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A B S T R A C T   

Knowledge of actual crop transpiration (T) is important for advanced crop management but challenging to obtain 
due to the large spatial and temporal variation of T. Remote sensing offers various possibilities to assess T dy-
namics, while particularly sun-induced chlorophyll fluorescence (SIF) has been demonstrated as a sensitive 
empirical proxy for T. Despite this success, the advancement of the mechanistic understanding of how SIF relates 
to T dynamics is key for the future development and implementation of robust and reliable SIF-based T products. 
This study aims to contribute insights by experimentally assessing the sensitivity of several SIF-based T esti-
mation strategies for evolving soil water limitation. We investigated extensive in situ and airborne data acquired 
during a water limitation experiment in a maize canopy in northern Italy. We evaluated five empirical strategies 
to integrate SIF in a T modelling framework based on the Penman-Monteith (PM) and the Ball-Berry-Leuning 
(BBL) concepts. Our results indicate that replacing model parameters sensitive to canopy conductance with 
SIF results in the best agreement between modelled and measured T under evolving water limitation. Our study 
contributes expanding existing knowledge with empirical insights on the sensitivity of SIF based T approaches 
under increasing soil water limitation at short time scales.   

1. Introduction 

The occurrence of extreme climate events (e.g. droughts, heatwaves) 
substantially affects the ecosystem exchange of energy and water 
(Reichstein et al., 2002) and of carbon dioxide (CO2) (Gharun et al., 
2020; Reichstein et al., 2013; Sippel et al., 2018; Ramonet et al., 2020), 
and causes various feedbacks between the atmosphere and the biosphere 
(Anderegg et al., 2012; Bonan, 2008). Particularly the large deviation of 
abiotic drivers from their normal state under extreme conditions affects 
important plant exchange processes including gross primary produc-
tivity (GPP) (Frank et al., 2015; Gharun et al., 2020) and transpiration 
(T) (He et al., 2022), thus, substantially impacts the energy, water and 
carbon balance of entire ecosystems. Robust and accurate T and GPP 

estimates at appropriate spatio-temporal scales, together with underly-
ing abiotic and biotic drivers, are essential to understand the complex 
energy-water-carbon relation of plants (Gentine et al., 2019) and help 
gaining insights on plant responses to extreme weather and changing 
environmental conditions. 

Remote sensing (RS) is well suited to provide spatially harmonized 
and across scale information on ecosystem state and functioning (Xiao 
et al., 2021). However, due to the nature of RS data available for in-
formation retrieval (i.e. top-view perspective (Damm et al., 2020), 
measurement of light absorption, scattering and emission, discontinuous 
temporal sampling of polar-orbiting satellites (Xiao et al., 2021)), esti-
mates of the subtle and complex carbon and water exchange processes 
remains highly challenging. This is even more so since ecosystem 
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processes are determined by a complex set of abiotic and biotic drivers 
(GPP e.g. by light energy, ambient CO2 availability or plant type; T e.g. 
by energy, atmospheric water vapour, and physiological constraints). 
Concerning GPP, substantial advancement has been made in RS based 
GPP estimates over the past decade (cf. Ryu et al., 2019), particularly 
stimulated by the increasing availability of RS derived sun-induced 
chlorophyll fluorescence (SIF) information (Gentine et al., 2019; 
Mohammed et al., 2019; Porcar-Castell et al., 2021; Schimel et al., 
2019). A demonstration of improved global GPP estimates via time se-
ries of spatially downscaled SIF is presented in (Wang et al., 2022). 

The subtle T process cannot be directly measured via RS, conse-
quently, most proposed T methods rely on RS proxies of abiotic and 
biotic factors that are combined with models (e.g. Hilker et al., 2013; 
Langensiepen et al., 2009; Yebra et al., 2013). This indicates that the 
robustness and sensitivity of retrieved T depends on the used proxy in-
formation of abiotic and biotic factors. RS based SIF offers comple-
mentary functional vegetation information compared to commonly used 
vegetation greenness, thus, holds large potential to also advance esti-
mates of T as already demonstrated for GPP. Consequently, several 
studies already evaluated the sensitivity of SIF for T dynamics and found 
significant SIF-T relationships (e.g. Lu et al., 2018; Maes et al., 2020; 

Pagán et al., 2019). 
Applying these promising empirical SIF based T approaches across 

spatial and temporal scales and ecosystems requires consideration of 
underlying relationships between SIF and T with environmental drivers 
that could cause a decoupling of SIF and T and can introduce un-
certainties in resulting T estimates (Damm et al., 2021). In fact, both 
canopy SIF and ecosystem T depend differently on several abiotic factors 
(i.e. net radiation (Rn), air temperature (Ta), relative humidity (RH)) and 
biotic factors (i.e. leaf area index (LAI), canopy conductance (rs), net 
carbon assimilation rate (An), non-photochemical quenching (NPQ)). 
Several studies (e.g. Shan et al., 2019; Shan et al. 2021) provide 
important mechanistic insights by using SIF to represent stomatal 
conductance in the Penman-Monteith (PM) framework (Monteith, 1965; 
Penman, 1948) and by evaluating the resulting performance of these SIF 
based T estimates. Yet other studies suggest multi-sensor RS approaches 
to account for the complexity of T dynamics (Damm et al., 2021; Jonard 
et al., 2020). What remains less consolidated yet is a systematic 
assessment of suited entry points of SIF in T models and of the sensitivity 
of SIF based T approaches to track T dynamics under changing envi-
ronmental conditions. 

In response to the above stated gap, this study aims to contribute 

Fig. 1. False-color composite of the study area measured with the HyPlant imaging spectrometer - (a) test site with its surrounding and (b) the core experimental site 
comprising two maize areas. Data was acquired on 24 June 2019. 
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empirical insights on the sensitivity of different SIF based T approaches 
for changes in T caused by evolving soil water limitation. We used a 
comprehensive set of data collected during a field experiment in an 
agricultural crop. We derived a time series of airborne based SIF along 
with other abiotic and biotic factors and evaluated several strategies to 
estimate T, ranging from a simple linear SIF-T model to replacing 
different PM model parameters with SIF. We evaluated the performance 
of all approaches by comparing modelled T with independent T esti-
mates derived from land surface temperature (LST) data and in situ sap 
flow measurements. 

2. Methods 

2.1. Test site 

Our experiment took place in a maize field located north of the city of 
Grosseto in Tuscany, Italy (42◦50′58.3″N 11◦03′48.0″E, Fig. 1a). Irriga-
tion tubes were removed in a small part of the drip-irrigated maize field 
on 13 June 2019 to gradually reduce soil water availability until 24 June 
2019 (water limited area (WL), orange box in Fig. 1b). A second area in 
close vicinity was selected as reference, representing a structurally and 
functionally similar maize canopy with a maintained irrigation (well- 
watered area (WW), blue box in Fig. 1b). 

2.2. In situ data 

In the center of the maize field, we collected air temperature (Ta) and 
relative humidity (RH) few meters above the canopy with a mobile 
weather station equipped with Vaisala weather sensors. Both Ta and RH 
were used to parameterize the PM equation to model T. In addition, we 
installed the FloX field spectrometer system (JB Hyperspectral Devices 
GmbH, Germany) at the northern border of the water limited maize area 
to continuously measure dynamics of photosynthetic active radiation 
(PAR), reflectance and SIF. The FloX was placed 4 m above the canopy, 
resulting in a footprint size of 1.8 m (considering a field of view of 25◦) 
that allowed capturing approximately 15–17 plants. The FloX system 
comprises a high-resolution spectrometer (full width half maximum 
(FWHM) of 0.3 nm between 650 and 800 nm) and a low-resolution 
spectrometer (FWHM of 1.5 mm between 400 and 950 nm), both 
measuring radiance and irradiance at high temporal resolution (2-min-
ute interval). We used irradiance measurements of the low-resolution 
instrument to retrieve incident PAR as spectral integral of measured 
irradiance between 400 nm and 700 nm. 

2.3. Sap flow measurements 

Sap flow was measured with dual-heater sap flow gauges considering 
a heat-balance theory (Peressotti and Ham, 1996; Sakuratani, 1981) to 
represent T (TSAP-flow). We installed ten sap flow gauges in both the WW 
and WL maize areas and measured sap flow every 15 min in g hr− 1. The 
unit of provided sap flow data was converted from g hr− 1 per plant to 
mm hr− 1 to compare the measured sap flow with modelled T that are 
expressed in mm hr1. Therefore, we multiplied sap flow (g hr− 1) with the 
number of maize plants per m2 and divided by 1000 to convert g m− 2 

hr− 1 in mm hr− 1. The plant density differed with 6.92 plants per m2 in 
the WW area and 7.03 plants per m2 in the WL area. 

2.4. Airborne data 

A total of 42 airborne data sets were acquired between the 16 and 24 
of June 2019. The data acquisition time in the morning was between 
10:11 and 11:41 local time (l.t.), and in the afternoon between 13:15 
and 14:37 l.t. (cf. Damm et al., 2022 for details). Data used in this study 
stem from two different airborne sensors including the fluorescence 
spectrometer HyPlant (Rascher et al., 2015) and the thermal imager 
TASI (Hanuš et al., 2016). 

HyPlant is an imaging spectrometer designed to measure SIF in 
addition to common RS vegetation information. The system consists of 
two modules, with the DUAL module covering the optical wavelength 
range between 380 and 2500 nm in high spectral resolution (i.e. FWHM 
between 3.65 nm and 10.55 nm) and the FLUO module covering the 
wavelength range between 670 and 780 nm with a FWHM of 0.28 nm 
(Rascher et al., 2015; Siegmann et al., 2019). HyPlant data were ac-
quired with a spatial resolution of 2.3 m and used to calculate different 
vegetation indices and to retrieve SIF at 760 nm via an adapted version 
of the Spectral Fitting technique (Cogliati et al., 2015; Meroni et al., 
2010). Details about the sensor and processing scheme can be found in 
Siegmann et al. (2019). 

On the same aircraft, the TASI-600 (Itres) thermal radiometer was 
installed to acquire thermal radiation for the retrieval of LST. The TASI 
push broom line scanner measures longwave radiation between 8000 
nm and 11500 nm with a spectral resolution of 110 nm. Data were ac-
quired in 1.8 m spatial resolution and underwent a standard processing 
workflow (cf. Hanuš et al. (2016) and https://olc.czechglobe.cz/en/pro 
cessing/tasi-data-processing/ for further details about the data 
processing). 

2.5. Standard T approaches (TPM, TBB) 

The PM equation (Monteith, 1965; Penman, 1948) was selected as 
standard method in our study to estimate T (Eq. (1)). The PM equation is 
the foundation of the official Food and Agriculture Organization of the 
United Nations (FAO) evapotranspiration (ET) approach and has been 
widely applied to estimate ET for different ecosystems from regional to 
global scale (Allen et al., 1998; Langensiepen et al., 2009). It must be 
noted that the PM equation typically provides estimates of ET, 
comprising the sub-components T of plants and evaporation (E) of soil 
and vegetated surfaces. Given the dense canopy, the lack of in situ 
measurements of plant and soil evaporation, and the conditions with a 
rather dry canopy and soil, we can assume that plant and soil E repre-
sented only a small percentage of the total canopy evapotranspiration 
(ET). We thus consider the resulting PM based ET estimates as T rather 
than ET. According to the FAO adapted PM approach by Allen et al. 
(1998), T can be expressed as a function of energy constraints, atmo-
spheric parameters and a plant-specific constraint as: 

T =
Δ(Rn − G) + ρaCp

(
es − ea

ra

)

Δ + γ
(

1 + rs
ra

) (1) 

Here Δ is the slope of the vapor pressure curve in kPa oC− 1, Rn and G 
represent net radiation and soil heat flux density in W m− 2, respectively, 
ρa is the air density in kg m− 3, Cp represents the specific heat of the air in 
J kg− 1 oC− 1, (es – ea) represents the saturation vapor pressure deficit or 
VPD in k Pa with es as the saturation vapor pressure and ea as the actual 
vapor pressure, ra and rs are the aerodynamic and surface resistance in s 
m− 1, respectively, and γ is the psychrometric constant in k Pa oC− 1. We 
refer to Allen et al. (1998) for the formulas to calculate Δ, ρa, Cp, es, and 
ea. 

Rn is a function of net short-wave (nSW) and long-wave (nLW) ra-
diation or their sub-components incoming short-wave (SWin), incoming 
long-wave (LWin), outgoing short-wave (SWout), and outgoing long-wave 
radiation (LWout) (Allen et al., 1998; Liang, 2004; Wang and Liang, 
2009), and can be expressed as: 

Rn = nSW + nLW = SWin − SWout +LWin − LWout (2) 

nSW can be considered as function of solar radiation (RS) and surface 
albedo (α) (Allen et al., 1998; Campbell and Norman, 1998; Liang, 2004) 
and can be expressed as: 

nSW = Rs(1 − α) (3) 

Based on the Stefan-Boltzmann law of radiation, LWout and LWin are a 
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function of surface and air emissivity (εs and εa), surface and air tem-
perature (Ts and Ta), and the Stefan-Boltzmann constant (σ) (Allen et al., 
1998; Campbell and Norman, 1998; Wang and Liang, 2009) and can be 
expressed as: 

LWout = εsσ(Ts)
4 (4)  

LWin = εaσ(Ta)
4 (5) 

Because we do not have measurements of all required data (e.g. 
emissivity) and need TS as independent information to validate 
modelled T, we applied a more simplified approach. It must be noted 
that there are established RS products available to parameterize Eq. (2) 
but they are only available at a rather coarse spatial resolution not 
appropriate for our study focusing on data with a 2.3 m spatial resolu-
tion. The implemented simplified approach particularly considered the 
good agreement between Rn and absorbed photosynthetic active radia-
tion (APAR) found in previous studies (Oliphant et al., 2006; Green 
et al., 1995). The study by Oliphant et al. (2006) showed significant 
similarity between Rn and APAR over a forest canopy. Another study 
showed that net PAR (sum of incoming and outgoing PAR which equals 
APAR (Toll et al., 1994)) showed similarity to Rn dynamics over a single 
tree canopy (Green et al., 1995). We therefore expressed Rn as a function 
of APAR as: 

Rn = APAR × 1.8 = (PAR × 0.0036 × (NDVI × 1.235 − 0.211)) × 1.8 (6) 

APAR was calculated as a product of PAR and the fraction of 
absorbed photosynthetic active radiation (fAPAR). Local FloX data were 
used to obtain PAR measurements in W m− 2, the unit conversion in MJ 
m− 2 hr− 1 was achieved via the factor 0.0036. fAPAR was derived 
following Zhang et al. (2015) as a linear function of the normalized 
difference vegetation index (NDVI). The resulting APAR was then scaled 
by the empirically derived factor of 1.8 (cf. Appendix-A for a description 
of the empirical scaling approach) to approximate Rn per pixel. 

A common approach to estimate G according to Allen (2005) is: 

G = Gzs +Cs

∫ zs

0

∂Ts

∂t
dzs (7) 

Where Cs (in m) is the sum of the shaded soil fraction that is either 
wet (CsW) or dry (CsD), and Gzs is the soil heat flux in W m− 2 at a shallow 
depth (zs) (e.g. 0.01 m). As we did not measure Gzs and temperature 
changes between soil surface and zs over time (∂Ts

∂t dzs), we applied a more 
simplified G estimation proposed for short vegetation by Allen (2005): 

G = 0.4e− 0.5LAIRn (8) 

LAI represents the leaf area index in m2 m− 2. Given LAI values 
ranging between 2.8 and 5.8 in our experimental fields, we again 
simplified the calculation of G by assuming G = 0.1Rn. 

rs was calculated according to Allen (2005) as: 

rs =
rl

LAI × 0.5
(9) 

rl represents the leaf resistance. According to Gong et al. (2017), rl 
can be approximated as a function of Rn as: 

rl = 23.21exp
(

1021.06
Rn + 365.71

)

(10) 

We obtained all relevant parameters from in situ observations (Ta, 
RH, Rn) and HyPlant airborne data (cf. Table 1) to calculate a standard T 
time series (i.e. TPM). 

As an alternative to approximate the biological constraint on T (i.e. 
rs), we used the Ball-Berry-Leuning (BBL) approach after (Ball et al., 
1987) and (Leuning, 1995) to estimate leaf resistance and subsequently 
rs as: 

1
rl
= gs = g0 +

a1An

(cs − Γ)
(

1 + Ds
D0

) (11) 

gs is the stomatal conductance in mol CO2 m− 2 s− 1, g0 is the stomatal 
conductance at the light compensation point in mol CO2 m− 2 s− 1, An 
represents the net leaf CO2 assimilation rate in mol CO2 m− 2 s− 1, cs is the 
leaf surface CO2 partial pressures in mol CO2 mol air− 1, Ds represents the 
water vapor partial pressure deficit at the leaf surface, Γ is the CO2 
compensation point, and a1 and D0 are two empirical coefficients. For 
our experiment, we used the standard parameters suggested. The com-
bination of the BBL model with the PM equation resulted in a second 
standard T time series (i.e. TBB). 

For the spatial representation of LAI, we used data from the HyPlant 
FLUO module to retrieve the simple ratio (SR) vegetation index and 
eventually applied the SR as a proxy for the LAI. In situ LAI measure-
ments made with a LAI-2000 (LICOR Inc., Lincoln, NE, USA) were used 
to derive a linear empirical model between the SR and LAI (LAI =

0.1787× SR + 0.9297), and estimate LAI per pixel. It must be noted that 
vegetation indices can be subject to illumination changes (Damm et al., 
2015b), causing an unrealistic daily variability. This would mean that 
LAI and fAPAR are different in the morning and afternoon. We 

Table 1 
Parameterization of the standard and the five experimental approaches to estimate transpiration (T). For the calculation of individual parameters we refer to the 
individual equations shown in the text.  

Parameter TPM TBB TSIF4T TSIF4Rn TSIF4rs TSIF4LAI TSIF4An 

Energy constraints 
Rn In situ/airborne SIF SIF In situ/airborne 
G 0.1Rn SIF SIF 0.1Rn 

Atmospheric constraints 
Δ In situ (Ta) SIF In situ (Ta) 
ρa Constant: 101.26 SIF Constant: 101.26 
Cp In situ (Ta) SIF In situ (Ta) 

es- ea In situ (Ta) SIF In situ (Ta) 
ra Constant: 38.63 (wind speed 1.5 m s− 1, canopy height 2 m) SIF Constant: 38.63 (wind speed 1.5 m/s, canopy height 2 m) 
γ In situ (P) SIF In situ (P) 

Biological control PM (rl) 
rl f(Rn) – SIF f(Rn) SIF f(Rn) f(Rn) 

Biological control BB (1/rl or gs) 
a1 – 8.0 – 8.0 
An – Rn/0.0431 – SIF 
cs – 470 – 470 
Γ – 70 – 70 
Ds – In situ (Ta) – In situ (Ta) 
Do – 0.167 – 0.167 

Scaling of rl to rs 

LAI HyPlant (SR) SIF HyPlant (SR) SIF SIF HyPlant (SR)  
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compensated this by interpolating afternoon values using nearest 
morning values. 

2.6. Strategies to integrate SIF in T modelling 

We evaluated five strategies, or experiments, to ingest SIF in PM- and 
BBL-based T modelling schemes. Investigated strategies are at different 
levels of approximation and include a replacement of T with SIF 

Fig. 2. Time series of original and sun-induced chlorophyll fluorescence (SIF)-based estimates of (a) net radiation (Rn, MJ m− 2 hr− 1), (b) surface resistance (rs, s 
m− 1), (c) leaf area index (LAI, m2 m− 2), and (d) net leaf CO2 assimilation rate (An, µmol CO2 m− 2 s− 1) for the well-watered (WW) and water-limited (WL) maize areas. 
The data has been separated for morning and afternoon data acquisition. 
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(experiment 1, rough approximation), a replacement of two vegetation 
related drivers of T as embedded in the PM approach with SIF, i.e. Rn, rs, 
(experiments 2–3, medium approximation), and a replacement of two 
vegetation related drivers used to calculate rs in the PM and the BBL 
approach, i.e. LAI and An respectively (experiments 4–5, detailed 
approximation). Experiment one follows ideas as found in literature (Lu 
et al., 2018). The base of experiment two is a partial relation between Rn 
with SIF as outlined below, while experiment three to five was inspired 
by the work of Shan et al. (2019, 2021) . 

It is essential to note that physical units and value ranges of SIF, T 
and the evaluated model parameters differ. We therefore applied a 
unity-based normalization to SIF (SIFn) considering the minimum (min) 
and maximum (max) SIF values of the entire time series of the WL and 
WW area: 

SIFn =
(SIF − SIFmin)

(SIFmax − SIFmin)
(12) 

Afterwards, we re-scaled SIFn to the value range of the target vari-
ables (V) using their respective value range (via min and max values) 
considering the entire time series of the WL and WW area, resulting in 
VSIF: 

VSIF = SIFn × (Vmax − Vmin)+Vmin (13) 

Here, V represents the target variables T, Rn, rs, LAI and An, the 
outcomes are illustrated in Fig. 2. It must be noted that the applied 
unity-based normalization assumes linearity between SIF and the target 
variables. This is a simplification of e.g. the well-known hyperbolic 
relationship between An and SIF (i.e. Damm et al., 2015a; Gu et al., 
2019; Liu et al., 2022), but justified by the small variable range within 
our experiment and the lack of more detailed physiological data to un-
cover more complex relationships. 

2.6.1. Experiment one: SIF to approximate T (SIF4T) 
For experiment one, we evaluate if SIF can be used as a single proxy 

for T, thus, representing all constraints on T including atmospheric, 
energy and biologic controls. Experiment one (SIF4T) is justified by 
recent studies indicating that T could be solely approximated by SIF (Lu 
et al., 2018). We applied Eqs. (12) and (13) to scale SIF and obtained 
TSIF4T that corresponds to the value range of T calculated with the 
standard approach (i.e. TPM) for the entire time series of the maize field. 

2.6.2. Experiment two: SIF to approximate Rn (SIF4Rn) 
For experiment two (SIF4Rn), we evaluate if SIF can be used to 

replace Rn in the PM equation. Replacing Rn with SIF could be justified 
by the mechanistic relation of SIF with APAR (Damm et al., 2015a; 
Mohammed et al., 2019). It must be mentioned that this SIF-based 
approach represents only the PAR region between 400 nm and 700 
nm, while Rn considers both short wave and long wave radiation of the 
electromagnetic spectrum, but we found a good agreement between 
APAR and Rn (cf. Appendix-A). The scaling of SIF (Eqs. (12) and (13)) 
resulted in RSIF

n , with a value range corresponding to Rn from the entire 
time series of the maize field (c.f. Fig. 2a). RSIF

n was then ingested in the 
PM modeling scheme (Eq. (2)) for T estimates (TSIF4Rn). 

2.6.3. Experiment three: SIF to approximate rs (SIF4rs) 
We evaluate in our third experiment (SIF4rs) if SIF can be used to 

replace rs in the PM equation (Eq. (2)). Mechanistically, rs should be 
related to photosynthesis because it is driven by the photosynthetic CO2 
demand. This suggests that SIF may also have a correlation with rs 
through a complex set of physical and biophysical mechanisms. In fact, 
recent studies used rs as an entry point of SIF for T estimates (Shan et al., 
2019; Shan et al. 2021). The scaling of SIF (Eqs. (12) and (13)) resulted 
in rSIF

s , with a value range corresponding to rs (c.f. Fig. 2b) as used in the 
standard approach TPM for the entire time series of the maize field. rSIF

s 
was then ingested in the PM modeling scheme (Eq. (2)) to estimate T 

(TSIF4rs). 

2.6.4. Experiment four: SIF to approximate LAI (SIF4LAI) 
According to Eq. (9), rs can be approximated as a function of rl and 

LAI. Since canopy SIF is largely dependent on LAI (Damm et al., 2021), 
we defined a fourth experiment (SIF4LAI) and evaluated if SIF can be 
used to replace LAI in the PM model, thus indirectly modifying rs. LAISIF 

was obtained using Eqs. (12) and (13) to have a value range corre-
sponding to the LAI used in the standard approach TPM for the entire 
time series of the maize field (c.f. Fig. 2c). LAISIF was then ingested in the 
PM modeling scheme (Eq. (9)) to estimate T (TSIF4LAI). 

2.6.5. Experiment five: SIF to approximate an (SIF4An) 
A last experiment made use of the BBL model that offers with its 

parameter An another interesting entry point of SIF for the modelling of 
T. Since SIF is known to be highly correlated to An or GPP (e.g. Dechant 
et al., 2020; Guanter et al., 2014; Wieneke et al., 2016), we defined the 
experiment SIF4An and replaced An in the BBL equation (Eq. (11)) with 
SIF. This allows to modify estimates of rl (Eq. (10)), later rs (Eq. (9)) and 
eventually T (Eq. (2)) (TSIF4An). Since we did not have An observations, 
we scaled the value range of SIF (Eqs. (12) and (13)) to obtain ASIF

n 
matching typical values of An in maize canopies (0–25 µmol CO2 m− 2 

s− 1) (c.f. Fig. 2d) (Peng et al., 2011; Peng and Gitelson, 2011). 

2.7. Normalization and evaluation of modelling strategies 

2.7.1. Quantification of water limitation on T 
After calculating T with the two standard (TS) and five experimental 

approaches (TE), we normalized the TS and TE time series of the WL area 
(TS,E

WL) using the time series of the WW area (TS,E
WW) as reference: 

nTS,E
WL,WW =

(
TS,E

WL − TS,E
WW

TS,E
WW

)

× 100 (14) 

The resulting nTS,E
WL,WW time series represents the percentage differ-

ence of modelled T between the WL and WW area over time and, thus, 
allows quantifying the effect of applied water limitation on T. The 
normalization was important to compensate variations caused by com-
bined effects of illumination and canopy structure, atmospheric distur-
bances or other observational artefacts. 

2.7.2. Relative sensitivity of SIF informed T modelling for T dynamics 
Calculated nTS,E

WL,WW time series were used to calculate the difference 
between nTE

WL,WW (i.e. the five SIF experiments) and nTS
WL,WW (i.e. the 

two standard approaches TPM, TBB) as: 

rΔTEXP =
(

nTE
WL,WW − nTS

WL,WW

)
(15) 

Resulting rΔTEXP represent the relative (since it is related to a stan-
dard approach, not an absolute reference) sensitivity of SIF informed T 
modelling for changes in T due to soil water limitation. The use of TPM, 
TBB as standard is justified by their widespread implementation, e.g. by 
the FAO. 

2.7.3. Absolute sensitivity of standard and SIF informed T modelling for T 
dynamics 

We calculated the absolute sensitivity of SIF informed modelling for 
T dynamics to better interpret derived relative sensitivities (rΔTEXP) and 
evaluate whether they result in an improved or reduced T modelling 
capacity. In absence of spatially explicit reference T measurements (note 
that sap flow data are point measurements), we used LST as proxy for 
reference T. We normalized the LST time series considering the value 
ranges of TPM of the WW and WL area using Eqs. (12) and (13) to derive 
TLST. We then calculated the relative difference of TLST between the WL 
and WW areas (nTLST

WL,WW) using Eq. (14). The absolute sensitivity of the 
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two standard approaches and five SIF experiments was then quantified 
as: 

aΔTSTD,EXP =
(

nTS,E
WL,WW − nTLST

WL,WW

)
(16) 

It must be noted that we assumed an inverse relationship between 
LST and T, as a reduction in T causes an increase in LST due to reduced 
evapotranspirative cooling. 

3. Results 

3.1. Spatio-temporal transpiration dynamics 

Six spatial datasets out of 42 have been selected to visually represent 
the spatial changes in TPM during the study period for both treatments, i. 
e. WW and WL (Fig. 3a). An increasing difference of TPM between the 
WW and WL area is visible (Fig. 3b). At the beginning of the experiment, 
TPM was higher in the WW field (0.75 mm hr− 1) compared to the WL 

field (0.66 mm hr− 1). At the end of the experiment on 24 June, TPM of 
the WW field increased to 0.89 mm hr− 1, while TPM of the WL area 
showed a reduced increase to 0.76 mm hr− 1. This resulted in an 
increased difference between the WW and WL area of 0.13 mm hr− 1 

compared to the start of the experiment on 16 June (0.09 mm hr− 1). 
Results of both standard approaches and the five SIF experiments are 
similar, detailed statistics are provided in Table A1. 

A time series representing the average of T changes for both standard 
and the five SIF approaches for all observations per day is shown in 
Fig. 4. Results indicate a consistent increase of T in both canopy areas 
(WW, WL) in the morning. One exception is 19 June, where data was 
acquired one hour earlier (10:11–10:34) compared to the other days 
(11:09–11:41). It can be observed that T between the WL and the WW 
area increasingly differed after 19 June, with T of the WL areas showing 
a less steep increase over the duration of the experiment (Fig. 4 left). For 
the afternoon, T in both the WW and WL area also increased, while the 
large increase on 19 June was related to an earlier observation time at 

Fig. 3. Spatiotemporal changes in modeled transpiration by the Penman-Monteith (PM) equation (TPM) for (a) the entire maize field. The well-watered (WW) canopy 
area is marked in red, the water-limited (WL) in black. (b) A detailed representation of TPM changes for the WW and WL area, both are colored and T of the remaining 
area is show in gray values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Changes in average transpiration (T) (mm hr− 1) for the well-watered (WW) and water-limited (WL) maize area in the morning (left) and afternoon (right). 
Shown values represent the average for all observations per day and all approaches, i.e. the two standard (TPM & TBB) and the five sun-induced chlorophyll fluo-
rescence (SIF) based approaches (TSIF4T, TSIF4Rn, TSIF4rs, TSIF4LAI, & TSIF4An). Error bars represent the standard deviation for each set of T estimates per day. 
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solar noon (13:15–13:38) compared to the other days (14:11–14:37). 
The difference between T from both areas did not change in the after-
noon (Fig. 4 right). 

3.2. Impact of soil water limitation on transpiration 

The above assessment of T dynamics during the experiment indi-
cated clear differences between the WW and the WL canopy areas, 
particularly at the end of the experiment. The pronounced variability in 
T across days due to differing acquisition times (Fig. 4), however, 
complicated a more thorough assessment. We therefore normalized all T 
time series of the WL area considering the WW area (nTS,E

WL,WW), results 
are shown in Fig. 5. Besides the generally lower T values of the WL area, 
results indicate an increasing difference of T between the WL and the 
WW area from –7.0 % to –10.87 % (morning) and from –6.5 % to –7.56 
% (afternoon). The exceptional nTS,E

WL,WW value for 19 June (–5.0 %) is 
caused by an approximately one hour earlier observation time compared 
to the other days (Fig. 5). 

3.3. Relative effect of SIF in T modelling 

SIF was differently ingested in T modeling approaches. Here we 
quantify the relative effect of using SIF to approximate different model 
parameters on T (rΔTEXP) as difference between the normalized T of the 
SIF experiments (nTE

WL,WW) and the standard approaches (nTS
WL,WW). 

Results indicate that TSIF4An differed less (–1.1 to –0.1 %) from TPM 
throughout the experimental period, followed by TSIF4LAI (1.4 to 3.2 %), 
TSIF4rs (2.1 to 5.1 %), TSIF4Rn (4.4to 7.5 %), and TSIF4T differing the most 
(6.3 to 9.8%) (Fig. 6). 

The root mean square error (RMSE) and coefficient of determination 
(r2) considering morning and afternoon data confirmed the relatively 
small impact of SIF on T modelling when replacing An (TSIF4An: RMSE =
0.58 %, r2 = 0.98), LAI (TSIF4LAI: RMSE = 2.19 %, r2 = 0.94) and rs 
(TSIF4rs: RMSE = 3.23 %, r2 = 0.84). In contrast, replacing Rn with SIF 
and approximating T with SIF showed highest deviations (for TSIF4Rn: 
RMSE = 6.23 %, r2 = 0.46; for TSIF4T: RMSE = 7.97 %, r2 = 0.21) (Fig. 7). 

Fig. 5. Normalized difference (nTS,E
WL,WW) of transpiration (T) derived from the standard (TS) and the sun-induced chlorophyll fluorescence (SIF) based approaches 

(TE) between the water-limited (WL) and the well-watered (WW) canopy area for morning (left) and afternoon (right). Shown values represent the average for all T 
approaches for all observations per day, the error bars represent the related standard deviation. 

Fig. 6. Relative sensitivity (rΔTEXP) of five sun-induced chlorophyll fluorescence (SIF) based experimental transpiration (T) estimates (TSIF4T, TSIF4Rn, TSIF4rs, TSIF4LAI, 
and TSIF4An) to track changes in T caused by increasing soil water limitation. Five SIF-based T experiments were compared against two standard T estimates (TPM 
and TBB). 
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3.4. Absolute effect of SIF in T modelling using LST 

The above evaluated relative effect of using SIF in T modelling 
cannot reveal if the use of SIF results in improved T estimates or not. An 
absolute T reference is needed for such an assessment. As no direct 
spatial T reference data was available, we used an LST based approxi-
mation of T. The absolute effect of using SIF was quantified as difference 
between the normalized T time series nTS,E

WL,WW (considering both refer-
ence and the five approaches) and the normalized LST based T estimate 
(nTLST

WL,WW). The resulting aΔTSTD,EXP indicates that among all SIF-based T 
approaches, TSIF4rs showed the closest agreement with LST based T dy-
namics (Fig. 8), related statistical measures confirm this (i.e. RMSE of 
1.97 %, r2 of 0.32, Fig. 9). TSIF4An and TSIF4T showed larger deviations 
(RMSE of 3.64 % and r2 0.58, RMSE of 4.14 %, r2 of 0.44, Fig. 9). The 
results also indicate that replacing rs, LAI, and Rn with SIF can outper-
form both standard approaches (TPM, TBB) in terms of RMSE, while only 
replacing LAI and An with SIF results in a higher r2 compared to both 
standard approaches. 

3.5. In situ based assessment of SIF based T modelling approaches 

Sap flow data were used as independent evaluation of T dynamics 

derived from the standard and SIF-based T approaches. The comparison 
indicates that all implemented RS-based T modelling approaches over-
estimate T by 0.28 mm hr− 1 for the WW and 0.27 mm hr− 1 for the WL 
area (Fig. 10). The temporal behavior of TSAP-flow and the evaluated 
standard and SIF-based T approaches are comparable for the WW and 
WL area in the morning (i.e. r2 = 0.76 for WW and WL). In the afternoon, 
the temporal agreement between TSAP-flow and the RS-based T estimates 
are less consistent, resulting for the WW area in an r2 of 0.20 and for the 
WL area in an r2 of 0.02. 

A more detailed evaluation of relationships between TSAP-flow and the 
individual standard and SIF-based T approaches is shown in Table 2. 
This assessment indicates that TSIF4rs shows the largest agreement with 
TSAP-flow (r2 between 0.19 and 0.90, RMSE between 0.36 and 0.21), 
while TSIF4T agrees least (r2 between 0.22 and 0.48, RMSE between 0.38 
and 0.21). 

4. Discussion 

4.1. Considerations on SIF-based T modelling 

This study systematically investigated experimental strategies to 
ingest SIF in T modelling approaches. Both evaluated standard ap-
proaches and the five SIF-based derivatives indicate a reduced T with 

Fig. 7. Effect of using sun-induced chlorophyll fluo-
rescence (SIF) in transpiration (T) modeling quanti-
fied by the root mean square error (RMSE) and 
coefficient of determination (r2). Five SIF-based ap-
proaches were considered: TSIF4T, TSIF4Rn, TSIF4rs, TSI-

F4LAI, and TSIF4An. RMSE and r2 relate the normalized 
difference of standard T approaches (nTS

WL,WW) with 
the normalized difference of the SIF experimental 
approaches (nTE

WL,WW). RMSE and r2 were calculated 
without separating morning and afternoon time 
series.   

Fig. 8. Absolute difference (aΔTSTD,EXP) between a land surface temperature (LST) based transpiration (T) estimate and the five sun-induced fluorescence (SIF) based 
and two standard T approaches (TPM and TBB). 
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Fig. 9. Summary statistics (root mean square error (RMSE) and coefficient of determination (r2)) describing the absolute difference between a land surface tem-
perature (LST) based transpiration (T) estimate and the five sun-induced chlorophyll fluorescence (SIF) based and two standard T approaches (TPM and TBB). RMSE 
and r2 were calculated without separating morning and afternoon time series. 

Fig. 10. Comparison between the average of transpiration (T) modelled with the standard approaches (TS) and sun-induced chlorophyll fluorescence (SIF) based 
approaches (TE) and derived from sap flow measurements (TSAP-flow) for all methods per day. WW represents the well-watered canopy area, WL the water limited one. 
The error bars represent the standard deviation. 

Table 2 
The coefficient of determination (r2) and root mean square error (RMSE) between sap flow-based transpiration (T) (TSAP-flow) and two standard approaches (TPM and 
TBB) and five sun-induced chlorophyll fluorescence (SIF) based approaches (TSIF4T, TSIF4Rn, TSIF4rs, TSIF4LAI, and TSIF4An).   

WW Morning WL Morning WW Afternoon WL Afternoon 

Approach r2 RMSE r2 RMSE r2 RMSE r2 RMSE 

TPM  0.80  0.22  0.79  0.23  0.28  0.39  0.06  0.30 
TBB  0.79  0.24  0.75  0.26  0.27  0.42  0.05  0.32 
TSIF4T  0.31  0.21  0.32  0.29  0.22  0.38  0.48  0.35 
TSIFRn  0.78  0.19  0.83  0.25  0.12  0.36  0.0001  0.32 
TSIF4rs  0.90  0.21  0.74  0.25  0.48  0.36  0.19  0.29 
TSIF4LAI  0.79  0.22  0.74  0.25  0.30  0.41  0.07  0.32 
TSIF4An  0.76  0.22  0.77  0.24  0.24  0.40  0.04  0.30  
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evolving water limitation (i.e. an average T decrease of 3.5 %) related to 
a 60 % reduced volumetric soil moisture at the end of the experiment (cf. 
Damm et al., 2022). The observed sensitivity of RS informed standard T 
approaches for water limitation is in agreement with another study 
addressing T dynamics at coarser scale (Ahmed et al., 2021). 

We evaluated the relative effect of SIF in T modeling and found 
closest agreement of the standard approaches with TSIF4An, followed by 
TSIF4LAI and TSIF4rs (c.f. Fig. 7). This indicates the smallest effects of SIF 
on T estimates when replacing An, LAI and rs in the PM and BBL ap-
proaches. A possible explanation for this is the underlying approxima-
tion level, while in all three cases only the rs parameter of the PM 
modelling framework was modified and the specific value range during 
the experiment likely caused small importance in the PM and BBL 
equations. Likewise, replacing T with SIF resulted in largest relative 
differences compared to the standard T approaches, since SIF approxi-
mates in this case all, the energy, atmospheric and biological constraints 
on T. 

The relative effect does not allow conclusions whether the use of SIF 
increased the accuracy of T estimates under water limited conditions or 
not. We therefore compared modelled T against a LST based reference T 
estimate. The best agreement with the LST based T estimates was 
observed for TSIF4rs (via smallest RMSE), TSIF4An (via highest r2) and 
TSIF4LAI (via smaller RSME and higher r2), while for these cases SIF was 
used to approximate stomatal conductance indirectly (i.e. via An in BBL 
and LAI in PM) or directly (i.e. via rs in the PM model). This could 
indicate that rs is in fact an interesting entry point of SIF in T modelling. 
This general finding is in agreement with the studies by Shan et al. 
(2019, 2021), that also suggest connecting SIF with stomatal conduc-
tance. Nevertheless, our results do not allow ranking the best suited 
strategies to ingest SIF in T modelling. 

Recent studies conclude on the importance of multi-sensor ap-
proaches to account for the individual underlying processes and plant 
adaptation mechanisms that act at different spatial and temporal scales 
when aiming to estimate T (e.g. Damm et al., 2018, 2022; Jonard et al., 
2020). Results derived from our short-term experiment with subtle 
changes of soil water availability seem to confirm this finding: The 
approximation of individual parameters of the PM and BBL equations 
with SIF resulted in a higher agreement between SIF and LST based T 
estimates compared to the use of SIF as single proxy for T. This finding 
differs compared to recent studies that found an overall good perfor-
mance for SIF as single proxy of T (Lu et al., 2018; Maes et al. 2020), 
indicating a scale dependency of SIF-T relationships via related spa-
tial–temporal dynamics of T, SIF and underlying abiotic and biotic fac-
tors. In fact, we observed short-term changes in T in a structurally almost 
non-changing canopy, while existing studies investigated coarser tem-
poral and spatial scales and covered larger gradients of T driving factors 
including canopy structure (Lu et al., 2018; Maes et al., 2020). 

On a related note, it is important to make aware of the different 
temporal process lengths and underlying mechanisms determining dy-
namics in LAI and SIF. In fact, we only had a slight change of structural 
plant properties over the course of the experiment (small wilting effects, 
small increase of LAI in both canopy areas), while irradiance, thus SIF, 
varied more substantial. Since we pooled data that were observed under 
comparable conditions (i.e. morning and afternoon), we could avoid 
unrealistic sensitivities of SIF approximated LAI, thus TSIF4LAI. We 
consider it important to harmonize length scales of parameters when 
they differ from SIF. Furthermore, considerations on the empirical 
relationship between SIF and T considering process lengths of approxi-
mated biotic and abiotic parameters is needed to elaborate on the best 
use of SIF and its representativeness for short- and long-term changes in 
plant water relations. 

The comparison of all RS-based T estimates (i.e. standard approaches 
and SIF experiments) with independent TSAP-flow measurements in-
dicates similar temporal dynamics and general T differences between 
the WW and WL treatment. However, we observe a 28 % overestimation 
of T for all RS approaches for both, the WW and WL areas, that hinders 

further conclusions on the most suited RS approach in relation to TSAP- 

flow. Given the rather homogenous plants in the maize canopy, the small 
standard deviation of retrieved TSAP-flow (cf. Damm et al, 2022) and the 
fact that we used an established approach to measure TSAP-flow, we 
consider the number of ten SAP gauges per treatment as sufficient and 
the accuracy of retrieved TSAP-flow as reliable. The 28 % offset is likely 
caused by the fundamental difference between RS and in situ ap-
proaches. The xylematic sap flow is measured at the stem base and in-
cludes both T and plant water storage. The latter process is neither 
considered in the PM equation nor measured with SIF because both 
focus on instantaneous data. Therefore, the contrasting mismatch be-
comes more evident during rapid T changes (Peressotti and Ham, 1996). 
Further, TSAP-flow in the morning is lower than T due to de-hydration, 
and higher compared to T in the evening due to re-hydration. T dy-
namics can be additionally driven by factors not impacting sap flow. 
Certainly, also local variability in plant density, LAI, and soil water 
retention curves could contribute to a dynamic in estimated TSAP-flow 
(Jara et al., 1998) that alters their representativeness for the entire 
canopy. Considering RS, the specific top-view perspective of RS repre-
senting the outer canopy area remains less sensitive for lower canopy 
layers (Damm et al., 2020). Therefore, RS-based T estimates will likely 
differ from established in situ T measurements (e.g. sap flow and eddy 
flux) in terms of value ranges and timing. Additional experimental and 
modelling research is needed to evaluate whether the observed 28 % 
bias is robust or changes across canopies and ecosystem types. Since we 
use SAP data only as independent context to interpret RS based T dy-
namics, observed bias does not affect the main outcome of our results, i. 
e. the observed RS based T dynamics and the assessment of relative and 
absolute effects of SIF in T modelling. 

4.2. Reliability of this study 

The reliability and representativeness of our findings depend on the 
input data and made assumptions. We used high resolution airborne 
data and applied established processing schemes for data product 
retrieval and, thus, could minimize related uncertainties (Hanuš et al., 
2016; Rascher et al., 2015; Siegmann et al., 2019). Concerning the 
evaluation of absolute T accuracy, we used a RS-based LST proxy and in 
situ sap flow data. Previous studies showed that LST (downscaled and 
disaggregated) can be used for actual ET estimates (Bisquert et al., 2016; 
Jiang and Weng, 2017; Olivera-Guerra et al., 2017). Other studies have 
highlighted the feasibility, importance and positive impact of LST for ET 
modeling (Mahour et al., 2017; Sun et al., 2016). This indicates that 
derived relative differences between the LST based T estimates and the 
implemented standard and SIF-based experiments can be considered 
rather reliable, while statements on the absolute accuracy must be still 
interpreted with care. The additional evaluation of modelled T with 
independent sap flow-based measured T data provides complementary 
insight on relative and absolute accuracy. Fundamental differences be-
tween sap flow measurements and RS approaches, however, limit our 
ability to make statements on the absolute accuracy of evaluated T 
approaches. 

In terms of our modeling setup, we used the established PM and BBL 
approaches for calculating standard T. Studies have shown that the PM 
equation was capable of considering the most crucial variables for T 
dynamics (e.g. Allen, 2005; Langensiepen et al., 2009), and the BBL 
equation is robust for modeling gs, and related rs (Leuning, 1995). 
Despite the reliability of these modelling frameworks, some unavoidable 
limitations can compromise T estimates. A main problem lies, for 
example, in the practical necessity to use data with diverse spatial res-
olution and representativeness for model parameterization, e.g. non- 
spatial meteorological data vs spatially resolved data for structural 
variables. Nevertheless, our experimental results showed that T esti-
mates with and without SIF provide plausible results under increasing 
water limitation, which is also evidenced by the comparison with in-
dependent sap flow-based T measurements. 
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We simplified the relationships between SIF and the different model 
parameters, i.e. the application of the unity-based normalization as-
sumes linearity between SIF and individual parameters. However, SIF 
and An were found to be hyperbolically related for large ranges of SIF 
and An (i.e. Damm et al., 2015a; Gu et al., 2019; Liu et al., 2022). In fact, 
applying a non-linear saturating relationship between SIF and An would 
result in a higher effect of SIF at low values and a lower effect of SIF at 
middle and higher values compared to the used linearity assumption. It 
must be noted that our experiment in the established maize canopy 
lasted only one week, with SIF values in the order of 1–2 mW m− 2 nm− 1 

sr− 1 and we separatly pooled morning and afternoon data that were 
acquired under comparable light conditions. This means that value 
ranges for An, Rn, rs were relatively small so that the linearity assump-
tion should be still reasonable. For LAI, we investigated data with a 
larger value range (i.e. 2–6 m2 m− 2) but only small deviations of SIF-LAI 
relationships from linearity were reported in a recent modelling study 
(Damm et al., 2021). Considering more representative relationships 
would be ideal, but with the existing data it is impossible to derive them, 
and any assumptions would again introduce uncertainties. Further, since 
our results show expectedly a large dependence on the level of 
approximation (i.e. from replacing T by SIF or only individual model 
parameter) derived conclusions are not affected by the linearity 
assumption and stay robust. 

4.3. Towards mechanistic SIF-based T assessments 

Relationships between SIF and T greatly vary across vegetation 
types, climate and time due to individual sensitivities of both variables 
to underlying abiotic and biotic environmental factors (Maes et al., 
2020). Several studies therefore suggest multi-data approaches to ac-
count for commonly applied assumptions in ET modeling and to 
consider the individual spatial and temporal dynamics of involved 
processes and used parameters (Damm et al., 2018; Jonard et al., 2020). 
In this context, the use of mechanistic soil–plant-atmosphere continuum 
(SPAC) models (e.g. García-Tejera et al., 2017; Tuzet et al., 2003) be-
comes interesting to possibly advance the use of SIF in T modelling. 
SPAC models offer the possibility to account for the limitation and dis-
tribution of soil water (García-Tejera et al., 2017) aside atmospheric and 
plant variables and processes, and allow moving towards more mecha-
nistic descriptions of plant-water relations (Damm et al., 2018). SPAC 
like modelling concepts are already embedded in models like CLM5 
(Bonan et al., 2014) to facilitate large scale approaches and enable 
consistent assessments of plant-water interactions across observational 
scales. Another important aspect concerning the refinement of 

modelling approaches is to account for different spatial dynamics of 
surface dryness (via stomatal conductance) and atmospheric dryness 
(via VPD and other micrometeorological variables) and to realistically 
represent them in models, particularly over complex structured land-
scapes with large contrasts of land cover. Also, the elastic behavior of 
plants including their transport capacity and ability to temporarily store 
water requires further attention. 

We consider it important to include diverse in situ reference T 
measurements (e.g. EC flux measurements) in the experimental design 
of studies aiming to advance T modelling approaches. Observed and 
discussed differences between modelled RS and SAP-based T estimates 
suggest the need for additional refinements to better integrate and 
interlink both complementary and relevant approaches. In this context, 
additional developments of in situ T measurement strategies, (cf. Kool 
et al., 2014; Paul-Limoges et al., 2022; Paul-Limoges et al., 2020; Stoy 
et al., 2019), are needed to facilitate the exploitation, development and 
validation of mechanistic modelling approaches. 

5. Conclusion 

New functional vegetation information such as SIF complement 
existing observational approaches to assess dynamics of complex 
ecosystem processes (e.g. T) in response to evolving environmental 
stress like soil water limitation. We conclude that among the investi-
gated approaches, linking SIF in various ways with the rs parameter of 
the PM-BBL modelling frameworks shows an interesting trade-off be-
tween a balanced effect on established T modelling and potential to 
increase the agreement between SIF based T estimates and T derived 
from established LST based approaches. We recommend further field 
and data experiments covering heterogeneous vegetation canopies and 
environmental stress types over longer time periods to assess sensitivity 
limits of SIF-based approaches for T modelling. Further advancement to 
mechanistically integrate SIF in models is important to fully exploit the 
potential of SIF and obtain additional insights for advancing T assess-
ments at ecosystem scale. We observe a 28 % bias between RS and in situ 
based T estimates. We conclude on the importance to combine such 
independent observations of complex ecosystem gas exchange but also 
on the need for studies and methods to better integrate T estimates 
derived from such complementary approaches. 
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Fig. A1. Agreement between absorbed photosynthetic active radiation (APAR) and net radiation (Rn) simulated by the SCOPE model. SCOPE was parameterized with 
ERA-5 data (Muñoz-Sabater et al., 2021) and in situ measurements. (a) Scatterplot showing the agreement between APAR and Rn before scaling. (b) The diurnal 
cycles of modeled Rn and Rn approximated by APAR at hourly time intervals. The shaded area indicates the measurement period from 16 to 24 June 2019. 
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the work reported in this paper. 
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Appendix A 

Due to lack of relevant data to parameterize Eq. (2) and calculate net 
radiation (Rn), we followed a simpler approach making use of an 
empirically found and temporarily valid relationship between absorbed 
photosynthetic active radiation (APAR) and Rn. Since Rn is determined 
by short-wave solar radiation (SW) represented by APAR and long-wave 
radiation (LW), Rn estimates based on APAR typically underestimate Rn 
and are prone to uncertainties since the LW dynamics are not consid-
ered. We established a sensitivity analysis to quantify the uncertainty 
related to our simplified APAR based Rn estimate. 

For the sensitivity analysis, we collected hourly ERA-5 data (Muñoz- 

Sabater et al., 2021) from the measurement period (13–25 June 2019), 
particularly, down-welling solar-radiation (SWin), down-welling long- 
wave radiation (LWin), wind speed, surface pressure, and air 
temperature. 

These re-analyzed data together with in situ measured chlorophyll 
content, leaf area index (LAI), and canopy height were used to param-
eterize the SCOPE model, version 1.71 (van der Tol et al., 2009) to 
simulate APAR and Rn. The direct comparison with modelled Rn reveals 
that an APAR based Rn estimate underestimates by a factor of 1.8 
(Fig. A.1). After applying the scaling factor, we observe a good agree-
ment (r2 of 0.98) and an overall root mean squared error (RMSE) of 
24.09 Wm− 2, corresponding to an overall percentage error of 11.35% 
during the observational period (Fig. A.1). 

Appendix B 
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corrected long-term satellite solar-induced fluorescence leads to improved 
estimation of global trends in vegetation photosynthesis during 1995–2018. ISPRS J. 
Photogramm. Remote Sens. 194, 222–234. https://doi.org/10.1016/j. 
isprsjprs.2022.10.018. 

Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., Rascher, U., 2016. 
Airborne based spectroscopy of red and far-red sun-induced chlorophyll 
fluorescence: Implications for improved estimates of gross primary productivity. 
Remote Sens. Environ. 184, 654–667. https://doi.org/10.1016/j.rse.2016.07.025. 

Xiao, J., Fisher, J.B., Hashimoto, H., Ichii, K., Parazoo, N.C., 2021. Emerging satellite 
observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887. 
https://doi.org/10.1038/s41477-021-00952-8. 

Yebra, M., Van Dijk, A., Leuning, R., Huete, A., Guerschman, J.P., 2013. Evaluation of 
optical remote sensing to estimate actual evapotranspiration and canopy 
conductance. Remote Sens. Environ. 129, 250–261. https://doi.org/10.1016/j. 
rse.2012.11.004. 

Zhang, F., Zhou, G., Nilsson, C., 2015. Remote estimation of the fraction of absorbed 
photosynthetically active radiation for a maize canopy in Northeast China. J. Plant 
Ecol. 8, 429–435. https://doi.org/10.1093/jpe/rtu027. 

K.R. Ahmed et al.                                                                                                                                                                                                                               

https://doi.org/10.1038/nature12350
https://doi.org/10.1038/nature12350
https://doi.org/10.1046/j.1365-2486.2002.00530.x
https://doi.org/10.1046/j.1365-2486.2002.00530.x
https://doi.org/10.1016/j.rse.2019.01.016
https://doi.org/10.1016/j.rse.2019.01.016
https://doi.org/10.2480/agrmet.37.9
https://doi.org/10.1111/nph.15934
https://doi.org/10.1111/nph.15934
https://doi.org/10.1016/j.agrformet.2019.01.031
https://doi.org/10.1016/j.agrformet.2019.01.031
https://doi.org/10.1016/j.rse.2020.112134
https://doi.org/10.3390/rs11232760
https://doi.org/10.1007/s40641-018-0103-4
https://doi.org/10.5194/bg-16-3747-2019
https://doi.org/10.5194/bg-16-3747-2019
https://doi.org/10.1155/2016/1835487
https://doi.org/10.1155/2016/1835487
https://doi.org/10.1109/igarss.1994.399469
https://doi.org/10.1046/j.1365-3040.2003.01035.x
https://doi.org/10.1046/j.1365-3040.2003.01035.x
https://doi.org/10.5194/bg-6-3109-2009
https://doi.org/10.5194/bg-6-3109-2009
https://doi.org/10.1175/2008JAMC1959.1
https://doi.org/10.1016/j.isprsjprs.2022.10.018
https://doi.org/10.1016/j.isprsjprs.2022.10.018
https://doi.org/10.1016/j.rse.2016.07.025
https://doi.org/10.1038/s41477-021-00952-8
https://doi.org/10.1016/j.rse.2012.11.004
https://doi.org/10.1016/j.rse.2012.11.004
https://doi.org/10.1093/jpe/rtu027

	Empirical insights on the use of sun-induced chlorophyll fluorescence to estimate short-term changes in crop transpiration  ...
	1 Introduction
	2 Methods
	2.1 Test site
	2.2 In situ data
	2.3 Sap flow measurements
	2.4 Airborne data
	2.5 Standard T approaches (TPM, TBB)
	2.6 Strategies to integrate SIF in T modelling
	2.6.1 Experiment one: SIF to approximate T (SIF4T)
	2.6.2 Experiment two: SIF to approximate Rn (SIF4Rn)
	2.6.3 Experiment three: SIF to approximate rs (SIF4rs)
	2.6.4 Experiment four: SIF to approximate LAI (SIF4LAI)
	2.6.5 Experiment five: SIF to approximate an (SIF4An)

	2.7 Normalization and evaluation of modelling strategies
	2.7.1 Quantification of water limitation on T
	2.7.2 Relative sensitivity of SIF informed T modelling for T dynamics
	2.7.3 Absolute sensitivity of standard and SIF informed T modelling for T dynamics


	3 Results
	3.1 Spatio-temporal transpiration dynamics
	3.2 Impact of soil water limitation on transpiration
	3.3 Relative effect of SIF in T modelling
	3.4 Absolute effect of SIF in T modelling using LST
	3.5 In situ based assessment of SIF based T modelling approaches

	4 Discussion
	4.1 Considerations on SIF-based T modelling
	4.2 Reliability of this study
	4.3 Towards mechanistic SIF-based T assessments

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Acknowledgment
	Appendix B Acknowledgment
	References


