
1.  Introduction
Prediction in ungauged basins (PUB) is an important research theme in catchment hydrology. Many human 
activities (e.g., flood protection, water resources management, ecosystem preservation, etc.) require reliable and 
precise hydrological predictions, yet such predictions are difficult to obtain when observed data is not available 
for model calibration. PUB has motivated a large body of work (e.g., review studies of Parajka et  al.,  2013; 
Spence et al., 2013), including during the scientific decade 2003–2012 of the International Association of Hydro-
logical Sciences (Hrachowitz et al., 2013; Sivapalan et al., 2003). Another decade later, PUB continues to attract 
research attention, due to its practical importance and its unresolved challenges (e.g., Kratzert et al., 2019; Prieto 
et al., 2019).

One of the main objectives of PUB is predicting streamflow and its uncertainty in locations where historical 
observations are not available (e.g., He et al., 2011; Parajka et al., 2013). The common approach for generating 
streamflow predictions is through a precipitation-streamflow model calibrated at the catchment of interest. When 
streamflow observations are available (in a gauged catchment), model parameters can be calibrated to this data. 
This approach has typically employed residual-based goodness-of-fit measures (e.g., McInerney et  al.,  2017; 
Schoups & Vrugt, 2010; Sorooshian & Gupta, 1983, and many others), though the use of hydrological signatures 
as calibration objectives has also been explored (e.g., Shafii & Tolson, 2015). Here, the term “signatures” refers 
to summary statistics that reflect meaningful traits of catchment streamflow time series, such as relative base-
flow volume, shape of hydrograph recessions, timing of peaks, etc. (e.g., Addor et al., 2017; Sivapalan, 2006). 
Streamflow signatures based on the flow duration curve (FDC) have received particular attention, as they convey 
key properties of the marginal distribution of streamflow and are used widely in hydrological engineering appli-
cations (e.g., Castellarin et al., 2013).
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In “ungauged” catchments, observed streamflow time series are not available, which considerably complicates 
the estimation of model parameters. Existing approaches can be classified into three main categories:

1.	 �Calibration to estimated signatures. Provided that signatures at the ungauged location can be estimated, which 
generally requires a modeling approach (as discussed below), model calibration can proceed by optimizing 
an objective function that quantifies the mismatch between regionalized and simulated signatures (e.g., Kim 
et al., 2017; Lombardi et al., 2012; Shafii & Tolson, 2015; Yadav et al., 2007; Yu & Yang, 2000). Bayesian 
inference approaches have also been proposed, using the estimated signatures either to construct the prior 
distribution of model parameters (e.g., Bulygina et al., 2009, 2011) or to create an approximation of the like-
lihood function (e.g., Almeida et al., 2016; Bulygina et al., 2012; Castiglioni et al., 2010; Prieto et al., 2019).

2.	 �Regionalization of model parameters. This approach relates precipitation-streamflow model parameters to 
observable catchment characteristics. This association can be based on the direct measurement of model 
parameters in the field (e.g., Abdulla & Lettenmaier, 1997), which in principle is a viable approach when 
using physically based models (e.g., Dornes et al., 2008; Fang et al., 2010). Alternatively, it can be inferred 
by calibration to other gauged catchments, which is the typical approach when using conceptual models (e.g., 
Fenicia et al., 2016; Merz & Blöschl, 2004; Samaniego et al., 2010; Singh et al., 2014) or machine learning 
models (e.g., Jiang et al., 2020; Kratzert et al., 2019).

3.	 �Constraining model parameters using complementary sources of data. Earlier work in this direction included 
the use of remotely sensed observations of soil moisture (e.g., Li et  al.,  2018), radar altimetry (e.g., Sun 
et al., 2012), GRACE gravity data (e.g., Nijzink et al., 2018), satellite-based evaporation (e.g., Winsemius 
et al., 2008), spot measurements of streamflow (e.g., Pool et al., 2017), crowd sourced water level data (e.g., 
Mazzoleni et al., 2017), and process based constraints (e.g., Gharari et al., 2014).

Note that all these approaches assume that meteorological forcings, namely precipitation and potential evapora-
tion, are available at the “ungauged” catchment. This scenario is common, because precipitation and temperature 
data—from which potential evaporation is typically estimated—are available with wide spatial coverage, either 
from spatial extrapolation of ground data (e.g., Cornes et  al.,  2018) or from remote sensing platforms (e.g., 
Xiang et al., 2021). Further note that the three approaches mentioned above are not mutually exclusive, as it can 
be beneficial to combine multiple sources of information in order to constrain model predictions (e.g., Nijzink 
et al., 2018; Winsemius et al., 2009).

This study focuses on the first approach, namely the estimation of streamflow signatures in the ungauged catch-
ment using a signature model followed by the calibration of a precipitation-streamflow model to these estimated 
signatures. Within this approach, it is convenient to distinguish three “data availability” scenarios:

1.	 �Non-overlapping time series, where observed inputs (e.g., precipitation) and observed outputs (e.g., stream-
flow) are available in the target catchment but in different time periods. This scenario, which we refer to as 
“non-concomitant calibration” (NCC), represents arguably the simplest ungauged scenario. In this scenario, 
the signatures are “transferred” (extrapolated) in time, in the simplest case by assuming signatures are constant 
in time. NCC is relevant to catchments where old streamflow time series are available without corresponding 
precipitation records (e.g., Winsemius et al., 2009), as well as to catchments where streamflow characteris-
tics have been heavily influenced by recent hydraulic infrastructures (e.g., Hingray et al., 2010). NCC was 
explored by Montanari and Toth (2007), who proposed the use of a likelihood based on the spectral properties 
of the time series.

2.	 �Streamflow data available from donor catchments. In this scenario, streamflow signatures in the target catch-
ment are estimated by the modeler using data from donor catchments, that is, the signatures are transferred 
(extrapolated) in space, and possibly also in time, depending on the setup. These approaches are typically 
based on regression between signatures and catchment attributes such as climatic and landscape proper-
ties (e.g., Addor et al., 2018; Berger & Entekhabi, 2001; Castiglioni et al., 2009; Prieto et al., 2019; Yadav 
et al., 2007).

3.	 �Streamflow data not available. This scenario is even more restrictive than scenario 2, and requires the regres-
sion relating signatures and catchment attributes to be constructed offline as a standalone model, so that, in 
the given application, the modeler need not find donor catchments. A notable example of such models was 
developed by Botter et al. (2009) and used later by Doulatyari et al. (2015). This model expresses the seasonal 
flow regime as a function of four physically based parameters that embed the geomorphic and climate features 

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
031929 by Paul Scherrer Institut PSI, W

iley O
nline L

ibrary on [30/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

DAL MOLIN ET AL.

10.1029/2022WR031929

3 of 32

of the contributing catchment. Similar signature models were developed by Booker and Woods (2014) and 
Betterle et al. (2017).

An important challenge associated with data availability and model approximations is the treatment of streamflow 
predictive uncertainty. Predictive uncertainty quantification when the model is calibrated to estimated signatures 
is particularly challenging. First, calibration takes place in the signature domain, while predictions are necessary 
in the time domain. Second, streamflow signatures are extrapolated from other catchments rather than calculated 
directly from local observed streamflow data, and hence may be particularly uncertain.

Uncertainty estimation in the context of PUB has relied mainly on heuristic “limits of acceptability” approaches. 
For example, Westerberg et  al.  (2011) searched for precipitation-streamflow model parameters that produce 
FDCs similar to the observed FDCs at selected quantiles. Winsemius et al. (2009) used observed signatures to 
impose hard and soft constraints to select suitable parameter sets. Yadav et al. (2007) used regionalized signatures 
(RS) and accepted only model parameters that produce signatures that fall into an a priori estimated range of 
variability around the RS. A limitation of these approaches from our perspective in this study is that they yield 
predictive uncertainty estimates that are not interpretable in a statistical sense.

Although the Bayesian approach could in principle address these limitations, its applications to-date have not 
focused on the quantification of the different sources of streamflow uncertainty in PUB. For example, previous 
studies have explored methodologies for conditioning model parameters on RS (e.g., Bulygina et al., 2009, 2011; 
Castiglioni et al., 2010; Prieto et al., 2019) but have considered mainly the uncertainty related to the regional-
ization process and neglected other sources (e.g., uncertainly related to the precipitation-streamflow model); 
usually, these studies weigh model parameter sets based on their ability to produce simulated signatures that are 
close  to  the regionalized ones and, then, report the parametric predictive uncertainty of the simulated hydro-
graphs. Other studies (e.g., Almeida et al., 2016) report general model performance (e.g., Nash-Sutcliffe effi-
ciency (NSE)) and its ability to represent the signatures without attempting to estimate predictive uncertainty.

The estimation of uncertainty in the time domain while performing calibration in the signature domain can 
be pursued using Approximate Bayesian Computation (ABC), as demonstrated in previous publications (e.g., 
Fenicia et al., 2018; Kavetski et al., 2018; Nott et al., 2014; Vrugt & Sadegh, 2013). Efficient implementations 
of the ABC approach have been proposed, including the SABC algorithm (Albert et al., 2015), DREAM(ABC) 
(Sadegh & Vrugt, 2014), and others. However, these previous studies focused on scenarios where signatures are 
computed directly from available streamflow observations, which is not the case for ungauged catchments.

In this study, we focus on streamflow prediction and uncertainty estimation at ungauged locations. In order to 
calibrate a precipitation-streamflow model to uncertain signatures, we propose a Bayesian inference framework 
implemented using ABC.

Our aims are as follows:

1.	 �Introduce a novel Bayesian approach for the calibration of precipitation-streamflow models to signatures that 
are estimated, with substantial uncertainty, using a signature transfer model. This advance builds on previous 
work where the signatures were computed directly from observed streamflow in the catchment of interest.

2.	 �Assess the ability of the proposed signature-domain calibration to provide reliable and precise predictions, in 
the following data availability scenarios:
a)	 �Calibration to concomitant signatures (CS), that is, using observed FDCs. This scenario serves as a 

baseline;
b)	 �Calibration to non-concomitant signatures (NCS), that is, extrapolating the FDCs from another time period;
c)	 �Calibration to RS, that is, extrapolating the FDCs from neighboring donor catchments.

3.	 �Assess the performance of the proposed signature-domain calibration in broader contexts, including in 
comparison to:
a)	 �Classical time-domain calibration, in order to appraise potential loss of quality in model predictions;
b)	 �Prediction using prior parameter ranges, in order to appraise the extent to which calibration to RS is able 

to constrain model predictions.

The proposed approach provides separate treatment of two key sources of uncertainty that arise in the modeling 
process, namely: (a) signature transfer uncertainty, resulting from uncertainty in the data, structure and parame-
ters of the signature transfer model and (b) hydrological model uncertainty, resulting from the data, structure and 
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parameters of the precipitation-streamflow model. As part of the development, the SABC algorithm proposed in 
earlier work is generalized to accommodate the case of stochastic (rather than fixed) signatures. A key focus of 
our evaluation is on the (statistical) reliability of the predictions, that is, on the ability to estimate the magnitude 
of uncertainty and characterize its distributional properties.

The case study is based on data from six catchments of the Thur basin in Switzerland, which are used to simu-
late multiple ungauged scenarios. A lumped conceptual precipitation-streamflow model is applied separately in 
each of the catchments. Our choice of signatures is based on seasonal FDCs. The signature model is based on 
Doulatyari et al. (2017), but here we enhance it with its own error model (i.e., the signature model is enhanced 
from deterministic to stochastic), in order to represent uncertainty in the signature regionalization.

The paper is organized as follows. Section 2 presents the theory behind the proposed methodology and Section 3 
details the algorithm implementation. Section 4 describes the case study setup, Section 5 reports the case study 
results, and Section 6 discusses these results and their implications. Section 7 draws the conclusions.

2.  Theory
2.1.  General Overview

Figure 1 shows a schematic of the signature-based inference framework proposed in this study. The following 
scenarios are central to this study:

•	 �CS, where streamflow observations are available at the location and time period of interest. The signatures 
are calculated directly from this observed data. This “gauged catchment” scenario provides the baseline for 
the other two scenarios.

•	 �NCS, where streamflow observations are available at the location of interest but not in the time period of inter-
est. This scenario corresponds to data availability scenario 1 in Section 1. The signatures in the time period of 
interest are transferred in time using a stochastic signature model, based on data from the available time period 
and a random error model to describe associated uncertainty.

•	 �RS, where streamflow observations at the location of interest are not available. The signatures at the location 
of interest are transferred in space using a stochastic signature model and data from donor catchments, once 
again with the inclusion of a random error model to describe uncertainty. This scenario corresponds to data 
availability scenario 2 in Section 1.

In Figure 1, panel (a) describes scenario CS, where signatures are observed, and panel (b) describes the scenarios 
NCS and RS, where in both cases, the signatures are estimated. We use the term target signatures to indicate, 
regardless of the scenario considered, the signatures that the precipitation-streamflow model has to “match” 
during the calibration. The method used to estimate the target signatures varies depending on the scenario.

In scenario CS (panel a), the target signatures 𝐴𝐴 𝐲̃𝐲 are calculated directly from observed streamflow data 𝐴𝐴 𝐪̃𝐪 hence 
𝐴𝐴 𝐲̃𝐲 = 𝐠𝐠(𝐪̃𝐪) , where g is a (vector-valued) deterministic function that transforms a streamflow time series into a 

vector of target signatures (e.g., FDC quantiles, baseflow index, or other signatures at the catchment of interest) 
(Section 2.3.1). The parameters θ (H) of the precipitation-streamflow model H that generates streamflow predic-
tions Q (H) are inferred in the signature domain, by seeking parameter values that minimize the distance between 
the modeled signatures 𝐴𝐴 𝐘𝐘

(H)

prior
= 𝐠𝐠

(

𝐐𝐐
(H)
)

 and the observed signatures 𝐴𝐴 𝐲̃𝐲 = 𝐠𝐠(𝐪̃𝐪) . The resulting set of samples 
from  the posterior distribution of the parameters, �(H)posterior can then be used to generate posterior streamflow 
distributions 𝐴𝐴 𝐐𝐐

(H)

posterior
 .

In scenarios NCS and RS (panel b), a signature transfer model Y (T) (θ (T)) is employed to estimate the target 
signatures (refer to Sections 2.3.2 and 2.3.3). The signature model generates the same signatures as the function 
g but with two caveats: (a) it takes a different set of inputs when streamflow time series are not available and 
(b) a random error term is included to represent estimation error. The inference process is carried out in two 
sequential steps. In the first step (shown in the red dashed box), the signature model is calibrated (using data 
from a different time period in Scenario NCS and data from donor catchments in Scenario RS) and then used to 
estimate the target signatures 𝐴𝐴 𝐘𝐘

(T)

posterior
 at the catchment of interest. In the second step the precipitation-streamflow 

model is calibrated to the estimated signatures 𝐴𝐴 𝐘𝐘
(T)

posterior
 , generated using the pre-calibrated signature model. This 
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step produces samples �(H)posterior from the posterior distribution of the parameters of the precipitation-streamflow 
model, and in turn, samples 𝐴𝐴 𝐐𝐐

(H)

posterior
 from the posterior (predictive) distribution of streamflow time series. A key 

distinction of scenarios NCS and RS from scenario CS is that the target signatures form a distribution rather than 
a fixed value—a difference with important theoretical and algorithmic implications, as explained in Section 3.

In addition to the three main scenarios, the case study considers two auxiliary scenarios, namely concomitant 
hydrograph (CH) and prior simulation (PS). Scenario CH employs classical time-domain calibration where the 
parameters of the precipitation-streamflow model are inferred using observed streamflow time series. Scenario 
PS simulates streamflow using model parameters sampled from their prior distribution (i.e., without any 
“inference”); note that in this scenario residual errors are ignored, leaving (prior) parameter uncertainty of the 
precipitation-streamflow model as the sole source of predictive uncertainty. Scenarios CH and PS represent, 
respectively, the most and least constrained parameter estimation setups, and provide further context for the anal-
ysis, as described in Section 4.6.

The procedures depicted in Figure 1 are detailed next.

Figure 1.  Schematic of the inference setup used in this work to estimate the streamflow model parameters θ (H). Panel (a) illustrates the inference in a scenario where 
signatures can be computed directly from observed streamflow. Panel (b) illustrates the inference in scenarios where signatures are estimated using a regionalization 
model, which itself requires calibration (red dashed box).
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2.2.  Precipitation-Streamflow Model

The predictive distribution 𝐴𝐴 𝐐𝐐
(H) =

{

𝐐𝐐
(H)

𝑡𝑡
; 𝑡𝑡 = 1, . . . , 𝑁𝑁T

}

 , over NT time steps is generated by a stochastic 
precipitation-streamflow model. Typical stochastic models in hydrological modeling are obtained by combining 
a deterministic model m (H) with a random residual error term ε (H). In this prototypical example, the stochastic 
model equation can be written as

�
[

�(H)(�(H), �̃(H)
)

; �(H)z
]

= �
[

�(H)(�(H)m , �̃(H)
)

; �(H)z
]

+ ε(H)
(

�(H)ε
)

� (1)

where z is a transformation (e.g., Box-Cox) that accounts for the heteroscedasticity and skew in the residuals (e.g., 
McInerney et al., 2017); its parameters are denoted as �(H)z  . The precipitation-streamflow model parameters are 
denoted as θ (H), and in turn are composed by parameters of the deterministic model �(H)m  , parameters of the residual 
error model �(H)ε  , and transformation parameters �(H)z  . The term 𝐴𝐴 𝐱̃𝐱

(H) denotes all fixed inputs of the model, such as 
observed precipitation, potential evaporation, etc.

The derivation below is presented for general stochastic models and transformations. Specific modeling choices 
taken in the case studies are detailed in Section 4.2.

2.3.  Streamflow Signatures

Consider a set of signatures y, defined from the underlying streamflow time series q through the deterministic 
function g, such that y = g(q).

The choice of signatures represents a modeling choice analogous to the choice of calibration variables. Our 
choice of signatures for the case study is given by selected quantiles of seasonal FDCs, as detailed in Section 4.3. 
For consistency, the choice of signatures is kept constant in all scenarios (though their value will naturally change 
depending on the estimation method).

2.3.1.  Scenario “Concomitant Signatures” (CS)

In scenario CS, the signatures are computed directly from observed streamflow time series in the calibration 
period and the target catchment,

𝐲̃𝐲 = 𝐠𝐠(𝐪̃𝐪)� (2)

where g is used to transform observed streamflow 𝐴𝐴 𝐪̃𝐪 into “observed” signatures 𝐴𝐴 𝐲̃𝐲 .

2.3.2.  Scenario “Non-Concomitant Signatures” (NCS)

In scenario NCS, the signatures are derived from observed streamflow time series 𝐴𝐴 𝐪̃𝐪tr in the target catchment 
but in a different time period (with respect to rainfall forcing). The signature transfer model, which combines a 
deterministic term and an additive random error term to describe uncertainty, is given by:

�
[

�(T)(�(T), �̃tr
)

, �(T)z
]

= �
[

�(�̃tr), �(T)z
]

+ �(T)
(

�(T)ε
)

� (3)

where Y (T) are the estimated signatures, �(T)ε  are the parameters of the signature transfer error model ε (T), and θ (T) 
comprises �(T)z  and �(T)ε  .

The choice of transformation z and error model ε (T) in Equation 3 are application-specific; our choices for the case 
study are detailed in Section 4.4.2.

2.3.3.  Scenario “Regionalized Signatures” (RS)

In scenario RS, the streamflow signatures are obtained using a stochastic signature model. For simplicity, we 
again assume that the stochastic model comprises a deterministic term m (T) and an additive random error term 
ε (T) to describe its uncertainty.

The stochastic signature model is given by

�
[

�(T)(�(T), �̃(T)
)

; �(T)z
]

= �
[

�(T)(�(T)m , �̃(T)
)

; �(T)z
]

+ �(T)
(

�(T)ε
)

� (4)
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Similar to Equation 1, the term 𝐴𝐴 𝐱̃𝐱
(T) denotes all fixed inputs of the signature model, for example, observed precip-

itation statistics and landscape characteristics of the target catchment. The model parameters θ (T) comprise �(T)m  , 
�(T)z  , and �(T)ε  .

The specific choices of model m (T), transformation z, and residual error model ε (T) made in our case studies are 
detailed in Section 4.4.3.

Note that the deterministic term m (T) estimates the signatures without the use of streamflow (which is unavailable 
in the donor catchment). Hence the function g does not appear in Equation 4.

2.4.  Bayesian Inference Approach

The posterior distribution of precipitation-streamflow model parameters, �
(

�(H)|�̃, �̃
)

 , is given by Bayes equation 
as follows,

�
(

�(H)|�̃, �̃
)

=
�
(

�̃|�(H), �̃
)

�
(

�(H)
)

�(�̃|�̃)
� (5)

where �
(

�̃|�(H), �̃
)

 is the likelihood function, p(θ (H)) is the prior distribution of the model parameters, and 𝐴𝐴 𝐴𝐴(𝐲̃𝐲|𝐱̃𝐱) 
is a normalization constant (given by the marginal distribution of the observed signatures).

In scenario CS, where the target signatures are deterministic, Equation 5 can be used directly to estimate the 
posterior of θ (H); the algorithmic implementation is described in Section 3.

In contrast, in scenarios NCS and RS, where the target signatures are themselves explicitly formulated as the 
output of a stochastic model, Equation 5 cannot be applied directly.

To accommodate scenarios NCS and RS, we formulate the posterior distribution in “expanded” form using the 
total probability integral,

�
(

�(H)|�̃, �̃
)

= ∫ �
(

�(H)|�, �̃
)

�(�|�̃, �̃) d�� (6)

where �
(

�(H)|�̃, �̃
)

 and �
(

�(H)|�, �̃
)

 are the posterior distributions of the precipitation-streamflow model parame-
ters θ (H) with respect to the observed signatures 𝐴𝐴 𝐲̃𝐲 and the simulated signatures z, respectively. The term 𝐴𝐴 𝐴𝐴(𝐳𝐳|𝐲̃𝐲, 𝐱̃𝐱) 
represents the distribution of modeled (transferred) signatures in the target catchment given signatures 𝐴𝐴 𝐲̃𝐲 observed 
in donor catchments.

Expanding the first term in Equation 6 using Bayes equation yields

�
(

�(H)|�̃, �̃
)

= ∫
�
(

�|�(H), �̃
)

�
(

�(H)
)

�(�|�̃)
�(�|�̃, �̃)d�� (7)

The three scenarios differ in the choice of the term 𝐴𝐴 𝐴𝐴(𝐳𝐳|𝐱̃𝐱, 𝐲̃𝐲) in Equation 7.

In scenario CS, the uncertainty in observed signatures is treated as part of the “lumped” error term ε (H) already 
included in the precipitation-streamflow model in Equation 1. In this case, the probability distribution 𝐴𝐴 p(𝐳𝐳|𝐲̃𝐲, 𝐱̃𝐱) 
collapses to a Dirac function and the integral in Equation  7 simplifies to the usual Bayesian formulation in 
Equation 5,

�
(

�(H)|�̃, �̃
)

= ∫
�
(

�|�(H), �̃
)

�
(

�(H)
)

�(�|�̃)
�(� − �̃)d� =

�
(

�̃|�(H), �̃
)

�
(

�(H)
)

�(�̃|�̃)
� (8)

In scenarios NCS and RS, this simplification cannot be made because the uncertainty of the estimated signa-
tures is not part of the “lumped” error term ε (H). Therefore, the term 𝐴𝐴 𝐴𝐴(𝐳𝐳|𝐲̃𝐲, 𝐱̃𝐱) represents the probability density 
function of the stochastic signature model Y (T) (denoted in full by ��(T)

(

�|�̂(T), �̃, �̃
)

 in Equation 9 below), with 
parameters �̂(T) pre-calibrated offline to complementary data (refer to Sections 2.3.2 and 2.3.3). Equation 7 can 
then be written as
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�
(

�(H)|�̃, �̃
)

= ∫
�
(

�|�(H), �̃
)

�
(

�(H)
)

�(�|�̃)
��(T)

(

�|�̂(T), �̃, �̃
)

d�� (9)

The posterior parameter distribution in Equations 8 and 9 is sampled using an ABC procedure as described next 
in Section 3.

3.  Sampling Algorithm to Implement Parameter Inference: Modified SABC 
Algorithm
This section describes the sampling algorithm used to estimate the posterior distribution of parameters θ (H) of the 
precipitation-streamflow model. Compared to classical time-domain calibration, signature-domain calibration 
brings the complication that the likelihood function is not available in closed form. Moreover, a signature itself 
can be treated either as a fixed given value (scenario CS) or as a random variable to represent estimation uncer-
tainty (scenarios NCS and RS).

The ABC sampling algorithm used in this work is based on the SABC algorithm proposed in Albert et al. (2015), 
but employs a modification to take into account the use of stochastic (rather than fixed) target signatures.

Figure 2 illustrates the algorithm. Panel (a) shows the workflow applied in the case of deterministic signatures 
(scenario CS); for this scenario, the procedure is the same as in the earlier study by Kavetski et al. (2018) and 
Fenicia et  al.  (2018). Panel (b) shows the algorithm modifications developed to handle stochastic signatures 
(scenarios NCS and RS).

In both cases, the algorithm is composed by three separate stages:

1.	 �Calculation of the target signatures (green box). This step is carried out using observed streamflow data in 
scenario CS and using the signature models in scenarios NCS and RS;

Figure 2.  Schematic of the algorithm used to infer the parameters of the precipitation-streamflow model. Panel (a) shows the algorithm used in scenario CS; panel (b) 
shows the algorithm used in scenarios non-concomitant signatures (NCS) and regionalized signatures (RS). Gray background is used to indicate the step of calculating 
the distance metric, which is the only difference between the initial sampling and evolution in scenarios concomitant signatures versus NCS and RS.
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2.	 �Determination of an initial population of Nsam model parameters �(H)�  , 
which is obtained by sampling parameter sets from the prior distribu-
tion and retaining parameter sets where the distance ρ between simulated 
and target signatures is below a prescribed tolerance (red box). Note that 
this procedure inevitably yields different initial populations for different 
scenarios (due to differences in signature values, and hence in distance 
metric values and in the satisfaction of the prescribed tolerance);

3.	 �Evolution of the population of particles �(H)�  using a Metropolis step with 
the acceptance/rejection tolerance evolving according to the annealing 
schedule described in Albert et al. (2015) (blue box).

Intuitively, the SABC algorithm works as follows. We seek to generate 
samples (parameter sets and corresponding streamflow time series and 
signatures) that meet a signature distance tolerance that is as tight as possible 
(ideally zero though this is impossible in practice). To obtain such samples, 
Stage 2 generates an initial population of samples that meet a loose toler-
ance and then Stage 3 progressively “evolves” these samples toward values 
that meet tighter tolerances. For the overall algorithm to be computation-
ally viable, the tolerance in Stage 2 must be sufficiently loose that the initial 
population can be generated in a reasonable time. As the SABC algorithm 
progresses toward convergence, the tolerance is tightened and the influ-
ence of the distance metric on the parameter inference decreases (see Albert 
et al. (2015) and Kavetski et al. (2018) for details).

A detailed description of the standard SABC algorithm shown in panel (a) is 
provided in Albert et al. (2015); see also Kavetski et al. (2018). The presenta-

tion here focuses on the modifications designed in this work to adapt the SABC algorithm to the case of stochastic 
target signatures (panel b). Further technical details and specific algorithmic choices are provided in Section 4.

The key difference is in the computation of the target signatures. In scenario CS (panel a, green box), a single 
fixed set of signatures is calculated from observed streamflow data. In scenarios NCS and RS (panel b, green 
box), a population of Nsam sets of target signatures is sampled from the pre-calibrated signature model. This step 
is indicated with a gray background in Figure 2.

This population is kept fixed throughout the SABC computation. Each particle �(H)�  is associated to one of these 
target signature values 𝐴𝐴 𝐲̃𝐲𝑘𝑘 , and is evolved by the SABC algorithm to minimize the distance of its corresponding 
simulated signature set to this target signature set. This modification allows for the incorporation of the uncer-
tainty of the stochastic signatures into the SABC sampling algorithm.

Once sampling is complete, the predictive streamflow distribution can be generated for any period of interest. See 
Appendix A for the computational procedure.

4.  Case Study Materials and Methods
4.1.  Catchments

The proposed inference approach is tested in the Thur basin, which is an alpine and pre-alpine catchment located 
in north-eastern Switzerland, south of Lake Constance. Within this basin we selected six catchments, as shown 
in Figure 3.

Although some of the catchments are nested, they present substantial variability in streamflow signatures includ-
ing average streamflow (1.64–4.14 mm/d), baseflow index (0.42–0.57) and seasonality (the mean half stream-
flow date varying between 168 and 221 days), as shown in previous work (Dal Molin, Schirmer, et al., 2020).

The catchment has high quality observation data, having been studied intensively in the last 40 years. Detailed 
physical characteristics of the Thur basin and a summary of previous investigations can be found in Dal Molin, 
Schirmer, et al. (2020). The work of Doulatyari et al. (2017) on the estimation of FDCs is particularly relevant to 
this case study, as detailed in Section 4.4.3.

Figure 3.  Map of the Thur basin indicating its catchments. Streamflow 
gauging stations are indicated with yellow dots.
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The streamflow time series are obtained from the Swiss Federal Office for 
the Environment. The precipitation, temperature, and potential evaporation 
(PET) time series are derived from data provided by the Swiss Federal Office 
of Meteorology and Climatology (MeteoSwiss); the calculation of catchment 
averages from meteorological ground station data is detailed in Section 2 of 
Dal Molin, Schirmer, et al. (2020).

All the time series used in this study are daily and span the period 1981–2005, 
with only one gap in the streamflow data in Herisau, from 31 December 1982 
to 9 May 1983. The 24 years of data are divided into three periods of 8 years, 
which are used to create “virtual” ungauged scenarios (see Section 4.5 for 
details).

4.2.  Precipitation-Streamflow Model

The deterministic precipitation-streamflow model m (H) used in Equation 1 is 
based on the popular HyMod model (Boyle, 2003), with the additional inclu-
sion of a snow reservoir. This model provides reasonable fits to the observed 
data in the Thur basin (Dal Molin, Schirmer, et al., 2020). Importantly, as a 
lumped model, it has low computational and data requirements.

The model has four elements, shown schematically in Figure 4. The snow 
reservoir (WR) intercepts the incoming precipitation and releases it accord-
ing to the input temperature, in order to simulate snow accumulation and 

melting. The unsaturated reservoir (UR) partitions the combined precipitation and snowmelt into a flux that 
builds storage, which eventually evaporates, and a flux that is propagated to the downstream elements and even-
tually produces streamflow. The latter flux is partitioned between a cascade of three fast reservoirs (FR) and a 
slow reservoir (SR). The FR are intended to generate the peaks of the hydrograph and their offset, while the SR 
is intended to produce the baseflow.

The model is implemented using the SUPERFLEX modeling framework (Dal Molin, Kavetski, & Fenicia, 2020; 
Fenicia et al., 2011). A fixed step implicit Euler time stepping scheme is used for numerical stability. The equa-
tions and the calibrated parameters are detailed in Appendix B.

The streamflow residual error model is built to take into account heteroscedasticity, skew and autocorrelation. 
The Box-Cox transformation (Box & Cox, 1964),

𝑧𝑧BC[𝑥𝑥; 𝜆𝜆] =
𝑥𝑥
𝜆𝜆 − 1

𝜆𝜆
� (10)

is used in Equation 1. The power parameter λ is fixed to 0.2 (McInerney et al., 2017).

The autocorrelation is represented using a first-order autoregressive model (AR1),

𝜀𝜀
(H)

𝑡𝑡
= 𝜙𝜙

(H)
𝜀𝜀
(H)

𝑡𝑡−1
+𝑊𝑊

(H)

𝑡𝑡
� (11)

where 𝐴𝐴 𝐴𝐴
(H)

𝑡𝑡
 is the residual error at the time step t, ϕ (H) is the autoregressive parameter and 𝐴𝐴 𝐴𝐴

(H)

𝑡𝑡
 is the innovation 

(random noise term).

The innovations are assumed to follow a lower-truncated Gaussian distribution,

𝑊𝑊
(H)

𝑡𝑡
∼ 

LT

(

0, 𝜎𝜎
(H)

W
, 𝐿𝐿W,𝑡𝑡

)

� (12)

with zero mean, variance 𝐴𝐴 𝐴𝐴
(H)

W
 , and lower bound LW,t set such that 𝐴𝐴 𝑸𝑸𝑡𝑡

(H)
≥ 0 .

The streamflow residual error model is, therefore, defined by two parameters �(H)ε =
[

�(H), �(H)
W

]

 ; the value of 
ϕ (H) is fixed to 0.8 while 𝐴𝐴 𝐴𝐴

(H)

W
 is inferred. These choices follow the recommendations of Evin et al. (2014) and 

McInerney et al. (2017).

Figure 4.  Schematic representation of the lumped streamflow model used 
in the case study. “P” represents the precipitation entering in the reservoirs, 
“E” the evaporation, and “Q” the outflow from the reservoirs. The subscripts 
indicate the reservoirs: WR, snow reservoir; UR, unsaturated reservoir; FR, 
fast reservoir; SR, slow reservoir. The governing equations are reported in 
Appendix B.
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4.3.  Definition of Streamflow Signatures

The streamflow signatures are derived from the seasonal FDCs. To avoid ambiguity, we define a seasonal FDC, 
ψs(q), as the cumulative distribution function (CDF) of a streamflow time series in season s,

𝜓𝜓𝑠𝑠(𝑞𝑞) = Pr(𝑄𝑄𝑠𝑠 ≤ 𝑞𝑞)� (13)

where Qs is a random variable representing seasonal streamflow.

Simulated FDCs are calculated directly from simulated streamflow time series. Target FDCs are either calcu-
lated from an observed streamflow time series (scenario CS) or estimated using a model (scenarios NCS and 
RS). For example, in scenario CS, the streamflow time series q is divided in four seasonal partitions qs, where 
s = 1,…,Nseason is the season and Nseason = 4. Season 1 (autumn) is defined as September, October and November; 
Season 2 (winter) is defined as December, January and February; and so forth.

The signatures y are defined by the slopes between selected (consecutive) quantiles of the seasonal FDCs,

𝑦𝑦[𝑗𝑗𝑗𝑗𝑗] =

⎧

⎪

⎨

⎪

⎩

𝜓𝜓
−1
𝑠𝑠 (𝜍𝜍𝑗𝑗)∕𝜍𝜍𝑗𝑗 𝑗𝑗 = 1

𝜓𝜓
−1
𝑠𝑠 (𝜍𝜍𝑗𝑗) − 𝜓𝜓

−1
𝑠𝑠 (𝜍𝜍𝑗𝑗−1)

𝜍𝜍𝑗𝑗 − 𝜍𝜍𝑗𝑗−1
𝑗𝑗 𝑗 1

� (14)

where ψ −1(ς) is the inverse FDC, that is, the streamflow at quantile ς. The “matrix subscript” notation [j, s] is used 
in Equation 14 to refer to the jth signature in season s.

The quantiles ςj in Equation 14 are selected according to the following expression, which provides higher resolu-
tion of quantiles for higher streamflow (e.g., Westerberg et al., 2011),

𝜍𝜍𝑗𝑗 = 1 −

(

𝑗𝑗 + 2

𝑁𝑁
FDC

+ 3

)2

, for 𝑗𝑗 = 1, . . . , 𝑁𝑁
FDC

� (15)

Following Westerberg et al. (2011), a total of NFDC = 19 slopes are calculated according to Equation 14: NFDC − 1 
slopes between the quantiles in Equation 15, and additionally the slope between (0,0) and 𝐴𝐴

(

𝜍𝜍1, 𝜓𝜓
−1
𝑠𝑠 (𝜍𝜍1)

)

 . The 
choice of NFDC provides a balance between the benefits of a high resolution of the FDC versus the increased 
computational costs. Note that the extremal quantiles 0 and 1, which correspond to the maximum and minimum 
streamflow, are excluded due to their particular volatility and uncertainty.

Since in other equations the signatures are assumed to be concatenated into a single vector y = {yi;i = 1,…,Ny}, 
the mapping yi = y[j,s] holds for s = floor(i/NFDC) + 1 and j = i−(s − 1)NFDC, where floor is the integer rounding 
down function.

The use of FDC slopes instead of FDC quantiles, as shown in Equation 14, yields a better-behaved signature error 
model in scenarios NCS and RS. In particular, from an algorithmic perspective, monotonicity of the FDC is specified 
more easily by requiring the slopes to be positive rather than by imposing relational constraints between the quantiles.

Finally, note that the use of FDC slopes instead of FDC quantiles does not result in a loss of information, as there 
is a one-to-one correspondence between slopes and quantiles. The definition of the first slope, j = 1 in Equa-
tion 14 distinguishes “parallel” FDCs (with matching slopes everywhere except the first segment).

The distance metric is set to the maximum of the seasonally averaged distances between observed and simulated 
FDC slopes. A normalization is used to scale the slopes by their estimated variability. See Appendix C for details.

4.4.  Signature Models

4.4.1.  Scenario CS (Concomitant Signatures)

The signatures are computed as

𝐲̃𝐲 = 𝐠𝐠(𝐪̃𝐪)� (16)

where the function g is as defined earlier in Section 2.3.
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4.4.2.  Scenario NCS (Non-Concomitant Signatures)

The model for NCS is formulated based on Equation 3 as follows,

�BC
[

�(T)(�(T)ε , �̃tr
)

, �(T)
BC

]

= �BC
[

�(�̃tr), �(T)
BC

]

+
(

0, �(T)
ε
)

� (17)

where 𝐴𝐴 𝐪̃𝐪tr is streamflow from the same catchment and season but different time period. The Box-Cox parameter is 
set as 𝐴𝐴 𝐴𝐴

(T)

BC

= 0.2 . The error standard deviation 𝐴𝐴 𝐴𝐴
(T)

ε  is inferred in the same catchment in a period where streamflow 
is available (see Section 4.5).

4.4.3.  Scenario RS (Regionalized Signatures)

The deterministic FDC model in this study is based on the model proposed by Botter et al. (2009) and subse-
quently applied in the Thur basin (Doulatyari et al., 2017). This parametric model defines the probability density 
function (pdf) of streamflow q, up to a constant, as follows,

𝐷𝐷(𝑞𝑞; 𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼) =
d𝜓𝜓

d𝑞𝑞
∝ 𝑞𝑞

−𝑎𝑎 exp

(

−
𝑞𝑞
2−𝑎𝑎

𝛼𝛼𝛼𝛼(2 − 𝑎𝑎)
+

𝐿𝐿𝐿𝐿
1−𝑎𝑎

𝑘𝑘(1 − 𝑎𝑎)

)

� (18)

where parameters α and L represent, respectively, the mean precipitation and the frequency of effective precipita-
tion events (i.e., precipitation events that generate streamflow); k and a represent the coefficient and the exponent 
of the hydrograph recession.

This model does not make use of streamflow data, and therefore can be used for cases where streamflow data is 
not available (data availability scenario 3 in Section 1). As described by Doulatyari et al. (2017), parameters α and 
L are estimated from daily rainfall and snowfall time series (the model uses precipitation without distinguishing 
its form). Parameters k and a are estimated from geomorphic properties of the catchment.

The model in Equation 18 is applied on a seasonal basis. We used the seasonal parameter values reported in Table 
2, column “Modeled,” of Doulatyari et al. (2017) for the Thur basin, where parameter λ corresponds to parameter 
L as defined in this presentation.

The deterministic model m (T) used in Equation 4 is obtained by numerical integration of the PDF in Equation 18 
with respect to q in order to calculate the corresponding CDF and hence the (seasonal) FDC, which in turn is used 
in Equation 14 to calculate the signatures.

The specific choices regarding transformation z and error model ε (T) in Equation 4 are motivated by residual anal-
ysis of model m (T) in the gauged catchments. Based on these analyses, it was observed that residuals are hetero-
scedastic, and characterized by a consistent difference (bias) between observed and simulated FDCs (e.g., Figure 
4 in Doulatyari et al., 2017). Here, we chose to represent heteroscedasticity by making the standard deviation of 
the residuals proportional to the magnitude of simulated signatures,

𝜺𝜺(T)
(

𝑏𝑏
(T)

ε ,𝐦𝐦
(T)
)

= 
(

0, 𝑏𝑏
(T)

ε 𝐦𝐦
(T)
)

� (19)

where 𝐴𝐴 𝐴𝐴
(T)

ε  is a proportionality constant that can be interpreted loosely as a relative error. As a consequence of this 
parameterization, the transformation z is not needed.

The signature model is “bias-corrected” by applying a multiplier 𝐴𝐴 𝐴𝐴
(T)

ε  to the modeled signatures. Equation 4 is 
therefore simplified to

�(T)(�(T), �̃(T)
)

= �(T)ε �(T)(�(T)m , �̃(T)
)

+ �(T)
(

�(T)ε ,�(T))� (20)

The inferred model parameters are �(T)ε =
[

�(T)ε , �(T)ε
]

 .

In order to estimate the error term, we use data from neighboring catchments, meaning that the stochastic signa-
ture transfer model belongs to the data availability scenario 2 in Section 1.
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4.5.  Construction of Ungauged Scenarios for the Calibration of the Signature Models

In order to construct “virtual” ungauged scenarios, the 24 years-long period of streamflow data is divided into 
three periods: P1, from 1 September 1981 to 31 August 1989; P2, from 1 September 1989 to 31 August 1997; P3, 
from 1 September 1997 to 31 August 2005.

The following procedure is then applied for the three scenarios:

•	 �Scenario CS: when θ (H) are needed for a given catchment and a given period, the model is calibrated to 
observed signatures in that catchment and that period.

•	 �Scenario NCS: when θ (H) are needed in P1 for a given catchment, the signature transfer model in Equation 3 
uses inputs 𝐴𝐴 𝐪̃𝐪tr from P2, and is conditioned on signatures 𝐴𝐴 𝐲̃𝐲 observed in P3. We then rotate the three periods 
in order to run the inference for all the time series of a given catchment. We then apply this procedure to all 
catchments.

•	 �Scenario RS: when θ (H) are needed in a specific catchment for a given period, the signature model in Equa-
tion 4 was conditioned on signatures 𝐴𝐴 𝐲̃𝐲 observed in the other five catchments. We then rotated the six catch-
ments in order to run the inference in all catchments for a given period. We then applied this procedure to all 
periods.

This procedure generates a set of calibrated parameters �(T)opt that is specific for each catchment and each time 
period. These parameters are kept fixed at their calibrated values when inferring θ (H) with the procedure described 
in Section 3. The model diagnostics metrics described in Section 4.7 are calculated on the entire 24 years-long 
period, by concatenating the predictions in periods P1, P2, and P3 into a single time series, and comparing this 
concatenated time series to the corresponding (single) observed time series.

The number of SABC samples (see Section  3) is set to Nsam  =  5,000 following our previous work (Fenicia 
et al., 2018), where it was found appropriate to characterize the posterior distribution of a HyMod-like model. 
Note that, with these settings, convergence of the SABC algorithm requires approximately 4 million hydrological 
model runs.

The CS scenario serves as a baseline of ideal performance given the selection of model and signatures. The NCS 
and RS scenarios use signature transfer in time and in space respectively, therefore they can be considered as vali-
dation scenarios. It would be in principle possible to create an even more challenging validation scenario where 
signatures are transferred both in time and in space, but we did not test this scenario in this work.

4.6.  Experiments

Three experiments are carried out:

•	 �Experiment 1 compares model performance in the three signature-domain calibration scenarios (CS, NCS, 
and RS) in order to appraise potential loss of quality in model predictions when moving from gauged to 
ungauged conditions.

•	 �Experiment 2 compares signature-domain calibration in scenario CS with time-domain calibration (scenario 
CH), in order to appraise potential loss of quality in model predictions when moving from time domain cali-
bration to signature domain calibration.

•	 �Experiment 3 compares model performance in scenario RS with scenario PS, where the prior predictive 
distribution is used, that is, hydrographs generated using parameters sampled from the prior distribution. This 
experiment helps assess the extent to which calibration to RS is informative beyond what is already known a 
priori.

Experiment 1 is the main experiment of this study. Experiments 2 and 3 are auxiliary experiments that represent, 
respectively, the most and least constrained parameter estimation setups, and provide additional context to Exper-
iment 1. Note that, apart from the modifications described in Section 3, the SABC algorithmic settings were the 
same in all scenarios.

The results are reported using two levels of detail. First, we report the result for a representative catchment and 
time period, namely Andelfingen and time period P3 (see Section 4.5), where we provide details including hydro-
graphs and annual FDCs. Second, we consider all catchments and time periods, and report performance using the 
metrics defined in Section 4.7 applied to the concatenated time series as described in Section 4.5.
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For Experiment 1, we include a comparison of the posterior distribution of the model parameters in the three 
scenarios. Specifically, we illustrate cases of parameters being well identified or weakly identified in all scenarios 
and cases where parameter identifiability varies by scenario.

4.7.  Performance Metrics for a Posteriori Evaluation of Streamflow Predictions

The quality of streamflow predictions in all experiments and scenarios is evaluated using a set of performance 
metrics. We report model performance in terms of both streamflow time series (hydrograph) and their FDC 
(expressed as a cumulative distribution). We distinguish metrics that characterize the fit to the data from metrics 
that characterize the uncertainty.

The fit of the simulations to the observations is quantified using:

•	 �NSE of the median of the predictive distribution. The NSE is chosen because it is a standard metric of model 
performance in hydrological applications;

•	 �Volumetric bias, which measures the long-term water balance error of simulations.

The uncertainty of the streamflow predictions is assessed through the following metrics:

•	 �Reliability, which measures the statistical consistency between the observations and the predictive distribution 
(i.e., the degree to which observations are consistent with being samples from the predictive distribution);

•	 �Precision, which measures the (average) spread of the predictive distribution.

The NSE and bias metrics are common in hydrology, and the uncertainty quantification metrics are also well 
established (e.g., Ehlers et  al.,  2019; McInerney et  al.,  2017; Oliveira et  al.,  2018). The metrics are detailed 
further in Appendix D.

To avoid confusion, we emphasize that the performance metrics in this section are used to evaluate model predic-
tions a posteriori (after the calibration), and are not used in the model calibration itself. Model calibration is 
instead based on the ABC approach, which matches the selected signatures (FDC slopes) according to the ABC 
distance metric, as described in Section 3 (general principles) and Appendix C (specific case study choices).

5.  Results
5.1.  Experiment 1: Signature Calibration in Multiple Scenarios

5.1.1.  Representative Catchment: Hydrograph and FDC Representation

Figure 5 shows the results of scenarios CS, NCS, and RS for the representative Andelfingen catchment in period 
P3. Panel (a) shows the simulated hydrographs and panel (b) shows the simulated FDCs. Panels (c and d) show 
the values of the performance metrics.

The hydrographs in panel (a) show a consistent difference in the width of the streamflow uncertainty bounds 
between scenario CS and the other two scenarios. Scenario CS has the narrowest predictive uncertainty, scenario 
RS comes second, followed closely by scenario NCS, where uncertainty bounds enclose the other two. This 
difference in (relative) magnitude of uncertainty is also confirmed by the precision metric of the hydrograph 
(panel d), which is the lowest in the scenario CS (0.42) and assumes comparable values in the other two scenarios 
(0.57 for scenario NCS and 0.56 for scenario RS). The predictions are generally reliable, with best values of the 
reliability metric in scenario CS (0.049), followed by scenario RS (0.12) and then scenario NCS (0.13).

Panel (a) also shows that the median simulated hydrograph (dashed lines) in Scenario CS provides much better 
capture of the observed hydrograph “dynamics” (i.e., reaction to rainfall events), especially for high streamflow. 
In scenarios NCS and RS the median hydrograph is less dynamic, with deeper recession and limited ability to 
reach the observed peaks. This qualitative assessment is confirmed by the value of the NSE (panel c), which is 
highest in scenario CS (0.64), followed by scenarios RS and NCS, both with a value of 0.59.

In terms of FDC performance, all scenarios tend to suffer from underestimated high streamflow. Apart from that, 
the comparison of FDCs shows results consistent with the comparison of hydrographs. In particular, scenario CS 
produces the most precise predictive distributions and has the median closest to the observed values. Scenarios 
NCS and RS produce wider predictive distributions with comparable precision to each other. Note that, due to 
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the logarithmic scale of the vertical axis, the highest 1% of the streamflow values occupies almost half of the plot 
area—hence a large visual mismatch may result in a limited difference in the metrics.

These qualitative findings are confirmed by the quantitative metrics shown in panels (c and d):

•	 �The reliability of the FDC predictions is generally worse than for the hydrographs, with best values obtained 
for scenario CS (0.35) followed by RS (0.42) and NCS (0.44).

•	 �The FDC precision metric has similar values for scenarios NCS and RS (0.17 and 0.18) while it improves for 
scenario CS (0.09).

•	 �The FDC NSE slightly declines when going from scenario CS (0.92) to NCS (0.92) and RS (0.91).
•	 �The volumetric bias is substantially higher in scenario NCS and confirms the general tendency of the simula-

tions, seen in the FDCs, to underestimate streamflow.

5.1.2.  Performance Over All Catchments

Figure 6 shows the performance metrics calculated for all the catchments in all periods. The figure is subdi-
vided into seven panels, with the left column showing the metrics calculated on the hydrograph and the right 
column showing the FDC metrics. Each point in the plots represents the value of the metric for the simulations 
of a specific catchment and period. Scenarios are evaluated based on the mean position and spread of the corre-
sponding group of points (metric values). A position toward the right-hand side of the plot indicates better mean 
performance (note that for precision, reliability, and volumetric bias, the horizontal axes are flipped so that 
“better” results are on the right, for consistency with the other metrics). The spread of metric values reflects the 
consistency of simulations for the given scenario.

Figure 5.  Results of Experiment 1 for a representative catchment (Andelfingen) and time period (P3). Panel (a) shows the hydrograph, panel (b) the annual flow 
duration curve, panels (c and d) the metrics used for evaluating the simulations. In panels (a and b), the dashed line represents the median simulation; the solid lines 
represent 95% uncertainty bounds; the black dots represent the observed data.
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Panel (a) shows the NSE of the median hydrograph. All scenarios produce a similar spread, but the mean position 
of the points shows a clear ranking: scenario CS in the first place (mean value of 0.70), NCS second (0.66), and 
RS third (0.58). In all scenarios, the points that refer to the same catchment (same color) tend to be clustered 
together.

Panel (b) shows the precision metric of the hydrograph. In this case, there is a clear trend among the scenarios, 
both in terms of mean position and spread, with scenario CS achieving the “best” performance (mean precision 
of 0.46 with standard deviation of 0.047), NCS coming second (mean of 0.62, standard deviation 0.058) and RS 
third (mean 0.63, standard deviation 0.084).

Panel (c) and (d) show the reliability metric of the hydrograph and the volumetric bias. For both metrics, all three 
scenarios perform similar in terms of mean value and spread. It is noted that the simulations in the catchment 
Herisau in period P3 in scenario NCS have considerably worse performance metrics than the other catchments 
in the same scenario.

Panel (e) shows NSE of the median FDC. There is a clear trend in the scenarios: CS achieves the highest mean 
(0.96) with low spread (standard deviation 0.023), NCS achieves a similar mean (0.95) but increases the spread 
(standard deviation 0.035), and RS deteriorates somewhat in the mean (0.89) and in the standard deviation (0.062).

Panel (f) shows the precision metric of the FDC. Scenarios NCS and RS achieve a similar performance in terms 
of mean (0.17 for both) and spread (standard deviation 0.022 and 0.025), with scenario RS that has two outliers 

Figure 6.  Performance metrics achieved by the simulations in Experiment 1. The left column reports the metrics calculated on the hydrograph; the right column reports 
the metrics calculated on the annual flow duration curve. Catchments are distinguished by color and periods are distinguished by symbol. Note that some horizontal 
axes are reversed so that “better” metric values appear consistently on the right in all plots.
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that perform substantially better than the rest. Both scenarios NCS and RS are strongly outperformed by scenario 
CS (mean 0.10, standard deviation 0.01), with almost no simulation performing better in scenarios NCS and RS 
than in scenario CS.

Panel (g), finally, shows the reliability metric of the FDC. All the scenarios perform similarly, with the presence 
of one bad outlier in the scenario NCS (Herisau, period P3).

5.1.3.  Posterior Distribution of the Model Parameters

Figure 7 shows the posterior distributions of selected parameters in the three scenarios. The parameters have been 
selected as representative of three common behaviors:

1.	 �Parameters that are identifiable in all scenarios, with posterior distributions that are clearly distinct from the 
priors. An example is given by parameter D, which controls the split of outflow from the UR between the fast 
and the slow reservoirs.

2.	 �Parameters that are well identified in scenario CS but lose identifiability in scenarios NCS and RS. An exam-
ple is given by parameter kWR, which controls the outflow of the snow reservoir.

3.	 �Parameters that are weakly identified by all the scenarios, with the posterior distributions that differ little to 
moderately from the priors. An example is given by parameter kSR, which controls the outflow of the SR.

In terms of the other model parameters, βUR and kFR follow the behavior of the first group, and 𝐴𝐴 𝐴𝐴
max
UR

 follows the 
behavior of the second group.

Figure 7.  Posterior distributions of three selected parameters, demonstrating qualitatively different behaviors in the scenarios. The histogram bars represent the 
posterior distributions. The black dashed lines represent the prior distributions.
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5.2.  Experiment 2: Comparison With Time-Domain Calibration

5.2.1.  Representative Catchment: Hydrograph and FDC Representation

Figure 8 compares the results of two gauged scenarios in catchment Andelfingen, in period P3. The two gauged 
scenarios are model calibration to observed signatures (scenario CS) and model calibration to the observed time 
series (scenario CH).

Panel (a) shows the simulated hydrographs. Reliability is better in scenario CS than in scenario CH (metric 
values of 0.049 vs. 0.18). Scenario CS also achieves the tightest (best precision) hydrograph, as confirmed by the 
precision metric shown in panel (d). However, a closer inspection of the hydrograph indicates that while scenario 
CH yields a larger uncertainty in winter, it has lower uncertainty in summer. This behavior is not specific to the 
selected catchment and period, but is generally common across all catchments, especially in years when precipi-
tation is scarce during late spring.

The median hydrograph (dashed line) is more dynamic in scenario CS and captures better the magnitude of the 
peaks. Nevertheless, panel c shows a slightly better model performance in scenario CH (NSE 0.69 vs. 0.64 for 
scenario CS).

Panel (b) shows the simulated FDCs. The predictive distribution generated in scenario CH tends to be more 
precise, especially for low streamflow. On the other hand, the median of scenario CS is closer to the observed data 
than scenario CH, which tends to overestimate the observed values, particularly for low streamflow. Both simu-
lations tend to underestimate high streamflow. These visual results are confirmed by the performance metrics 
(panels c and d): the FDC precision is better in scenario CH (0.06 compared to 0.09), the (hydrograph) volumetric 

Figure 8.  Results of Experiment 2 for a representative catchment (Andelfingen) and time period (P3). Panel (a) shows the hydrograph, panel (b) the annual flow 
duration curve, panels (c and d) the metrics used for evaluating the simulations. In panels (a and b), the dashed line represents the median simulation; the solid lines 
represent 95% uncertainty bounds; the black dots represent the observed data.
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bias is worse in scenario CH (0.10 compared to 0.04), and the NSE of the FDCs are similar. Finally, FDC relia-
bility is higher in scenario CS than in scenario CH (0.35 vs. 0.58).

5.2.2.  Performance Over All Catchments

Figure 9 reports the performance metrics for scenarios CS and CH for all catchments and periods considered in 
Experiment 2. From these plots, it is difficult to determine which scenario produces the best “overall” results. In 
particular:

•	 �Volumetric bias, FDC Nash-Sutcliffe and reliability (panels d, e, and g): scenarios achieve a comparable 
performance, both in terms of spread and mean value.

•	 �Hydrograph NSE and FDC precision (panels a and f): the simulations in scenario CH outperform those in 
scenario CS, with a better mean value and a lower spread for both metrics.

•	 �Hydrograph precision and reliability (panels b and c): the simulations in scenario CS outperform those in 
scenario CH. In particular, in terms of hydrograph precision, scenario CS shows better mean and spread. In 
terms of hydrograph reliability, scenario CS has a better mean but the presence of some outliers increases 
broadly the spread.

Figure 9.  Performance metrics achieved by the simulations in Experiment 2. The left column reports the metrics calculated on the hydrograph; the right column reports 
the metrics calculated on the annual flow duration curve. Catchments are distinguished by color and periods are distinguished by symbol. Note that some horizontal 
axes are reversed so that “better” metric values appear consistently on the right in all plots.
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5.3.  Experiment 3: Goodness of the Regionalization Study

5.3.1.  Representative Catchment: Hydrograph and FDC Representation

Figure 10 compares the results of scenario RS with scenario PS (prior simulations) in catchment Andelfingen, 
period P3.

Panel (a) shows the simulated hydrographs. Although scenario PS has narrower uncertainty bounds, we empha-
size, as noted in Section 2.1, that in this scenario the standard deviation of the residual error model (σΩ) is set to 
zero and, therefore, streamflow uncertainty is represented solely through parametric uncertainty.

The median hydrograph (dashed line) is more dynamic and closer to the observed data in the scenario RS. This 
behavior is confirmed by the large difference in NSE (panel c) between the two simulations (0.59 for scenario 
RS, 0.38 for scenario PS).

The biggest difference between the two scenarios can be observed in panel (b), which shows the simulated FDCs. 
The predictive distribution of the scenario RS, as already analyzed in Section 5.1, is consistent with the obser-
vations, in terms of the fit of the median as well as the tightness and distribution of the uncertainty bounds. In 
contrast, in scenario PS, the median of the predictive distribution is far from the observed values and the uncer-
tainty bounds are extremely wide.

5.3.2.  Performance Over All Catchments

Figure 11 presents the performance metrics for scenarios PS and RS. Excluding hydrograph precision (panel b) 
and FDC reliability (panel g), the scenario RS achieves performance metrics that are always better, or at least 
similar, to those in scenario PS. This finding is particularly evident in panels (a and e), which show that scenario 

Figure 10.  Results of Experiment 3 for a representative catchment (Andelfingen) and time period (P3). Panel (a) shows the hydrograph, panel (b) the annual flow 
duration curve, panels (c and d) the metrics used for evaluating the simulations. In panels (a and b), the dashed line represents the median simulation; the solid lines 
represent 95% uncertainty bounds; the black dots represent the observed data.
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RS has higher Nash-Sutcliffe values for both hydrograph and FDC, and in panel (f), which shows that scenario 
RS achieves a more precise FDC. Hydrograph reliability and volumetric bias (panels c and d), on the other hand, 
show similar performance for scenarios PS and RS. In particular, hydrograph reliability has the same mean in 
these two cases, and less spread in scenario PS than in scenario RS; volumetric bias has a lower mean and larger 
spread for scenario PS than for scenario RS. Finally, panels (b and g) show that scenario PS outperforms scenario 
RS in terms of a better mean and narrower spread of metric values.

6.  Discussion
6.1.  Experiment 1: Signature Calibration in Different Scenarios

This experiment compares the results of the three signature-calibration scenarios: concomitant (CS), 
non-concomitant (NCS), and regionalized (RS). We first discuss aspects associated with the quality of model 
predictions, then the impact of errors in the signatures, and, finally, parameter identifiability.

6.1.1.  Quality of Model Predictions

Model predictions are expected to become increasingly uncertain when moving from gauged to progressively 
more challenging ungauged conditions. Hence, scenario CS is expected to have the smallest uncertainty, because 
it uses signatures derived from streamflow observed directly at the catchment and period of interest. Scenario 

Figure 11.  Performance metrics achieved by the simulations in Experiment 3. The left column reports the metrics calculated on the hydrograph; the right column 
reports the metrics calculated on the annual flow duration curve. Catchments are distinguished by color and periods are distinguished by symbol. Note that some 
horizontal axes are reversed so that “better” metric values appear consistently on the right in all plots.
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NCS is expected to yield higher uncertainties than scenario CS, because transferring the signatures in time 
requires the use of a signature transfer model, which is subject to uncertainty. Scenario RS is expected to yield 
the highest uncertainty, because it uses signatures estimated from streamflow measurements in donor catchments 
using a stochastic FDC model, and transfer of signatures in space is arguably more challenging than transfer in 
time.

This pattern of increasing uncertainty emerges clearly in Figure 6, and is consistent both for hydrographs (panels 
a and b) and FDCs (panels e and f). In terms of NSE and precision, both for hydrographs and FDCs, performance 
is highest for scenario CS, followed by scenario NCS, and then scenario RS. On average, the progression from 
concomitant to RS increases uncertainties in reproducing time series and FDCs and worsens the model fit to 
the observations. In particular, taking Scenario CS as the (baseline) reference, Scenario NS incurs 36% more 
uncertainty (i.e., worse precision), and a 5.6% decrease in streamflow NSE, while Scenario RS incurs 38% more 
uncertainty and a 17% decrease in streamflow NSE. These values are calculated by taking the average of the 
hydrograph performance metrics shown in Figure 6.

However, from our perspective in this study, a key objective is to provide a reliable description of uncertainty, 
essentially regardless of its magnitude. As our focus is on streamflow prediction, it is important that uncertainties 
in reproducing streamflow time series are not underestimated or overestimated, which would lead to overconfi-
dence or underconfidence respectively.

The results in Figure  6 are reassuring, showing that the Bayesian framework is able to achieve comparable 
reliability and bias in all scenarios, both in terms of hydrographs (panel c) and FDCs (panel g). Reliability 
performance in an ungauged catchment is sensitive to the correct quantification of uncertainty in the signature 
transfer model. Such correct quantification is challenging, as for example, extreme events can make the transfer 
of signatures in time unreliable. This is the case of the catchment Herisau, which has poor reliability in scenario 
NCS (panels c and g) and will be discussed more in detail in the following section.

Comparison of our results with previous work is limited by differences in methodologies as well by the relatively 
small number of studies that analyzed PUB under different data availability scenarios. The study of Montanari 
and Toth (2007) is directly related to our work as it compared the results of time-domain calibration, concomitant 
(scenario CS, in this study) and non-concomitant (scenario NCS) signature calibration, and prior simulations. 
Although our inference procedure is different and the case study is based on different signatures, the findings are 
broadly consistent. In particular, we show an average decrease of streamflow NSE of approximately 5.6% when 
moving from concomitant to NCS, and that the magnitude of this decrease is highly dependent on the conditions 
of the period considered.

Biondi and De Luca (2016) compared calibration to observed signatures (our scenario CS) with calibration to 
RS (our scenario RS), with the objective of estimating design floods for an assigned return period. Their results 
showed that, for their objective, the use of RS does not deteriorate model performance. Our study, instead, shows 
a better precision in scenario CS than in scenario RS, but also comparable performance in other metrics (e.g., 
FDC reliability and volumetric bias).

6.1.2.  Impact of Errors in the Signatures

When signatures are derived using data from a different time period or catchment, their numerical value can be 
very different from the value computed from observed hydrographs in the catchment and time period of interest. 
This difference is due to the uncertainty associated with the signature model. Time transfer of signatures incurs 
uncertainty due to time variability of hydrological behavior, whereas signature regionalization uncertainty is 
affected by unaccounted spatial variability of the signatures.

This study shows the effect of errors associated with the transfer of signatures in time or space:

•	 �Transfer in time. In scenario NCS some of the catchments had model performance in one period that was far 
worse than in the other periods. For example, this is the case for the catchment Herisau in period P3 (blue 
crosses in Figure 6). Poor model performance in this catchment may be due to the large flood in 2002: such 
extreme streamflow has a large impact on the FDCs, especially considering that they usually last more than a 
single day. Therefore, when calibrated using NCS, the model is forced with meteorological inputs that gener-
ated the flood but calibrated to signatures that do not contain information about this flood. This mismatch 
could lead to unrealistic parameter values and explain the mediocre fit.
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•	 �Transfer in space. The FDCs model has some apparent deficiencies in capturing the observed FDCs, already 
discussed in Section 4.4.3. This deficiency has led to our decision to augment the FDC model with a bias 
correction term. Figure 12 illustrates the effect of not implementing bias correction, and compares the results 
of scenario RS with and without bias correction (𝐴𝐴 𝐴𝐴

(T)

ε = 1 in Equation 20). Overall, results are worse if bias 
correction is omitted, manifesting in increased uncertainty in the hydrograph and FDC, reducing the fit of 
their medians to observed data, and suffering worse performance in almost all the metrics.

The two examples above highlight that a small difference in estimated signatures can lead to a large difference 
in streamflow predictions. This sensitivity has also been noted in previous studies. For example, Westerberg 
et al. (2011) discussed the concept of “disinformative” signatures, Castiglioni et al. (2010) showed the impact of 
errors in the RS due to deficiencies in the regionalization model, and Fenicia et al. (2018) demonstrated the effect 
of time shifts in the time series that are not captured by the signatures. All these studies reported that the presence 
of small errors in the signatures may lead to large differences in the model predictions, as shown in this study.

6.1.3.  Parameter Identifiability

Parameter identifiability generally depends on the calibration scenario. In particular, as the signatures on which 
the model is calibrated become more uncertain, model parameters become less identifiable. However, such behav-
ior is not uniform for all model parameters, but strongly depends on the specific parameter, on the processes that it 
is intended to represent, and on whether such processes are captured by the signatures used for model calibration. 
This behavior is shown in Figure 7, which illustrates how some parameters lose identifiability when calibrating 
to estimated signatures. The following interpretation can be provided for specific cases:

•	 �Parameters that remain identifiable in all scenarios. These are parameters that have a strong influence on the 
model output. For example, parameter D which controls the splitting of the flow between the “fast” and the 

Figure 12.  Results of the scenario regionalized signatures with and without bias correction for a representative catchment (Andelfingen) and time period (P3). Panel 
(a) shows the hydrograph, panel (b) the annual flow duration curve, panels (c) and (d) the metrics used for evaluating the simulations. In panels (a) and (b), the dashed 
line represents the median simulation; the solid lines represent 95% uncertainty bounds; the black dots represent the observed data.
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“slow” part of the model. Changes in this parameter would strongly affect the FDCs in all scenarios, since the 
slope of the FDC can be related to the proportion of quick and slow response in the catchment.

•	 �Parameters that lose their identifiability when moving to an ungauged scenario. These are parameters that 
exert an influence on the signatures, but this influence may be blurred by higher uncertainty in the target 
signatures. For example, parameter kWR, which controls the outflow of the snow reservoir, exhibits this behav-
ior. The transfer error may contribute in obscuring this behavior, but the omission of snow dynamics in the 
regionalization model can also be responsible; this is the case of the FDCs model, which does not distinguish 
explicitly the separation between rainfall and snowfall.

•	 �Parameters that are weakly identifiable, regardless of the scenario. These are parameters that have an effect on 
the model output that is not captured by the signatures. For example, consider parameter kSR, which controls 
the release rate of the “slow” part of the model. This parameter has a strong effect on the hydrograph, by 
affecting the baseflow component, but its effect on the FDCs may be less evident. This change in behavior 
compromises its identifiability when the model is calibrated to FDCs. A different choice of signatures (e.g., 
including the baseflow index) would have probably helped in this specific case, but this analysis is not in the 
scope of this paper.

Similar results regarding parameters identifiability have been highlighted by Biondi and De Luca (2016), who 
showed that using observed signatures makes the posterior distributions sharper than when using modeled 
signatures.

6.2.  Experiment 2: Comparison With Time-Domain Calibration

The aim of Experiment 2 is to assess the overall performance of signature calibration, in its best scenario (CS), 
using the classical time-domain calibration as a benchmark.

The results in Figure 9 (Section 5.2.2) show that scenarios CS and CH present a tradeoff in terms of fit to the 
observed data, uncertainty, and performance metrics. For example, scenario CS outperforms scenario CH in 
terms of hydrograph precision and reliability, but rank lower in terms of hydrograph NSE. This finding indicates 
that calibration to seasonal FDCs is not equivalent to calibration to streamflow time series, and that the choice of 
signatures needs a careful assessment. Note that a comprehensive comparison between signature and time domain 
calibration is beyond the scope of this study (e.g., see Fenicia et al., 2018 for an earlier dedicated investigation).

Our findings are in line with previous studies (e.g., Castiglioni et al., 2010; Kavetski et al., 2018), which have 
shown that signature calibration can achieve similar or slightly inferior performance to time-domain calibration 
and that, in some cases, the FDCs are a viable surrogate for the hydrograph in the context of model calibration. 
On the other hand, Kim et al. (2017) pointed out how the lack of time information in the FDCs can reduce their 
utility, and suggested the combination of FDCs with other signatures, such as the flashiness index, that include 
timing information (see also Fenicia et al. (2018)).

The study of loss of information due to the usage of different signatures is, however, a broad and important topic 
that goes beyond the scope of this paper and requires much further work.

6.3.  Experiment 3: Goodness of the Regionalization Study

The last experiment compares the performance of simulations in the ungauged scenario RS with simulations 
generated using the prior distribution of model parameters. The objective is to assess the performance of the 
regionalization approach, comparing it with an “easy” benchmark, in the sense that the effort and the data needed 
to run prior simulations are limited and can be done in any ungauged catchment as long as meteorological forcing 
is available.

The results in Figure 10 (Section 5.3.1) show that the simulations in scenario RS generally outperform the simu-
lations in scenario PS, though not without some subtleties. In terms of hydrographs, the two scenarios have 
similar performance, with scenario RS achieving a better fit to the observed data and scenario PS achieving better 
precision. However, in terms of FDCs, model performance in scenario PS drops substantially: the simulated 
FDC looks clearly unrealistic, with huge uncertainty and large deviations from observed data. These results are 
confirmed by the analysis overall catchments, shown in Figure 11 (Section 5.3.2).
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As such, Figure 10 shows that similar uncertainty bounds in the hydrograph space can correspond to very differ-
ent uncertainty bounds in the signatures space. In particular, the difference between scenarios PS and RS is not 
apparent when considering the total uncertainty bounds in the hydrograph space, where both scenarios have 
similar precision. However, it becomes obvious in the signature space, where scenario PS have much wider 
uncertainty bounds than RS in terms of FDCs, which is exemplified by a much lower precision. The cause of this 
difference in behavior is as follows. In scenario PS, predictive uncertainty is determined purely by the uncertainty 
in the precipitation-streamflow model parameters. PS produces hydrographs with a wide range of dynamics (i.e., 
ranging from relatively constant to very responsive), which translate into FDCs with very different shapes (i.e., 
ranging from flat to steep) and hence a wide range of variability. In scenario RS, instead, predictive uncertainty is 
largely determined by the residual error. This scenario produces hydrographs with much more uniform dynamics, 
which map to similar FDCs.

6.4.  Limitations and Future Work

This study has a number of limitations that warrant follow-up research.

First, the case study catchments in this work all belong to the same geographic region (the Thur basin). For this 
reason, they can be thought to be similar, or at least less varied than catchments in different climatic regions. 
Nevertheless, the Thur basin does exhibit appreciable variability in physical and local hydroclimate characteris-
tics, which in turn manifests as appreciable differences in mean streamflow, in seasonality, and in baseflow (see 
Dal Molin, Schirmer, et  al.  (2020) for further details). Future studies could consider large-sample hydrology 
datasets (e.g., Addor et al., 2017) with wider catchment variability, including arid conditions. This work would 
likely require revisiting key modeling choices, including the choice of precipitation-streamflow models, signa-
ture transfer models and model performance metrics (e.g., focusing on low flows). Moreover, given the large 
computational cost of ABC inference (millions of model runs), efficient numerical and software implementa-
tions, including parallel computation, would become paramount.

Second, the case study catchments are located in a well-studied area, where previous work could be exploited 
for the selection of the streamflow model (Dal Molin, Schirmer, et al., 2020) and the FDC model (Doulatyari 
et al., 2017). The choice of donor catchments also gives an opportunity, in scenario RS, to assume a similar 
behavior of the regionalization model in the catchments and, therefore, to estimate the parameters of the signa-
tures error model using other catchments of the network. The application of the proposed methodology in less 
instrumented donor catchments may be more challenging and deserves future attention.

Third, our study focuses primarily on reliable estimation of streamflow predictive uncertainty rather than on 
its reduction. Further research is needed to understand the choice of signatures, signature estimation models, 
and precipitation-streamflow models that minimizes streamflow uncertainty. In this endeavor, the use of alter-
native measurements, such as independent remote sensing observations (e.g., Nijzink et al., 2018; Winsemius 
et al., 2008) or other types of constraints (e.g., Gharari et al., 2014) are of major interest.

Fourth, the deterministic FDC model does not account for snow dynamics. When precipitation is used in the 
signature model to calculate its parameters (Section 4.4.3), no distinction is made between rainfall and snowfall. 
In this work, this limitation does not appear problematic, given the limited amount of snow in the case study area 
(at most 20% of annual precipitation). Moreover, the stochastic model includes a bias correction that may partly 
compensate for such deficiency. Importantly, note that the models calibrated in snow affected catchments (e.g., 
Appenzell) do not perform systematically worse than the ones of catchments with little snow (e.g., Wängi). Never-
theless, future work should incorporate snow dynamics more explicitly into signature regionalization models.

Finally, this work treats the precipitation-streamflow model and the signature model as conceptually independent 
from each other. However, it may be of interest to consider the conceptual connections between these types of 
models. For example, both the signature model of Doulatyari et al. (2017) and the HyMod model represent the 
catchment as conceptual reservoirs. Future work could explore these similarities and their impact on signature 
estimation.
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7.  Conclusions
This study presented a new approach for calibrating a precipitation-streamflow model to regionalized streamflow 
signatures. The approach relies on ABC, which avoids direct calculation of the likelihood function (instead, it 
employs sampling from the probability model, which in this case is easier to implement). We presume the avail-
ability of a signature model, which predicts the signatures at the target catchment. The main intended application 
of the new method is for streamflow time series prediction in ungauged catchments, where current methods are 
limited by not explicitly accounting for the uncertainty in the RS. We show how to estimate uncertainty in the RS, 
and how to incorporate this uncertainty into the calibration of a precipitation-streamflow model.

The proposed framework is evaluated in a case study based on six catchments of the Thur basin, Switzerland. 
This catchment has high quality data, a long history of hydrological studies, and high operational importance in 
the water supply of the region. In order to test the quality of predictions in ungauged conditions, we followed 
a progression from gauged to ungauged, with three scenarios: “concomitant,” where signatures are observed, 
“non-concomitant,” where signatures are extrapolated in time, and “regionalized,” where signatures are extrapo-
lated in space. For reference, we also calibrated the model in the time domain and run simulations using param-
eters sampled from the prior distribution.

The results of the experiments suggest that:

1.	 �In line with expectations, the progression from concomitant to RS increases uncertainties in reproducing 
streamflow time series (38% more uncertainty) and reduces the fit to the observations (17% decrease in NSE). 
That said, the uncertainty was reliably estimated in all scenarios, which is an important finding that provides 
confidence in the proposed approach;

2.	 �Poor quality of model predictions could be attributed to cases where RS are corrupted by large errors, such 
as in the Herisau catchment where the model is forced with meteorological inputs that generated a flood but 
calibrated to signatures that do not contain information about this flood. In such cases, the error in estimating 
the signatures results into streamflow predictions with poor performance metrics (e.g., doubling the volumet-
ric bias);

3.	 �The use of RS may reduce the identifiability of some parameters of the streamflow model (e.g., the release 
rate of the snow reservoir). This behavior is likely explained by the representation of some processes (e.g., 
snow) being lost when calibrating to regionalized rather than observed signatures;

4.	 �Signatures based on seasonal FDCs appear to be an adequate choice for the calibration of precipitation-streamflow 
models, as their use yields streamflow predictions comparable in quality to those obtained in time-domain 
calibration. However this finding may be specific to the case study and requires further corroboration, includ-
ing in different hydroclimatic conditions;

5.	 �Calibration to RS generates streamflow predictions of clearly better quality than prior simulations, that is, 
streamflow predictions obtained using prior parameter distributions. This finding shows that RS contain 
useful information to constrain model parameters and hence predictions.

The proposed methodology represents a step toward improved predictions in data scarce regions. Future work is 
needed to generalize the approach to more diverse areas, especially where donor catchments are not available for 
the calibration of the signature regionalization model, to better understand the impact of signature choice on the 
results, and to undertake comprehensive comparisons of the proposed methodology to other approaches for PUB.

Appendix A:  Streamflow Predictive Distribution
The posterior and prior predictive distributions of the streamflow time series are obtained by sampling from the 
stochastic model with given parameter sets θ (H).

A replicate streamflow time series is generated as follows:

1.	 �Take the kth sampled parameter set, �(H)�  ;
2.	 �Run the deterministic precipitation-streamflow model �(H)

(

�(H)m,�, �̃
)

 to generate a streamflow time series;

3.	 �Sample a time series of residual errors from the residual error model �(H)
(

�(H)ε,�

)

 ;
4.	 �Substitute the results of Steps 1–2 above into Equation 1 to compute a realization of the precipitation-streamflow 

model;
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5.	 �Repeat for k = 1,…,Nsam.

The posterior predictive distribution of streamflow is obtained using the posterior (ABC) parameter samples. 
The prior predictive distribution of streamflow is obtained using samples from the prior parameter distribution.

Appendix B:  Precipitation-Streamflow Model Used in the Case Study
This appendix lists the precipitation-streamflow model equations (Appendix B1) and the prior parameter distri-
bution (Appendix B2) used in the empirical case study (Section 4 of the main text).

B1.  Model Equations

A schematic of the model is given in Figure 4. The reservoir equations are detailed below.

B1.1.  Snow Reservoir

The snow reservoir (WR) is a threshold reservoir with mass balance equation

d𝑆𝑆
WR

d𝑡𝑡
= 𝑃𝑃

WR

−𝑄𝑄
WR

� (B1)

where SWR is the storage, PWR is the snow input, and QWR is the outflow.

The fluxes are given by

𝑃𝑃WR =

⎧

⎪

⎨

⎪

⎩

𝑃𝑃 if 𝑇𝑇 ≤ 0

0 if 𝑇𝑇 𝑇 0

� (B2)

𝑀𝑀
max
WR

=

⎧

⎪

⎨

⎪

⎩

0 if 𝑇𝑇 ≤ 0

𝑘𝑘WR𝑇𝑇 if 𝑇𝑇 𝑇 0
� (B3)

𝑄𝑄
WR

= 𝑀𝑀
max

WR

[

1 − exp

(

−
𝑆𝑆

WR

𝑚𝑚
WR

)]

� (B4)

where P is the precipitation, T is the (catchment-average) temperature, 𝐴𝐴 𝐴𝐴
max
WR

 is the maximum melting rate, kWR 
is the degree day parameter, and mWR is a smoothing parameter (here, fixed to 2) (Kavetski & Kuczera, 2007).

B1.2.  Unsaturated Reservoir

The UR is a threshold reservoir with mass balance equation

d𝑆𝑆
UR

d𝑡𝑡
= 𝑃𝑃

UR

−𝑄𝑄
UR

− 𝐸𝐸
UR

� (B5)

where SUR is the storage, PUR is the inflow, QUR is the outflow, and EUR is the evaporation.

The fluxes are given by

𝑆𝑆
UR

=
𝑆𝑆

UR

𝑆𝑆
max
UR

� (B6)

𝐸𝐸UR = 𝐸𝐸Pot

[

𝑆𝑆UR(1 + 𝑚𝑚UR)

1 + 𝑚𝑚UR

]

� (B7)

𝑄𝑄
UR

= 𝑃𝑃
UR

(

𝑆𝑆
UR

)𝛽𝛽
UR

� (B8)
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where 𝐴𝐴 𝐴𝐴
max
UR

 is a parameter indicating the maximum storage of the reservoir, EPot is the potential evaporation input, 
mUR is a smoothing parameter (here, fixed to 0.01), and βUR is an exponent parameter.

B1.3.  Fast Reservoirs

The three “fast” reservoirs (FRs) comprising the fast flow path (see Figure 4) are all linear reservoirs with mass 
balance equation

d𝑆𝑆
FR

d𝑡𝑡
= 𝑃𝑃

FR

−𝑄𝑄
FR

� (B9)

where SFR is the storage, PFR is the inflow, and QFR is the outflow.

The fluxes are given by

𝑃𝑃
FR

= (1 −𝐷𝐷)𝑄𝑄
UR� (B10)

𝑄𝑄
FR

= 𝑘𝑘
FR

𝑆𝑆
FR

� (B11)

where D and kFR are model parameters.

B1.4.  Slow Reservoir

The SR is also a linear reservoir, with mass balance equation

d𝑆𝑆
SR

d𝑡𝑡
= 𝑃𝑃

SR

−𝑄𝑄
SR

� (B12)

where SSR is the reservoir storage, PSR is the inflow, and QSR is the outflow.

The fluxes are given by

𝑃𝑃
SR

= 𝐷𝐷𝐷𝐷
UR� (B13)

𝑄𝑄
SR

= 𝑘𝑘
SR

𝑆𝑆
SR

� (B14)

where kSR is a model parameter.

B2.  Prior Distribution of Parameters

Table A1 lists the calibrated parameters and the bounds of their uniform prior distributions. Parameters with 
plausible values that span multiple orders of magnitude are inferred in log-space, that is, we infer the logarithm of 
the parameter; in this case, the uniform prior distribution is applied to the log-transformed value.

Appendix C:  Choice of Distance Metric in SABC Algorithm
The choice of distance metric ρ to measure the distance between the target and simulated signatures is an impor-
tant algorithmic setting in the ABC inference.

Parameter Unit Model component Bounds (uniform prior) Logarithmic transformation applied

kWR °C −1 mm d −1 WR 10 −1−10 Yes

𝐴𝐴 𝐴𝐴
max
UR

  mm UR 10 −1−10 3 Yes

βUR 𝐴𝐴 −  UR 10 −3−8 Yes

D 𝐴𝐴 −  FR/SR 0–1 No

kFR d −1 FR 10 −1−10 Yes

kSR d −1 SR 10 −4−10 1 Yes

Table A1 
Details of Parameters of the Precipitation-Streamflow Model
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In this work, the distance metric is defined as the maximum value, over the four seasons, of the mean distance 
between target and simulated FDCs,

𝜌𝜌(𝐲𝐲, 𝐲̃𝐲) = max
𝑠𝑠=1,. . . ,𝑁𝑁season

[

mean

(

|𝑦𝑦[𝑗𝑗𝑗𝑗𝑗] − 𝑦̃𝑦[𝑗𝑗𝑗𝑗𝑗]|

𝜌𝜌
norm
[𝑗𝑗𝑗𝑗𝑗]

; 𝑗𝑗 = 1, . . . , 𝑁𝑁FDC

)]

� (C1)

where j indexes the signatures within a given season s (see Section 4.3). For convenience, matrix-style indexing 
is used in the subscripts to refer to the signatures organized as a matrix with NFDC rows and Nseason = 4 columns, 
rather than a “long” vector with NFDCNseason elements.

The term 𝐴𝐴 𝐴𝐴
norm
[𝑗𝑗𝑗𝑗𝑗]

 is a normalization factor, which is designed to give the same “weight” to all signatures by account-
ing for their range of variability,

𝜌𝜌
norm
[𝑗𝑗𝑗𝑗𝑗]

= sdev|𝑦𝑦
(𝑘𝑘)

[𝑗𝑗𝑗𝑗𝑗]
− 𝑦̃𝑦

(𝑘𝑘)

[𝑗𝑗𝑗𝑗𝑗]
; 𝑘𝑘 = 1, . . . , 𝑁𝑁sam|� (C2)

where sdev v is the standard deviation of a set of samples v = {vk;k = 1,…,Nsam}.

Since the signatures can be stochastic, the normalization term in Equation C1 is calculated as follows: (a) sample 
the parameters θ (H) from their prior distribution, (b) generate Nsam sets of simulated signatures y[j,s] using the 
precipitation-streamflow model, (c) sample Nsam sets of target signatures 𝐴𝐴 𝐲̃𝐲[𝑗𝑗𝑗𝑗𝑗] from the pre-calibrated signature 
model, and (d) apply Equation C2.

This normalization within the distance metric is different from the normalization used in previous studies, where 
𝐴𝐴 𝐴𝐴

norm
[𝑗𝑗𝑗𝑗𝑗]

 was simply set to the target signature 𝐴𝐴 𝐴𝐴𝐴[𝑗𝑗𝑗𝑗𝑗] (e.g., Fenicia et al., 2018). That earlier normalization approach 
is unsuitable for this study, because the (stochastic) target signatures may take the value of 0, in which case ρ 
becomes infinite or undefined.

The initial value of the ABC tolerance is set to 0.1 in all scenarios. This value is progressively tightened by the 
SABC algorithm as it converges (Section 3 and Albert et al. (2015)). Note that as the tolerance is tightened, the 
impact of the distance metric on the ABC inference decreases (see Albert et al. (2015) and Kavetski et al. (2018) 
for details).

Appendix D:  Performance Metrics
This appendix defines the model performance metrics listed in Section 4.7. The metrics are applied to both the 
streamflow time series and the set of signatures. The general symbols v and 𝐴𝐴 𝐯̃𝐯 are used to refer to simulated and 
observed data respectively.

Note that 𝐴𝐴 𝐯̃𝐯 = {𝑣̃𝑣𝑖𝑖; 𝑖𝑖 = 1, . . . , 𝑁𝑁} is a vector of length N (e.g., representing a streamflow time series or a set 
of signatures), where 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is a scalar (e.g., streamflow at the ith time step or the ith signature). In contrast, 

𝐴𝐴 𝐯𝐯 = {𝑣̃𝑣𝑖𝑖; 𝑖𝑖 = 1, . . . , 𝑁𝑁} is a matrix containing an ensemble of model predictions generated using the procedure 
in Appendix A, where 𝐴𝐴 𝐯𝐯𝑖𝑖 =

{

𝑣𝑣
𝑘𝑘

𝑖𝑖
; 𝑘𝑘 = 1, . . . , 𝑁𝑁sam

}

 is a vector of multiple model realizations of the ith element.

D1.  Nash-Sutcliffe Efficiency

The Nash-Sutcliffe efficiency, NSE, measures the fit of the simulated data to the observations,

NSE(𝐯𝐯, 𝐯̃𝐯) = 1 −

∑𝑁𝑁

𝑖𝑖=1

(

𝑣̃𝑣𝑖𝑖 − 𝑣𝑣
med
𝑖𝑖

)2

∑𝑁𝑁

𝑖𝑖=1
(𝑣̃𝑣𝑖𝑖 − mean 𝐯̃𝐯)

2
� (D1)

where 𝐴𝐴 𝐴𝐴
med
𝑖𝑖

= median 𝐯𝐯𝑖𝑖 is the median of the predictive distribution of the ith element of v, 𝐴𝐴 mean𝐯̃𝐯 is the mean of 
the observed values 𝐴𝐴 𝐯̃𝐯 . The use of median instead of mean in the numerator of Equation D1 is intended to reduce 
the influence of noise/outliers.

The NS varies between −∞ and 1, with 1 denoting a perfect match.
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D2.  Precision

The precision metric, P, quantifies the spread of a predictive distribution,

P(𝐯𝐯, 𝐯̃𝐯) =

∑𝑁𝑁

𝑖𝑖=1
sdev 𝐯𝐯𝑖𝑖

∑𝑁𝑁

𝑖𝑖=1
𝐯̃𝐯𝑖𝑖

� (D2)

where sdev vi denotes the standard deviation of the predictive distribution of the ith element of v.

Note that the precision metric does not depend on the fit between modeled and observed data. The “best” value 
of this metric is 0, which occurs for a prediction with no uncertainty, that is, where all predictive replicates form 
a single curve. Higher values denote worse precision.

D3.  Reliability

The reliability metric, R, quantifies the consistency of the observations and the predictive distribution. The metric 
is defined as the area between the predictive quantile-quantile curve (PQQ plots) and the 1:1 line. The PQQ plot is 
a uniform quantile-quantile plot of the quantities 𝐴𝐴 Pr(𝑉𝑉𝑖𝑖 ≤ 𝑣̃𝑣𝑖𝑖) for i = 1,…,N, where V denotes the random variable 
underlying the predictive distribution from which the observed value 𝐴𝐴 𝐴𝐴𝐴 is assumed to be sampled from. When 
applied to streamflow time series analysis, Vi is the streamflow at the ith time step, whereas when applied to FDC 
analysis it is the FDC at the ith quantile. The mathematical derivation of the reliability metric can be found in 
McInerney et al. (2017). The best value of this metric is 0. Higher values denote worse reliability.

D4.  Volumetric Bias

The volumetric bias metric measures the long-term water balance error of the predicted data,

VB(𝐯𝐯, 𝐯̃𝐯) =

|

|

|

|

|

∑𝑁𝑁

𝑖𝑖=1
𝐯𝐯

mean
𝑖𝑖

−
∑𝑁𝑁

𝑖𝑖=1
𝐯̃𝐯𝑖𝑖

∑𝑁𝑁

𝑖𝑖=1
𝐯̃𝐯𝑖𝑖

|

|

|

|

|

� (D3)

where 𝐴𝐴 𝐯𝐯
mean
𝑖𝑖

= mean 𝐯𝐯𝑖𝑖 is the mean of the predictive distribution of the ith element of v. The mean in the numer-
ator of Equation D3 follows the convention from earlier studies (e.g., Ehlers et al., 2019; McInerney et al., 2017; 
Oliveira et al., 2018) and is less susceptible to noise/outliers due to the integration (summation) over a long time 
series.

The best value of the volumetric bias metric is 0 and higher values denote an increasing water balance discrepancy.

Data Availability Statement
The study data are deposited in Dal Molin (2022).
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