We believe that converging the two (NNs and PBMs) through AD presents a tremendous opportunity 208 
for efficient learning from data.  209 
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DM pushes the boundary of physics-informed ML and can be considered a branch of scientific 210 
ML105,106 that emphasizes improving process representations and interpretation (Supplementary Information 211 
S1, Discussion C). There are two perspectives from which we can view differentiable models (Figure 2a 212 
First, they are ML models constrained to a smaller searchable space by the structural priors, and thus can 213 
still repeat the benefit of big data when they exist. Second, they are PBMs augmented with learnable and 214 
adaptable components (and thus an expanded searchable space) provided by NNs, and can be trained in 215 
data-scarce scenarios and provide elucidation of processes.  216 

 217 
Table 1. Similarities and differences between purely data-driven NNs and process-based models. [Pro] 218 
annotates the comparative strengths, also shown in green text. In the equations, W stands for weights of 219 
the neural network 𝑔𝑔; 𝜃𝜃 stands for the physical parameters of the process-based model f; x, u and A are 220 
dynamic forcings, state variables, and semi-static attributes, respectively; and L represents the loss 221 
function which quantifies the difference between simulation outputs and observations 𝑦𝑦∗. 222 

 Purely data-driven NNs Purely process-based models 
 Similarities 

Mathematical 
form  

𝑦𝑦 = 𝑔𝑔𝑊𝑊(𝑢𝑢, 𝑥𝑥, 𝐴𝐴)  
𝑊𝑊 = argmin(𝐿𝐿(𝑦𝑦, 𝑦𝑦∗))  

𝑦𝑦 = 𝑓𝑓𝜃𝜃(𝑢𝑢, 𝑥𝑥, 𝐴𝐴)  
𝜃𝜃 = argmin(𝐿𝐿(𝑦𝑦, 𝑦𝑦∗))  

Programmatically 
differentiable  

Yes  Traditionally no, but can be reimplemented on ML 
platforms as shown in the Applications section. 

  Differences  

Training/ 
Calibration  

[Pro] Trained using data-driven training 
methods such as gradient descent, with 
gradient computations supported by 
differentiable programming 

Typically calibrated at limited numbers of sites or 
for a limited number of parameters, though 
efficient many-site, multi-objective methods exist. 

Architecture  [Pro] Generic structure with many weights 
that allow the model to flexibly learn a wide 
range of functions  

Physically based equations (structural priors) 
representing human understanding of physics, with 
a limited number of parameters. 

Data  [Pro] Capable of efficiently gaining accuracy 
and generalizability as datasets grow, with 
scaling benefits to big data. 

Learning saturates at a small data quantity.  
[Pro] Can often predict reasonably despite data 
limitations in accuracy, resolution, and availability.  

Unknown 
processes  

[Pro] Can discover patterns and functions from 
data that might be unknown or uncertain. 

Processes must all be explicitly specified by the 
modeler, even if they are only assumptions.  

Domain 
knowledge  

[Pro] Generic model architecture – Easy to 
develop even without domain expertise and 
accommodates large knowledge gaps 

Specialized domain knowledge required. 

Physical laws  Not guaranteed to respect physical laws.  [Pro] Respect physical laws. 

Inspection Outputs trained variables only.  
  

[Pro] Provide access to many intermediate 
variables that facilitate interpretability.  
Provides interpretable intermediate variables 

Interpretation  Takes much effort to interpret, and internal 
variables are not guaranteed to have physical 
meaning.  

[Pro] Contain equations representing physical 
processes, allowing narration of model 
“reasoning” and formal tests of alternative 
representations 

Education  Taught in computer science or data science 
curricula.  

Taught in engineering or science curricula.  
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 223 

 224 
Figure 1. ML (blue boxes) gives us great results with easy-to-use models, resulting from the complexity of 225 
neural networks (many parameters) and the technologies that make it feasible to train such complex 226 
models. The most fundamental of these technologies is differentiable programming. In the DG paradigm, 227 
which incorporates differentiable non-ML model components (physically based structural priors), we can 228 
now obtain additional great features (orange boxes) while retaining and augmenting the old ones (green 229 
boxes).  230 
 231 
Approximating functions inside the model 232 

While efficient gradient calculation may appear to be merely a technical change, it is however likely 233 
to transform our modeling philosophy. First, the ability to approximate complex, unknown functions using 234 
data can greatly broaden the type of questions that can be asked, by enabling us to treat trusted model 235 
components as priors and focus on improving the more uncertain components. To explain this idea in 236 
concise mathematical terms, let us consider a physics-based model,  237 

(1) y=g(u, x, θ) , 238 

where y is the environmental variable to be predicted, and u, x, and θ represent state variables, dynamic 239 
forcings, and physical parameters, respectively. This representation encompasses differential equations but 240 
is more generic, for example:  241 

(2) ∂u/∂t= g(u, x, θ).  242 

Traditional inversion algorithms only estimate the parameters (essentially asking, “θ =?”) while 243 
requiring that the functional form g be assumed a priori (except for some rigid methods like nonparametric 244 
regression, which require complicated derivations and specialized training algorithms, and thus have not 245 
gained popularity). However, differentiable models allow us to ask questions about the functional form g 246 
itself, by training, for instance, a neural network (NN) on observed data to replace 𝑔𝑔 with: 247 

(3) y = NNW(u, x, θ).  248 
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where W is the high-dimensional weights. With DM, we now can place our question mark precisely in 249 
the model. The functions to estimate could be a parameterization scheme, as done in differentiable 250 
parameter learning99, for example:  251 

(4)  𝑦𝑦 = 𝑔𝑔(𝑢𝑢, 𝑥𝑥, 𝜃𝜃 = 𝑁𝑁𝑁𝑁𝑊𝑊(𝐴𝐴))  252 
The function could be a module in a model (Figure 3), where we can replace 𝑔𝑔3 in  253 

(5)  𝑦𝑦 = 𝑔𝑔(𝑔𝑔1 , 𝑔𝑔2, 𝑔𝑔3(𝑢𝑢, 𝑥𝑥, 𝜃𝜃))  254 
with a NN as done in Feng et al.107 by optionally replacing the runoff function:  255 

(6)  𝑦𝑦 = 𝑔𝑔(𝑔𝑔1 , 𝑔𝑔2, 𝑁𝑁𝑁𝑁𝑊𝑊(𝑢𝑢, 𝑥𝑥, 𝜃𝜃)) 256 
Alternatively, the function could be a part of a governing equation or constitutive laws. For example, 257 
we can estimate 𝑁𝑁𝑁𝑁𝑊𝑊 in the following equation108,109: 258 
(7)  𝜕𝜕𝑢𝑢/𝜕𝜕t = 𝑔𝑔(𝑔𝑔1 , 𝑔𝑔2, 𝑁𝑁𝑁𝑁𝑊𝑊(𝑢𝑢, 𝑥𝑥, 𝜃𝜃))  259 

 260 
In the above equations, the physical process equations provide a backbone (or inductive bias) for the 261 

overall model; in equation 4 the physical backbone is 𝑔𝑔; in equations 5-7, the physical backbone is 𝑔𝑔, 𝑔𝑔1, 262 
𝑔𝑔2 and 𝑔𝑔3. The unchanged parts (structural priors) like 𝑔𝑔, 𝑔𝑔1, 𝑔𝑔2 critically serve as physical constraints. We 263 
may gain insights by simply visualizing the relationships learned by NNW 65,110 or applying knowledge 264 
distillation methods111. We are also able to evolve better process representations for some model 265 
components such as 𝑔𝑔3 mentioned above, for example, the relation between soil moisture and effective 266 
rainfall in conceptual hydrologic models, without needing a full understanding of all the processes. This 267 
precision and latitude of questioning is unprecedented. Moreover, as ML learns an overall mapping from x 268 
to y based on correlations, it can intertwine many processes, making its interpretation difficult. As we break 269 
the mapping down into multiple subparts based on inserting prior knowledge, we inherently reduce 270 
complexities, reducing the scope of learning, and improve interpretability (Figure 3). 271 

Differentiable modeling provides a framework for combining deductive reasoning and inductive 272 
learning. Purely data-driven models are inductive and seek to derive almost all relationships from data, 273 
whereas process-based models first posit hypotheses and then test those hypothesis using data. 274 
Differentiable modeling posits a user-defined number of structural assumptions, and then identifies other 275 
parts of the model from data. This design follows the traditional scientific approach that identifies 276 
parsimonious models to reflect the general properties of the phenomenon, along with a quantification of the 277 
predictable aspects that are not yet well understood112. Moreover, differentiable models can approach state-278 
of-the-art performance that matches data-driven models (Supplementary Information S1, Discussion B).  279 
  280 

Differentiable Modeling in Geosciences   281 
Here we advocate for a new modeling genre in modeling all earth and environmental processes: 282 

“Differentiable Modeling in Geosciences” (DM). DM in Geosciences intermingles geoscientific physical 283 
equations (called structural priors) with NNs to simulate processes, update process representations, learn 284 
meaningful parameters, quantify uncertainty and ask a range of questions (Table 2). DG may also exploit 285 
gradients for other purposes such as sensitivity analysis or trajectory optimization. DG seeks to marry the 286 
core of NN models – their optimizing and learning capabilities – to geoscientific process descriptions.   287 

For geoscientific problems, NNs can be utilized in a wide variety of ways, ranging from learning 288 
physical parameters113 to updating structural assumptions in a component79, or estimating time-dependent 289 
forcing terms of the natural systems. We emphasize that DG is different from previous concepts introduced 290 
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in physics-guided machine learning (PGML) or not-fully-differentiable models in terms of methodology 291 
(must be fully differentiable), mission (to advance process understanding), and philosophy (whether treating 292 
physical law as truth or not). Please see Supplementary Information S1, Discussion C for the comparison.  293 
  294 

  295 
Figure 2. (Left) Differentiable models can be viewed as (A) machine learning models guided into a 296 
smaller searchable space (ovals) by structural priors or (B) process-based models with expanded search 297 
space supported by learnable units. The background color gradient indicates model optimality, related to 298 
the cost function if we had infinite data, such that “optimal” marks the location of the ideal model 299 
solution. (Right) Differentiable models could evolve to gain process knowledge while improving the 300 
model predictions. Success can be claimed if DG models can be developed with the following features: 301 
Predictive accuracy and transferability equal to or superseding purely data-driven models for extensively 302 
measured variables; Capable of structural evolution, enabling improvements to the parameterization and 303 
formulation of the processes; Accurate generalizability to data-sparse regions or into the long-term 304 
future; Conservation of mass/energy/momentum; Consistency of internal physical fluxes and states that 305 
can provide a full narrative of the events and full support to downstream processes; Permits efficient 306 
isolation of one uncertain model component at a time to learn physics with less ambiguity.  307 
  308 
Overcoming data limitations  309 

DM is particularly suitable for the geosciences due to the nature of datasets and problems. First of all, 310 
geoscientific data are strongly imbalanced in spatial extent, temporal coverage, and the coverage of 311 
variables, and also have noise in observational datasets. While satellites can be used to indirectly estimate 312 
global leaf area index114 or coarse-resolution surface soil moisture115,116, and other variables117, there are a 313 
limited number of sites measuring photosynthesis rates118, soil respiration or streamflow, especially in 314 
Africa and Asia119. Globally, there is very limited knowledge of subsurface properties. Purely data-driven 315 
ML may be biased by these data limitations, yet these biases could be partially alleviated by the inclusion 316 
of physics as an inductive bias. Indeed, preliminary analysis shows that differentiable models with a 317 
process-based model as the backbone can outperform LSTM in regional extrapolation120.  318 

The second major motivation behind the use of differentiable modeling is nonstationarity in the 319 
geosciences induced by changes in climate, land-use land-cover, etc., which could drive many systems out 320 
of the previously observed range of variability121. Earlier tests indicate while ML models presents highly 321 
competitive performance64,120, it still declines substantially in accuracy when faced with nonstationary 322 
processes120,122. Constrained by physical formulations, DG has a chance to better represent future trends120. 323 
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As DG models can also output any diagnostic variable calculated by the process-based equations within 324 
the DG model, we can perform model conditioning and/or data assimilation operations with sparse and 325 
scattered data. By conditioning, we mean constraining the model using observations to improve overall 326 
model dynamics For example, a hydrologic model can be conditioned by satellite soil moisture or 327 
streamflow data so that it can better predict vegetation water use113, primary productivity, or snow water 328 
equivalent123. For data assimilation, the model can use recent observations of B to improve the short-term 329 
forecast of A, as B can also help to update our model state variables.  330 

DG is primed to greatly improve the quality of physical parameters, which strongly control the 331 
behaviors of the models. Quite often, we have no ground truth information for the parameters and they 332 
require inversion from observations or high-resolution simulations. Parameter estimation has, for decades, 333 
been fraught with uncertainty and ambiguity. Due to different parameters producing very similar output and 334 
their sensitivity to spatiotemporal resolutions, calibration at a geographic location can often lead to 335 
nonuniqueness (sometimes referred to as “equifinality”)124–126. Extending parameters to unmonitored 336 
locations requires “regionalization”, which may improve robustness, but it is difficult for traditional 337 
methods to achieve optimal results. Training neural networks as parameter generators has a great potential 338 
to improve parameter generalization and performance, while also giving insights about parameter 339 
sensitivity. Using all the available data points to constrain the parameters can generate favorable scaling 340 
behaviors – more training data leads to improved performance, efficiency, and generalizability113 (discussed 341 
in Supplementary Information Text S1).  342 
  343 
Earth science applications 344 

Here we call for more attention to differentiable modeling as a new modeling genre for geosciences. 345 
DG holds the potential to tackle a diverse array of novel questions across various geoscientific domains, 346 
pursuing ambitious goals ranging from high performance to knowledge discovery (Figure 2b). Some 347 
example questions suitable for DG are given in Table 2. This section briefly describes early explorations of 348 
DG, categorized by how gradients are computed and employed. This section also gives examples, which 349 
are by no means exhaustive, to explain the concepts and to inspire more innovation.  350 
 351 
Table 2. Differentiable Geosciences can help almost all geoscientific domains in knowledge discovery and 352 
improving simulation quality. We provide some core question types, along with example questions and 353 
their domains. 354 
 Question Examples Domain 

a What is the relationship 
between x and y? 

How do we estimate floodplain hydraulic parameter values 
efficiently at large scales using new sensing data Hydraulics 

How does global groundwater-dominated baseflow respond to 
climate change Hydrology 

b 
What physics is 
missing from the 
differential equation? 

Can we find functional forms to express soil hydraulic properties 
(water retention and hydraulic conductivity function) that 
describes non-equilibrium flow? 

Soil Science 

c What should be the 
assumption here? 

What is the main driver of reduced plant production: vapor 
pressure deficit or deficit in soil moisture? Ecosystem 

What is a proper, scale-appropriate way to parameterize 
groundwater storage and flow at the global scale? Hydrology 
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d How does factor A 
influence parameter β? 

Can we use space-based observations of geohazards, e.g., 
landslides122, to quantify subsurface properties (so we can better 
predict future events)? 

Geohazards 

How and to what extent do river chemistry and quality vary 
across gradients of climate, vegetation, land use, and geology 
conditions? thus how do they change in a warmer climate and 
intensified human modification (type f)? 

Water 
Quality 

e Is a process causing 
phenomenon P? Is CO2 fertilizing plants and increasing global photosynthesis? Climate 

f 

What will happen 
under new 
environmental 
conditions? 

How can we predict crop phenology dynamics (e.g., planting, 
shooting, flowering, harvesting) and assess potential production 
risk under future climate change, which involves interconnected 
biotic, abiotic, and human influences? 

Agriculture 

How can we leverage both physics and data to create more 
accurate models for ice dynamics within the cryosphere and 
better constrain its fate under climate change? 

Cryosphere 

g 

What is the information 
content of datasets 
(inputs, training 
targets)? 

How can we better leverage emerging sensing platforms while 
improving our model representations of sediment transport and 
nonlinear wave-wave interactions in order to infer nearshore 
bathymetry at large scales 

Coastal 

  355 
 356 

Differentiating through numerical models  357 
Differentiating through numerical models by leveraging modern ML platform is likely the most 358 

straightforward and the most similar to traditional models. We leverage both AD and, when necessary, a 359 
customized backward function (adjoint) to keep track of gradients at relatively elementary levels of 360 
operations. For explicit time stepping, utilizing modern ML platforms like PyTorch, Julia or JAX, one can, 361 
in theory, reimplement an existing physical model coded in Fortran or C/C++ to obtain a differentiable 362 
model version via AD (and ensure reproducibility). Then the differentiable model is connected to NNs. The 363 
physics is clearly enforced, and the user obtains an efficient forward simulator for any initial, boundary and 364 
forcing conditions. They can also migrate the learned relationships to existing models to immediately 365 
support operations.  366 

For problems that need iterative solvers, e.g., system of nonlinear equations or stiff ODEs requiring 367 
implicit time stepping, direct AD may consume too much memory, but adjoint-based backward functions 368 
can be employed instead at the iterative solver level (so called “discretize-then-optimize”). Alternatively, 369 
adjoint functions can also be written at the differential equation level, in which case we solve an adjoint 370 
differential equation backward in time to compute the gradients (so called “optimize-then-discretize”)176. 371 
Care needs to be taken gradients computed in the optimize-then-discretize way as sometimes we obtain 372 
lower-accuracy gradients that interfere with training127. Adjoint methods have been used to solve 373 
optimization problems governed by PDEs, with the adjoint equations derived either manually128, or, more 374 
rarely, by automated programs129. They might be more computationally efficient than AD for certain 375 
problems by exploiting the structure of the mathematical model. Adjoint solvers have long been successfully 376 
employed in numerical weather prediction, like 3D or 4DVar130 and groundwater modeling131, for the 377 
purpose of efficient data assimilation or calibration. In addition, those methods were traditionally not 378 
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connected to the neural network training machinery, perhaps because the role of differentiable programming 379 
was not clear at the time. 380 

 381 

 382 
Figure 3. The general idea of a differentiable, learnable process-based model. Differentiable models can 383 
help almost all geoscientific domains in knowledge discovery and improving simulation quality. At the 384 
bottom, we show purely data-driven ML models that directly learns a mapping relationship from x to y, 385 
which intertwines many processes and is thus difficult to understand. Differentiable models allow us to 386 
break the model in into portions (g1, g2 are to be learned) so that we can narrow the scope of the 387 
relationships to be learned (potentially with less data) for better interpretability. At the top, we illustrate 388 
that in differentiable modeling, NNs can serve as parameterization schemes or processes inside a model. 389 
They can adapt to data and learn from data. 390 
  391 

 392 
As an example, the conceptual hydrologic model HBV (a system of ODEs) was implemented on 393 

PyTorch and coupled NNs provided regionalized parameterization107 (Figure 4). “Regionalized” means the 394 
parameterization is trained by all sites simultaneously, which poses a strong constraint and improves 395 
robustness). Strikingly, its streamflow simulation approached the performance level of LSTM, with very 396 
similar performance under different forcing datasets. The soil moisture-runoff function can be replaced with 397 
NNs, which learns a new moisture-runoff relation (similar to a constitutive relation) where the precipitation 398 
amounts heavily influences runoff for threshold-like watershed systems. This implementation also output 399 
untrained variables such as evapotranspiration and baseflow, which agreed well with alternative estimates. 400 
To improve numerical accuracy and parameter robustness132,133, we can incorporate adjoint backward 401 
functions for implicit time-stepping. Moreover, in spatial extrapolation cases, the differentiable model 402 
outperformed ML models (LSTM in this case) with respect to daily metrics and decadal trends120 (Figure 403 
4) due to the structural constraints, demonstrating its potential for global hydrologic modeling. Similarly, 404 
other work123 encoded the hydrologic model EXP-HYDRO as a recurrent NN architecture and coupling it 405 
with fully connected NNs which served as the parameterization pipeline as well as postprocessor to improve 406 
runoff. A symbiotic integration between NN and physics led to robust transferability across basins. 407 
Recently, a hybrid neural ODE approach, in which NNs were used to substitute the differential equations-408 
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based hydrologic model, thereby improving predictions while keeping full interpretability of a mechanistic 409 
model134. In the biogeosciences or ecosystem modeling, differentiable models have also been used to 410 
improve parameters for photosynthesis135 at large scales.  411 

Apart from models similar to ODEs, direct differentiation can also be applied to models operating on 412 
graphs representing the natural systems, such as river networks. An advective dispersion equation 413 
implemented on a river graph to simulate stream water temperature was found to perform better in data-414 
sparse situations136. Similarly, when a differentiable river routing model was trained on daily discharge at a 415 
gauge downstream of a river network (with pretrained LSTM producing runoff as inputs to the graph) to 416 
learn a parameterization scheme for n137, a power-law-like curve was obtained between Manning’s 417 
roughness coefficient (n) and catchment area, consistent with the expected behavior.  418 

To give a more adjoint-focused example, a non-linear coefficient in the Poisson equation and a heat 419 
equation was recovered when unknown functions or operators in a PDE were replaced by NNs, the PDE 420 
was discretized by a finite element method, and the was gradient provided by the adjoint method128. To 421 
overcome the challenge facing Newton iteration convergence due to the incorporation of NN and the lack 422 
of a preconditioner, an operator-splitting approach was used to discretize the PDE into two subproblems. 423 
The first subproblem only has differential operators of the PDE, not NNs, while the other subproblem with 424 
NNs can be solved by integrating NNs by a Gaussian quadrature rule. The approach can similarly apply to 425 
equations in geosciences.  426 

Reimplementing a model into a differentiable version may incur non-trivial development costs. 427 
Mathematical changes may be required to adapt previously non-differentiable mathematical operations, for 428 
example, by replacing indexing with convolutions, or to improve parallel efficiency. While DG models may 429 
not always have to run on Graphical Process Units (GPUs), enabling the use of GPUs would improve the 430 
computational efficiency by orders of magnitudes compared to CPUs, notwithstanding some current 431 
challenges (described in the Challenges to address for DG section). Our position is that in most cases, the 432 
cost is well worth the investment due to the potential to interrogate into the model, make changes, and learn 433 
physics. The reimplementation may also provide a “reset” opportunity to re-examine many of the 434 
commonly-made model assumptions or implementation choices.  435 

 436 
  437 
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 438 
 439 
Figure 4. (Adapted from Feng et al.107,120). (a) Sketch of a differentiable hydrologic model using process-440 
based hydrologic model HBV as a backbone. The purple dashed lines illustrate an example of the paths of 441 
backpropagation to train the two connected neural networks, but backpropagation can in fact update any 442 
component including making corrections to precipitation. (b) The differentiable models (with δ(βt, γt) 443 
indicating model with two time-dependent parameters) can approach the performance of LSTM and 444 
greatly outperform traditional approaches (mPR+mHM) on the basins of the CAMELS dataset (higher 445 
NSE is better) for the in-sample temporal test and outperforms LSTM for spatial extrapolation test (PUR). 446 
δ models can output evapotranspiration (ET) at high accuracy while LSTM cannot (correlation was 447 
evaluated against a satellite product); (c) For prediction in ungauged regions (PUR, representing spatial 448 
extrapolation: trained in some regions and tested in another large ungauged region), δ models can 449 
surpass the performance of LSTM in terms of projecting decadal-scale trends in annual mean streamflow 450 
or high-flow (Q98). Please refer to Feng et al.107,120 for details regarding forcing and benchmarks. 451 
 452 
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Connecting NNs with PBMs through surrogate models.  453 
If we train a neural network as a surrogate for a PBM and faithfully reproduce its behavior, we can 454 

then connect this surrogate model to other NN components in a DG framework because the surrogate is 455 
programmatically differentiable. This idea has driven many studies to train surrogate models for hydrologic, 456 
hydraulic138,139, and reactive transport models, and then further using inversion140 and optimization. For 457 
another example, many benefits and a favorable scaling relationships (with more data) were shown with 458 
differentiable parameter learning113, which connected a physics-based model like VIC or its surrogate model 459 
to a neural network (𝑔𝑔), using some widely available attributes (A): 𝜽𝜽 = 𝑔𝑔(𝑨𝑨), and a network trained on all 460 
sites. A more detailed description of training such a neural network on soil moisture data to parameterize 461 
VIC is described in Supplementary Information S2. The initial effort of a surrogate model approach is low 462 
compared to fully recoding a model, but one may need to continuously retrain the surrogate models as the 463 
optimization goes to different regions of the parameter or state space. Furthermore, a surrogate model does 464 
not allow direct changes to the model structure. As a result, it is only recommended for highly complex and 465 
computationally expensive models that are challenging for reimplementation. Such cases may arise in 466 
climate models, hydraulics or subsurface modeling where governing PDEs of fluid dynamics and sediment 467 
transport must be solved with high spatial and temporal resolutions and require non-trivial computational 468 
codes. Solving PDEs using neural networks has attracted increasing attention, with many studies seeking to 469 
use NNs to approximate the numerical solution of those PDEs141–143, such as for the Richards equation144. 470 
For another example, for 2D hydraulic simulations, a differentiable surrogate model can be employed for 471 
the inversion of bathymetry145. While not DG’s philosophical theme, surrogate models can certainly 472 
accelerate and aid the mission of DG.  473 

  474 

PINN method for learning parameters and constitutive relationships  475 
In the physics-informed neural networks (PINN) method109,146,147, parameterization schemes can be 476 

learned by modeling the space-dependent properties of a system (like hydraulic conductivity of porous 477 
media) and unknown constitutive relationships (like pressure-dependent permeability of the unsaturated 478 
porous media and strain-dependent effective viscosity of non-Newtonian fluids). To make the model fully 479 
differentiable, in the PINN method, the states of the system are also modeled with neural networks. Then, 480 
all neural networks are jointly trained using the system state measurements and the fundamental 481 
conservation law constraints added as penalty terms to the joint loss function. As a result, the PINN method 482 
allows for learning systems parameters and constitutive relationships using measurements of the system 483 
states that may be easier to collect than the direct measurements of the parameters. The latter would be 484 
needed for learning parameters using data only. An example of the application of PINN for learning the 485 
constitutive relationship in the unsaturated flow model is given in the Supplementary Information S2. As 486 
compared to previously mentioned DM methods, PINN has a unique design that directly learns the problem-487 
dependent space-time solution of states, and thus needs to be trained for each boundary/initial conditions 488 
pair. Its focus is on knowledge discovery rather than being an efficient forward simulator.  489 

  490 

ML-dominant hybrid models with limited physics.  491 
Another class of models applicable in the data-rich realm employs NNs for the majority of modeling 492 

but inserting physical operators for imposing limited physics. For example, previous work used LSTM to 493 
estimate physical surface fluxes such as evaporation, runoff, and recharge, with only one constraint of mass 494 
balance equations148. Since the only supervising task for the fluxes was the observations of discharge, it was 495 
uncertain whether the terms maintained their physical meaning. The authors later constrained the system 496 
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using more observations149 which improved the simulations and reduced equifinality. A model learning 497 
from two data sources outperformed those learning from only one source for the inference of soil moisture 498 
using LSTM trained at 9-km resolution, whose solutions were fed into an averaging operation to obtain 499 
outputs at 36-km, and loss functions were computed at both resolutions against in-situ and satellite-based 500 
observations150. Overall, ML-dominant systems can be strong predictors and a beneficial option in DG, but 501 
one needs to carefully assess the interpretability and physical significance of the diagnostic intermediate 502 
variables. 503 

  504 

Summary and future directions 505 
Throughout our examples, we demonstrated that the DM is a novel framework that allows varying 506 

amounts of structural priors to be flexibly employed along with NNs, ranging from having just a few 507 
physically-based operators to significant physically-based structures. As a result, with DM the divide 508 
between ML and PBM can be dissolved. Understanding the role of differentiable programming allows us 509 
to break free from thinking about fixed methods or approaches for their integration – instead focusing on 510 
physical priors, uncertainty, unknown relationships and data. DM is particular suited for many geoscientific 511 
domains, and the DM system can learn from multiple sources of data, multiscale datasets, and leverage the 512 
benefits of big or small data.  513 

Memory usage and vanishing gradients are major issues in NN training, especially where iterative 514 
numerical solvers are involved. Keeping track of gradients requiring storing some information (partly 515 
alleviated if checkpointing is applied but still a prominent issue) and thus use of memory, which is especially 516 
constrained with GPUs. Vanishing gradient means that the parameters in deeper layers have very small 517 
gradients, so they become difficult to train151,152. Vanishing gradient can happen with recurrent NNs, which 518 
are similar to differentiable models. Moreover, differentiable models may have very heterogeneous 519 
operations (compared to NNs which are predominantly matrix multiplications) so how to maximizing the 520 
utilization of GPUs may pose a challenge. We anticipate new issues to emerge and new solutions to address 521 
them.  522 

While numerical solvers for ordinary differentiable equations (ODEs) can be readily accommodated 523 
by current differentiable computing platforms, partial differential equations (PDEs) may still be 524 
challenging. This is first because solving PDEs requires substantial computation and memory, which makes 525 
training by a batch of examples expensive in terms of both compute and memory usage. The architecture 526 
suitable for big-data ML training tends to prefer massive parallelism, which reduces the range of suitable 527 
numerical algorithms. Differentiable modelers now need to understand both the forward and backward 528 
methods, adding to the mathematical learning curve. Nevertheless, some differentiable numerical solvers 529 
to PDEs have been proposed and tested in computational fluid mechanics, and appear to be alternative to 530 
standard solvers 153.  531 

Since differentiable modeling allows us to learn processes, it is to be expected that we may run into 532 
“process non-uniqueness”, also called “process equifinality”. In traditional hydrologic modeling, “multiple 533 
working hypotheses” has been proposed to test different model formulations coupled together33. With DM, 534 
systematic development approaches can allow solving a part of the problem or determining one process at 535 
a time to reduce the interaction of modules. Second, more mature uncertainty quantification techniques are 536 
needed, such as going beyond ensemble methods154–157, to help assess the success and failures of hypotheses. 537 
Finally, large and multivariate benchmarks and extrapolation tests are needed that match the intended use 538 
cases to verify the validity and realism of physical outputs. For example, models intended for climate change 539 
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impact assessment must be tested for long term projection fidelity; models for global-scale applications 540 
must pass rigorous spatial extrapolation tests119.  541 

The progress and emergence of the utilization of AI at large scales (of data and model) have been 542 
astonishing88,158. We here argue that both prediction accuracy and knowledge discovery in the geosciences 543 
can greatly benefit from leveraging advanced AI model architecture combined with physics using a 544 
differentiable programming framework. While perceived as a technological breakthrough, differentiable 545 
modeling can lead to philosophical changes – we can now ask new questions and test hypotheses on model 546 
structure or data usage, and therefore utilize data in new and more optimal ways. The power of DM offers 547 
a new pathway toward advances in geosciences.  548 
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Supplementary Information  862 
  863 

S1. Supplementary Discussion  864 
  865 
A. Recent progress in geoscientific domains from purely data-driven machine learning.  866 

ML has gradually but pervasively permeated the vast majority of scientific disciplines, and is 867 
transforming those sciences at an unprecedented pace. In hydrology, deep networks such as long short-868 
term memory (LSTM) networks72, and convolutional neural networks (CNNs)75,76 have shown strong 869 
ability with regard to prediction of soil moisture60–62, water supply159, streamflow63–66, 870 
evapotranspiration67–69, groundwater levels70, snow71, and other aspects of the water cycle59. In water 871 
quality studies, LSTMs and CNNs have shown promise in simulating water temperature50–53, dissolved 872 
oxygen54, phosphorous56, and nitrogen57,58, among others48,49. In agriculture, ML approaches have been 873 
widely applied for crop production prediction160–162. In regional climate studies, CNN-based schemes or 874 
generative algorithms have been found to improve the forecasting of precipitation fields45,46 and prediction 875 
of clouds (deep clouds)47. Often the studies have reported state-of-the-art performance when compared 876 
with conventional approaches. Typically, such high-quality predictions can be made even when a good 877 
understanding of the underlying processes is not available. We made an effort to collect a list of somewhat 878 
comparable studies with metrics for both traditional and ML models (Figure S3 and Table S1). Previous 879 
models have been highly useful in advancing science, but these results imply that they were not fully 880 
exploiting the information available in the data29, and they can benefit from leveraging the strength of 881 
ML.  882 

  883 



 

Table S1. ML vs. traditional model performances for a number of scientific applications with data from many sites. The metrics were computed 
based on simulations and observations. The lower the values, the better for RMSE, while higher is better for Pearson’s correlation (COR), R2, 
and Nash-Sutcliffe model efficiency coefficient (NSE). This is presented with many caveats, such as the ML model is optimized to match 
observations while traditional models have many other constraints; a selection bias – where ML did not outperform did not get published 
(nevertheless, one could also argue studies where PBM outperformed were not easily found). The point of this table was not to show that ML was 
always better, but to support the argument that ML tends to have advantages in accuracy. Also note the limitations of ML discussed in the 
Introduction.  

Variable  Metric  Deep networks  Traditional  Reference  

Stream  
Temperature  

RMSE (°C)  1.91  4.01  Chen et al.163 
RMSE (°C)  0.89  1.80  Rahmani et al.164 and Daraio et al.165 
Pearson COR  0.99  0.91  Rahmani et al.164 and van Vliet et al.166 

R2  0.942  0.93  Rahmani et al.164 
NSE  0.98  0.93  Rahmani et al.164 

Evapotranspiration   R2  0.67  0.21  He et al.167 
RMSE (mm/day)  1.21  2.56  
NSE  0.65  0.57  Talib et al.168 

Soil Moisture  RMSE  0.027  0.085  Fang et al.60 
Pearson COR  0.87  0.72  

RMSE  0.027  0.035  
Pearson COR  0.87  0.82  
Pearson COR  0.91  0.77  Liu et al.150 
RMSE  0.034  0.08   

Streamflow  NSE  0.76  0.68  Seibert et al.169 and Kratzert et al.64  
NSE  0.9 /0.68  -  Mohamoud and Parmar170 
Mean R2  0.71  -  Merritt et al.171 
NSE  0.78  -  Zhi et al.171 

Dissolved oxygen    Median R2  -  0.64  Stefan and Fang172 

CC (correlation Coefficient)  0.972  -  Heddam173 
Median NSE  0.760  -  Keshtegar and Heddam174 



 

B. Why can differentiable models (DMs) achieve state-of-the-art predictive performance?  
Purely data-driven ML architectures have set a high bar for accuracy in multiple geoscience domains, 

such that one would be tempted to predict a substantial loss in accuracy when adding in less-flexible 
process-based components. However, it is still uncertain whether generic ML architectures are necessarily 
needed to achieve good model accuracy. As long as some model components are adaptable and learnable, 
we can learn from data. If we view the model as a more strongly constrained ML model (perspective “A” 
in Figure 2a), it is easy to see that there is a potential to achieve ML-level performance if the searchable 
space of PBM is enlarged to include a good approximation of the true function, directed by gradient-based 
training. The paths taken to upgrade the models will be expert-dependent (prior-dependent), so one should 
not expect a unified approach at present.  

Many dynamical systems in Geosciences can be written as ordinary differential equations (ODEs), 
such as rainfall runoff in a basin, crop growth, or nutrient release. While solving these equations, the 
numerical model is run for many steps. This is mathematically similar to recurrent neural networks, and 
the time integration operation is similar to the functionality achieved by some neural networks like the 
Residual Networks175,176. It should not be surprising that learnable process-based models with some ML 
components can perform as well as deep networks.  

As discussed in Section S1, multiple studies have already shown that differentiable, learnable models 
can approach the performance of purely data-driven models, or exhibit advantages in some cases where 
extrapolation is key. Differentiable model formulations can maintain at least two of the three desirable 
features: approximating complex, previously unknown functions, and the ability to assimilate information 
from big data. Compared to purely data-driven ML, DM trades genericity for interpretability and the ability 
to ask specific questions. Deep networks like CNNs, LSTMs, and attention layers will be an ingrained part 
of differentiable modeling in geosciences. Eventually, deep learning will become part of the repertoire of 
geoscientists, just like with numerical methods177.  

  
C. How is DM related to physics-guided machine learning (PGML) and how are they different?  

Many ML-physics integration strategies with a wide variety of complexity have been proposed in the 
past in a seemingly scattered manner, such that a clear classification is difficult178. It has not been 
sufficiently recognized that some of these algorithms work fundamentally because they leveraged the 
differentiable programming tools. The scattered nature of those publications makes the landscape of ML-
physics integration daunting and confusing, while hindering us from making innovations based on first 
principles. However, the concept of “differentiability” can serve as a compass to guide us in understanding 
newly proposed methods. We can ask if a method is fully (end-to-end) differentiable, how it uses gradients, 
how much prior information is inserted, what questions are asked, and how it scales with data. Here we 
outline some similarities and differences between DG and some existing methods.  

DM and physics-guided (or physics-informed, theory-guided, or knowledge-guided) machine learning  
(PGML)179–181 both seek to combine physics with ML, but they differ in their approaches, purposes, and 
philosophies. Many PGML studies seek to introduce physical constraints, for example, as regularization or 
pretraining, to ML methods to gain better generalizability with less training data. PGML does not in theory 
need differentiable programming and partial physics could be enforced. In contrast, DM is more thorough 
in that it uses the numerical physical model as the backbone and demands that the entire workflow be 
differentiable. In terms of purposes, PGML is tasked to make the ML model more robust, while 
differentiable modeling seeks to update our assumptions or discover new knowledge. Relatedly, in terms 
of philosophies, when a physical law was introduced in PGML, it was treated as truth (albeit sometimes 
with some tolerance level53). Often, this includes all the calculations and assumptions to  
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support the law. In DM, we do not presume the physical laws to be correct, and, rather, are constantly 
looking for opportunities to update existing knowledge.  

There are many not-fully-differentiable methods that could be valuable for various applications but are 
outside of the scope of DM for this paper. For one, it is possible to incorporate ML algorithms trained 
offline on datasets as part of a physical model, like training a neural network on turbulent heat fluxes and 
inserting into a hydrologic model182; training pedotransfer functions to infer soil parameters from soil 
hydraulic data183; training an atmospheric parameterization network on short-term cloud-resolving 
simulations184; or training ocean-mixing parameterizations on data and physical constraints185. While this 
approach has the advantage that the physical meaning of the NN is clear and stands alone, direct training 
data are needed for the variable of interest (thus having issues with pure ML as discussed in the main text) 
and the network can no longer evolve and adapt in an interactive fashion, for instance to further update the 
model when exposed to observations. In the future these NNs could be further incorporated into DG 
models. Some other offline coupling methods include providing outputs of process-based models as inputs 
to neural networks (this helps to integrate over spatiotemporal heterogeneity)186,187, or training ML models 
to predict the PBM residuals155,188,189. Readers are referred to Reichstein et al.190 which promoted a number 
of ways to connect physics and ML for geosciences, with a brief mention of differentiable programming. 
 
S2. Details for some examples.  
Example 1. Part of the effort in Tsai et al.113, which proposed differentiable parameter learning (dPL), 
connected the Variable Infiltration Capacity (VIC) process-based hydrologic model to a neural network 
(𝑔𝑔) that estimates physical parameters of VIC (𝜽𝜽) using some widely available attributes (A): 𝜽𝜽 = 𝑔𝑔(𝑨𝑨). 
In an “end-to-end” workflow, 𝜽𝜽 is then sent to VIC, whose outputs are compared with observations, 
effectively turning the parameter calibration problem into a machine learning problem, trained on all sites 
simultaneously using backpropagation and gradient descent (Figure S1a). As a result of this global loss 
function, dPL exhibits advantages over traditional calibration on multiple fronts, for three different 
datasets (soil moisture, CAMELS streamflow, and global headwater runoff). The parameter sets are 
spatially coherent (Figure S1b-c) and extrapolate better in space (Figure S1d-e). dPL is hyper efficient: a 
job that normally takes a 100-CPU cluster 2-3 days now takes a single Graphical Processing Unit (GPU) 
one hour. dPL allows the combined model to output unobserved variables while alleviating the notorious 
problem of parameter equifinality124. As summarized earlier, these are the great advantages we expect to 
harness with differentiable modeling.  
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Figure S1. (From Tsai et al.113, reprint allowed via Creative Commons Attribution 4.0 International 
License, http://creativecommons.org/licenses/by/4.0/) (a) Structural diagram of one of the dPL 
frameworks called gA; (b & c) The estimated infiltrating curve parameter (INFILT) from dPL vs. the 
siteby-site calibrated shuffled complex evolutionary algorithm (SCE-UA);(d & e) dPL better matches the 
MODIS satellite product for uncalibrated variable ET than does SCE-UA.  

  
Example 2. Physics-informed neural networks (PINNs)146,147, while first published in 2017, could be 
perceived as a genre of DG as the gradient information is critically employed. PINNs pose problems in a 
unique way, seeking to train a neural network with space-time coordinates as inputs, h(t,x) where x 
represents spatial coordinates and t is time such that (i) h(t,x) agrees with known data points at (t,x), and 
(ii) the derivatives dh/dx, dh/dt, etc. agree with the governing partial differential equations. Physical 
parameters could also be part of the inputs to the h network191. PINNs are a highly innovative approach 
tested on a large variety of applications in many domains, and there have been a number of good reviews 
of this work142,178. PINNs have made enormous strides, with novel inversion uses such data assimilation147 
and learning governing equations, but, as with other methods, there are also some limitations. Obviously, 
the function h(t,x) is tied to the initial and boundary conditions so it needs to be trained separately for each 
initial/boundary condition pair, and the form of the inputs limits the neural network to certain types 
(multilayer perceptron network) that are not the easiest to train. However, the learned parameters and 
constitutive relationships can describe the system under a wide range of boundary and initial conditions. 
Furthermore, the fidelity of the trained network to physical equations must be carefully examined.  

In geosciences, a PINN method for learning unknown parameter fields and constitutive 
relationships was proposed109 (Figure S2). As an example, steady-state groundwater flow in an aquifer 
with an unknown conductivity field and unsaturated flow in the vadose zone with an unknown 
pressuredependent conductivity were considered. In the unsaturated flow application, it was assumed that 
only sparse measurements of pressure head were available. The quantities of interest were the unsaturated 
conductivity as a function of the pressure head, and the pressure head field. Notably, it was assumed that 
no measurements of the unknown parameters were available. In the proposed PINN method, both 
quantities of interest were represented with neural networks (NNs) (with unknown parameters). This step 
created a differentiable model of the unsaturated flow in the vadose zone. It was also assumed that the 
pressure head measurements could be described by the steady-state Richards equation. Substituting the 
NN approximations into this equation formed the axillary residual NN, which shared the (unknown) 
parameters with the primary NNs. For the primary NNs to satisfy the governing equation, the residual NN 
should be zero everywhere in the domain – in other words, the exact measurements of the residuals are 
available everywhere in the domain. The NNs were trained jointly using the pressure head measurements. 
Since the conductivity and residual NNs share the same parameters, estimating parameters in the residual 
NN also provides the parameterization of the conductivity NN. Figure S2a shows the reference pressure 
head field and the locations of the measurements. Figure S2b shows the point errors in the estimated 
pressure head field. The reference and estimated unsaturated conductivity functions are shown in Figure 
S2c. These figures demonstrate that the PINN method can learn both the state variable and the constitutive 
relationship very accurately.  
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Figure S2. (from Tartakovsky et al.109, reprint permission obtained) (a) The reference pressure head 
field and the locations of the measurements. (b) The point errors in the estimated head field. (c) The 
reference and estimated conductivities as functions of the pressure head.  
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