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Ecological interactions influence evolutionarydynamics byselectingupon fitness
variation within species. Antagonistic interactions often promote genetic and
species diversity, despite the inherently suppressive effect they can have on the
species experiencing them.Acentral aimof evolutionaryecology is tounderstand
how diversity is maintained in systems experiencing antagonism. In this review,
we address how certain single-celled and dimorphic fungi have evolved allelo-
pathic killer phenotypes that engage in antagonistic interactions. We discuss
the evolutionary pathways to the production of lethal toxins, the functions of
killer phenotypes and the consequences of competition for toxin producers,
their competitors and toxin-encoding endosymbionts. Killer phenotypes are
powerfulmodels becausemanyappear to have evolved independently, enabling
across-phylogeny comparisons of the origins, functions and consequences of
allelopathic antagonism. Killer phenotypes can eliminate host competitors and
influence evolutionary dynamics, yet the evolutionary ecology of killer pheno-
types remains largely unknown. We discuss what is known and what remains
to be ascertained about killer phenotype ecology and evolution, while bringing
their model system properties to the reader’s attention.
1. Introduction
Competition is often partitioned into subcategories of exploitation and interfer-
ence competition, which respectively involve indirect resource-mediated and
direct individual-level antagonism [1,2]. Interference strategies act as efficient
alternatives to the generality of exploitation competition and are expected to
evolve as trade-offs between the benefits of excluding competitors and the
costs of attempts to do so [3–5]. Such benefits and costs are often context depen-
dent [6], inviting phenotypic polymorphism and plasticity into antagonistic
trait expression.

In its simplest form, interference competition should lead to monomorphic
populations and single species communities. However, communities tend to be
assemblages of phenotypically and genetically diverse individuals belonging to
different species, even where antagonistic interactions are evident [7–9]. The
explanation for the apparent persistence of diversity is that processes like inter-
ference competition select for competitor counter adaptations for mitigating
against antagonism [10–12]. Logically, this process can be expected to trigger
coevolutionary dynamics. The research challenge that remains is to evaluate
whether coevolutionary dynamics are a common force maintaining polymorph-
ism and diversity in populations and communities where interference
competition is frequent [3,13].

Here, we propose fungal killer phenotypes as ideal models for studying the
ecological and evolutionary consequences of interference competition. Fungi
host diverse competitive strategies [14,15], but perhaps none are quite as striking
as the antagonistic allelopathy defining killer phenotypes. In short, killer pheno-
types are an expression of genes encoding proteinaceous toxins, that upon
liberation from the producer can eliminate intraspecific and interspecific
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Figure 1. A basic schematic of the direct (solid lines) and indirect (dashed
lines) uses of the parties to one another in a standard endosymbiont-based
killer system. Endosymbiont-encoded killer systems involve three parties: the
fungal host, the toxin-encoding satellite virus and the helper virus. (a) Helper
viruses use host resources for their maintenance and replication. (b) Toxin-
encoding satellite viruses rely on helper virus genes for their maintenance
and replication in the fungal host cell. (c) Fungi process a preprotoxin that
is encoded on the satellite virus genome. (d ) Toxins are used against intras-
pecific and interspecific competitors, the benefits of which depend on the
prevalence of resistance among competitors. (e) Toxin-encoding satellite
viruses rely indirectly on their fungal hosts through their reliance on
helper viruses. ( f ) Helper viruses rely indirectly on satellite viruses through
the benefits satellites can provide to their shared host.
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competitors [16]. Fungal killer phenotypes have the following
advantages as model systems: (i) who kills whom is discernible
[16–20], (ii) many killer phenotypes belong to well-studied
model organisms [21–24], and (iii) the mechanistic bases of kill-
ers, killing and immunity are reasonably well understood
[25–32]. Toxin production can be encoded on nuclear genes,
or alternatively by viral symbioses involving interactions
between multiple viral classes [33]. The multipartite viral
endosymbiosis underlying some killer phenotypes provides
an additional layer of interest, granting opportunity to study
host-endosymbiont interactions and the eco-evolutionary feed-
backs they encounter with host competition. In this paper, we
review our current understanding of the ecology and evolution
of fungal killer phenotypes. Our core goals are to demonstrate
the relevance of this phenomenon to the study of general
ecological and evolutionary processes, and detail unexplored
territory in fungal killer phenotype research.
2. An overview of the fungal killer phenotype
phenomenon

(a) The discovery of fungal killer phenotypes
Killer phenotypeswere first discovered in Saccharomyces cerevisiae
by Bevan and Makower 60 years ago [16]. Strains of S. cerevisiae
were classified as killers, sensitive or neutral (resistant), based on
their survivorship in co-cultures. Killing was found to have an
allelopathic basis, whereby specific abiotic conditions could acti-
vate proteinaceous toxin production [34]. Killer phenotypeswere
found to be encoded on non-mendelian genetic elements, later
shown to be two distinct cytoplasmic double-stranded RNA
(dsRNA) viruses [35,36]. Toxin-sensitive strains were found to
lack the smaller virus (coined the M virus) and any observable
killer phenotype, indicating its role in encoding toxin production
and immunity [37,38]. The larger virus (coined the L-A virus)
was found to autonomously replicate in the host, while the M
virus could only be found in cells where the L-A virus was
present [39]. Both viruses were found to be in possession of a
L-A virus encoded major capsid protein (ScV-P1), revealing the
dependence of the M virus on the L-A virus for its persistence
in the host cell [40]. These findings together uncovered a multi-
viral endosymbiosis underlying antagonistic allelopathy in
fungi (figure 1).
(b) The diversity of fungal killer phenotypes
Killer phenotypes have since been discovered in many
species of the Dikarya subkingdom of fungi. Most species
with killer phenotypes are ascomycetes (phylum Ascomy-
cota), however killer phenotypes are known from more
classes of Basidiomycota (figure 2; electronic supplementary
material, table S1). The vast majority of killer phenotypes
belong to unicellular fungi [33], and thus ‘killer yeast’ is
widely used synonymously, albeit near exclusively. Not all
killer phenotypes have a viral basis. Killer phenotypes can
be partitioned into those whose toxin production have a chro-
mosomal (nuclear) basis and those with an endosymbiotic
basis (electronic supplementary material, table S1). Endosym-
biont-encoded killer phenotypes can also be subdivided
by genetic material into the aforementioned dsRNA-based
killer phenotypes and their dsDNA equivalents (often
called virus-like elements). Where the genetic basis of toxin
production has been determined, a chromosomal basis is
most frequent, while dsRNA-based killer systems are the
most common of those with an endosymbiotic basis (elec-
tronic supplementary material, table S1). The genetic basis
of toxin production however remains unknown for most
species with killer phenotypes, including for some that are
relatively well studied (electronic supplementary material,
table S1); this certainly undermines attempts to explore the
macroevolutionary origins of this phenomenon. Whether
killer phenotypes have been discovered in a genus is a func-
tion of how well studied the genus is [42], indicating that
more will be uncovered if attempts are made to do so.
(c) The function of fungal killer phenotypes
Killer phenotypes require an expression of genes that encode
proteinaceous modules with toxic properties [16]. As killer
phenotypes can directly inhibit the growth of their competi-
tors, they are often considered strategies for interference
competition (figure 1; [43]). Depending on the killer system
in question, killer toxins can either eliminate both allospecifics
and conspecifics, or solely the former [27,42]. Interference
competition is the most credible function of killer phenotypes
that exclusively eliminate allospecifics. Interference compe-
tition can free up resources that are otherwise shared and
depleted [30,44,45]. Under this model, killer phenotypes are
maintained for the function they provide to the fungal host,
whereby the fitness of the toxin-encoding genetic elements
are aligned with the host’s background genomes.

An alternative model for the evolution of killer pheno-
types are toxin–antitoxin systems, a phenomenon well
documented in bacteria [46–49]. Clonal variants that break
the association with their toxin-encoding genetic elements
also lose their immunity and are killed [27,34,50,51].
Toxin–antitoxin systems are believed to be selected for from
the perspective of toxin-encoding genetic elements, as they
prevent the host from losing them. Indeed, toxin production
and self-immunity of many killer phenotypes are linked
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Figure 2. Class-level phylogenetic distribution of known killer phenotypes across the Dikarya subkingdom of fungi. The original tree was provided by Naranjo-Ortiz &
Gabaldón [41], which we reduced to show the sub-phyla of Dikarya, Ascomycota ( purple clade) and Basidiomycota (indigo clade) with Entorrhizomycotina as an
outgroup. For most classes in possession of killer phenotypes, the genetic architecture remains unknown (grey box), whilst for others a chromosomal basis (green
box), dsRNA (orange box) or dsDNA (red box) viral basis has been uncovered. Indication of the presence of killer phenotypes in a class does not mean that all species
in the class have killer phenotypes.
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through the same gene or cytoplasmic genetic element, thus
giving some credence to this hypothesis [52–54].

These models of killer phenotype function and mainten-
ance are not necessarily mutually exclusive. The interference
competition model excels at explaining how a killer phenotype
would invade a community or prevent invasions from dis-
tantly related competitors, while the toxin–antitoxin model
explains how a toxin-producing monoculture is protected
against mutants that do not accommodate the costs of
maintaining toxin-encoding genetic elements.

(d) The ecology and evolution of fungal killer
phenotypes are understudied

Fungal killer phenotypeswere discovered 60 years ago, inwhich
time major advances in understanding this phenomenon have
beenmade.Where does our understanding of this phenomenon
come from? To address this question, we conducted a literature
survey using the Web of Science database (WOS; figure 3).
Microbiology was the most frequent categorization of killer
yeast publications (24.5% of all categories mentioned).
Biotechnology and applied microbiology were second amongst
publication categories (18.2%), research typically investigating
the use of killer toxins for suppressing crop pests and opportu-
nistic pathogens. Most basic research has been directed towards
the biochemical (13.7%) and genetic (5.3%) mechanisms under-
lying the internal (endosymbiotic) and external (competitive)
interactions involved in killing (figure 3b). Biochemical and cel-
lular-level research have provided insights into toxin action and
immunity [30,55–57], toxin size and structure [58,59], replica-
tion, transcription and translation of endosymbionts [60,61], as
well as isolating a number of host genes that endosymbionts
depend upon [62–64].

The basic organismal biology of killer phenotypes has rarely
been explored (figure 3a,b). From 1966 to 2022, there were on
average less than a single publication per year categorized by
WOS as belonging to the ecology or evolutionary biology disci-
plines. Publications concerning Saccharomyceswere 34.4% of the
pooled publications for focal genera, 2.5 times as many publi-
cations as that of the second most studied taxa, Pichia
(figure 3c). It is apparent that the basic evolutionary ecology
of fungal killer phenotypes is understudied, and that there
are many underexplored killer systems to do so with. Hereafter,
we address our understanding of the ecology and evolution
of this phenomenon to demonstrate its relevance to the killer
phenotype research community and beyond.
3. Fungal killer phenotypes in populations
and communities

(a) Abiotic controls on killing and its effectiveness
Killer phenotypes eliminate toxin-sensitive competitors. Toxin
production is typically activated by highly specific environ-
mental cues such as pH, temperature or salt concentration
[20,27]. For killer phenotypes to be beneficial to fungi, the
timing of toxin production should coincide with when it can
be effective, which would in turn require a trigger linking an
environmental stimuli to expression of toxin-encoding genes.
Abiotic and biotic parameters are often coupled [65,66],
whereby changes in abiotic conditions can induce changes in
community composition, and vice versa; it seems plausible
that toxin production is linked to species turnover in competitive
environments through abiotic conditions. However, much
further research is required to confirm this link.

Moreover, toxins are released into the external environ-
ment in a diffusive fashion, being diluted in the process.
Toxins can diffuse and eliminate competitors over a centi-
metre away on agar plates [67,68]. Natural environments
are far more heterogeneous, which may impede the distances
at which toxins are effective. Furthermore, the dilution pro-
cess reduces the effectiveness of killer toxins. Effective
concentrations of toxins have only been found to occur
when producers congregate [69], which may be most proble-
matic for killer phenotypes in aquatic environments [70].
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Figure 3. Summary of published scientific literature on the fungal killer phenomenon. We conducted a quantitative literature survey with the search tools of
the Web of Science (WOS; clarivate analytics). We used the term ‘killer yeast’ for 2A and 2B, finding 1194 papers between 1966 and 2022 after manual filtering
to remove irrelevant publications that were picked up by the search criteria. (a) The graph shows the number of publications per year within a WOS designated
category, with the top five categories and ecology and evolutionary biology indicated by colour. (b) The most frequently reported WOS categories for publications
concerning ‘killer yeast’ are provided with the number of times they are assigned to publications, with the same categories as in 2A being highlighted. Multiple
assignments are possible for 2A and 2B, totalling at 1978 assignments. (c) The total number of publications exploring the killer phenotypes present in a selection of
genera, colour coded to indicate the genetic basis of their toxins. We used the terms ‘killer’, ‘toxin’ and the name of the genera (e.g. Saccharomyces).
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Where diffusibility is low, killer toxins may not extend far
beyond clonal siblings. However, detailed assessments of
toxin activity in natural or semi-natural environments have
not been conducted.

(b) Is killing part of a cooperative strategy in yeast?
Toxin-sensitive competitorsmust be in the vicinity for toxin pro-
duction to be beneficial. Killer yeast fitness is greatest when their
competitors are toxin-sensitive [71]. Clonal reproduction of
killer yeast in structured environments results in clonal siblings
all having the same killer phenotype and corresponding self-
immunity. As toxin effectiveness against toxin-sensitive compe-
titors is density-dependent and requires congregations of killer
yeast [69], toxins are unlikely to be used as a tool for invading
occupied niches. It is more tenable that toxins are used to pre-
vent invasions from other unrelated taxa. Many yeast and
yeast-like fungi demonstrate cooperative traits, ranging from
facultativemulticellularity to public goods production and shar-
ing [72–74]. High relatedness is typically a requirement for
cooperation [75–78]. Cooperation is evolutionarily unstable in
the absence of mechanisms that counteract the selective incen-
tive to cheat [79–81]. Antagonism is a known strategy of
defector control in bacteria, and may apply to fungi [82]. As
fungi with killer phenotypes cannot kill clonal cohabiters,
toxin production may be used to filter unrelated competitors
that may otherwise use public goods without any form of
reciprocation. Though some unrelated competitors may
have non-homologous immunity, killer toxins may shrink
the pool of defectors. Rivero et al. [83] reported that in high
cell density cultures of S. cerevisiae, altruistic fractions of
killer populations undergo cell lysis and release Hsp12p for
the public good, and the remaining killer population then
release toxins to eliminate distantly related toxin-sensitive
competitors in order to direct resources towards closely
related kin ([83]; figure 4). This result, while standalone, indi-
cates that killer phenotypes may function alongside other
population-level social processes. This may not apply to all
killer systems as not all yeast and yeast-like fungi are likely
to be so cooperative. Considering the potential ancestral
relatedness of many killer phenotypes, their functions may
have diversified in accordance with the ecology of the hosts
that wield them.
(c) Do killer phenotypes drive coevolutionary dynamics
with host competitors?

The elimination of toxin-sensitive competitors reduces genetic
and functional diversity in the populations and communities
of killer yeast. Some species use toxins to eliminate members
of the same species while others can eliminate individuals
from distant species [42], including bacteria [84–86]. The conse-
quences of genotype or species extinction for population
viability, community structure and ecosystem function depend
on the degree of functional redundancy in the system.
Reductions in genetic diversity can hinder population adapta-
bility in ever changing environments [87–89]. Elimination of
keystone species would however have the greatest impact on
communities, though studies have not linked toxin-sensitive
competitors to their ecological functions. Where toxin-sensitive
competitors outnumber toxin-resistant competitors, killer phe-
notypes may radically change community composition and
structure despite toxin-sensitive competitors not providing key-
stone functions. Connectedness and closeness centrality are
often used as indicators of a species’ community-level function
[90,91], and have previously been used to identify keystone
species in microbial communities [92]. Who kills whom, and
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how, of naturally co-occurring yeast strains and species remains
a largely unexplored topic, thus the knock-on effects of killer
activity on communities remain unknown.

Killer phenotypes can select for toxin resistance in their
competitors [93]. Toxin resistance should emerge rapidly if
resistance polymorphism is present. Resistance variation exists
within and between species [43]. Resistance can be fixed in
some species but not in congenerics, demonstrating different
coevolutionary histories with antagonistic allelopathy [94].
The genetic basis of resistance has been uncovered on few
occasions. The most complete assessment of resistance found
that theKTD1 gene, and a number of its alleles, providedifferent
levels of protection against the S. cerevisae K28 toxin [95].
Resistance tends to be towards toxins of cooccurring killer
strain, as opposed to formerly unencountered killer phenotypes,
suggesting killer-mediated evolution in competitors [43].
If resistance is fixed among non-killer competitors, carrying
a killer phenotype is likely to become costly [71]. While resist-
ance has been demonstrated to evolve, there is no evidence
of evolution in toxin producers to overcome resistance. The
prevalence of killer phenotypes in natural populations, albeit
often at low frequency [94,96–99], suggests resistance can be
overcome. Toxin-resistance evolution may select upon toxin
polymorphism, enabling the spread of killer phenotypes for
which limited resistance is found.

(d) Are there intransitive dynamics between killers
and non-killers?

If toxin production is more energetically expensive than
resistance but the latter still bears a cost, then toxin-resistant
competitors may overcome toxin producers and toxin-
sensitive strains may replace their toxin-resistant competitors in
toxin-free environments. Intransitive fitness costs are theorized
to maintain diversity in both continuous habitats with dispersal
limitation and patchy habitats [100–104]. Abiotic conditionsmay
also drive intransitive dynamics, as the occurrence of toxin
producers is dependent on the stage of fermentation and its
pH, which may suggest toxin producers are excluded when
toxin production is inactive [43,105]; toxin-sensitive competitors
may even invade the range of toxin producers when toxins are
absent. The intransitive interactions of microbial fungi are
expected to resemble those of bacteria [101,102,106,107], such
that literature of the latter often supplements that of the former.
However, it is not known whether fungal populations and com-
munities experience intransitivity in situ. For example, it remains
unclearwhether resistancebears a strict cost, or howthe rates and
intensities of exploitation and interference competition intersect.

(e) Model system for competitor coevolution within
populations and communities

Competitive coevolutionary dynamics are rarely studied
[28,108,109]. Killer phenotypes provide an opportunity to
expand beyond the standardmodel systems of coevolution. Pro-
gress in understanding how killer phenotypes affect their
populations and communities depends on gaining a more reso-
lute understanding of who kills whom in situ, which can be
accomplished ex-situ with a variety of different killer assay
tests [16–20]. Killer phenotypes in natural populations have
been detected in numerous studies [43,97,99,110] as have
the relative frequencies of toxin-resistant and toxin-sensitive
competitors [43,111]. However, a successful killing is a geno-
type×genotype×environment (GxGxE) interaction; evidence
for toxin-encoding genes or toxin sensitivity in a tester strain
does not equate to a killer in nature. Instead, it calls for spatio-
temporal all-versus-all killer assays wherever feasible. By coup-
ling killer assays with sequencing, insights can be made into
how killer phenotypes modify genetic and species diversity,
and whether antagonistic coevolution is responsible for the
maintenance of genetic diversity.
4. The evolutionary ecology of endosymbiont-
encoded killer phenotypes

(a) The origins of the multi-viral basis of killer
phenotypes

Endosymbiont-encoded killer phenotypes depend on two
viral types, toxin-encoding satellite viruses and the auton-
omous helper viruses that they depend on for their
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replication and maintenance (figure 1; [27,30,112,113]). The
ubiquity of a multipartite viral basis to endosymbiont-
encoded killer phenotypes suggests that they may share a
common origin. The dsRNA helper and satellite viruses of
many Saccharomycotina yeasts have similar genetic architec-
ture, in support of the common origin hypothesis [54,114–
118]. Phylogenetic relationships between viruses across
classes have not been assessed because sequence data are
unavailable. The helper viruses of the various dsRNA killer
systems are totiviruses (Family Totiviridae), a monophyletic
group distinguished by undivided dsRNA genomes encod-
ing coat protein and polymerase genes. Totiviruses have a
long history of co-divergence with their fungal hosts as
a result of almost exclusive vertical transmission [119].
Extant helper and satellite viruses of Saccharomycotina
appear to be both a product of co-divergence with fungal
hosts [120–122] and host switching via interspecific hybridiz-
ation [117]. The origins of endosymbiont-encoded killer
phenotypes are unresolved, though there is a strong link
between the presence of killer phenotype-encoding dsRNA
viruses and the absence of a functional RNA interference
(RNAi) system in the host [123]. RNAi is an immune defence
that acts to degrade foreign RNAs [124] so its absence may be
a prerequisite for killer systems with a dsRNA viral genetic
basis to evolve.

The origins of a dsDNA viral basis for killer phenotypes
are even less well understood. dsDNA viruses were first
known as linear plasmids [50,125–127]. However, they are
now known to share a number of features with viral groups
which are unlikely to have convergently evolved [128–131].
Of the extant dsDNA virally encoded killer systems, hom-
ology among them suggests a monophyletic origin [132].
Endosymbiotic dsDNA killer systems also have a helper-
satellite viral configuration enabling toxin production;
though this is certainly a case of convergent evolution, it
does raise questions about the benefits of viral multipartism
for toxin production in fungi.
(b) Host-helper-satellite interactions
The fitness consequences of killer phenotypes and mycov-
iruses for fungi are context-dependent (figure 1; [71]). Some
helper viruses have been demonstrated to detriment host fit-
ness. For S. cerevisiae, uncontrolled proliferation of its helper
virus results in proteostatic stress [133]. Unlike with bacterial
phages, evidence is lacking for mycovirally induced cell lysis
and subsequent horizontal transmission [134]; vertical trans-
mission induces fidelity feedbacks in which exploitation of
the host equally detriments the endosymbionts [79,135].
Some fungi have evolved strategies to mitigate against the
costs of their toxin-encoding mycoviruses. Xrn1p, which is
involved in cytoplasmic mRNA degradation, is co-opted by
Saccharomyces to degrade its helper viruses, particularly var-
iants it has coevolved with [122]. During sporulation when
toxin production is not occurring, some yeast attenuate
their viruses, and by doing so they lower the viral copy
number and prevent excessive proliferation and the associ-
ated costs being passed on to progeny [136].

Hosts have restricted cellular control over their endosym-
bionts, as the latter do not abide by host replication cycles
[137]. Hosts can take control of toxin production by incorporat-
ing toxin- and immunity-encoding genes into the nuclear
genome as a prerequisite for expelling their endosymbionts
[138]. Many Saccharomycotina species possess pseudogenes
homologous to toxin-encoding and immunity genes [139,140].
Selection is unlikely tomaintain toxin-encoding endosymbionts
if genome integration is a viable alternative [141–143]; by
having a chromosomal copyhosts can lose their viruseswithout
consequences. However, this introduces host-endosymbiont
conflict, and selection should favour viruses that oppose inte-
gration. Some dsDNA viruses possess high A/T content
genomes that are cleaved by nuclear transcription apparatuses
upon attempted incorporation of virally encoded immunity
genes by hosts [144]. Though killer phenotypes may provide
competitive benefits to their hosts, all the evidence points
toward conflict between killer phenotype-encoding genetic
elements and their hosts.

Satellite viruses do not bear equivalent costs on their
fungal hosts as that of helper viruses. Satellite viruses
dampen helper virus proliferation because they use the
same resources, which should reduce the helper virus
burden on their hosts (figure 1; [62,145]). Removal of the
toxin-encoding satellite viruses resulted in fewer significant
gene up/downregulations in S. cerevisiae than occurred
upon removal of the helper viruses [120,146]. Toxin-encoding
satellite viruses are typically portrayed as exploiters of helper
viruses, because they use the produce of helper viruses and
do not reciprocate any immediate resource or information
[30,147]. However, satellite viruses provide indirect benefits
to helper viruses, through the provision of immunity and
toxins to the hosts that helper viruses depend on. As this is
indirect, helper viruses may still evolve strategies to mitigate
the satellites exploitation, but in the long-term, fungal cells
with only the helper virus should be selected against.

Interactions between endosymbiont classes and host gen-
omes determine the effectiveness of toxins. Naturally
coevolved helper-satellite combinations provide the most
effective toxins to their hosts [121]. Killer toxins were how-
ever tested against killer phenotype-free variants of the
same strains [121], which may instead evidence a toxin–
antitoxin system in which killer phenotype-encoding genetic
elements are adapted to killing its host genotype. In a com-
petitive context, these results could however indicate that
host-endosymbiont interactions determine how killer toxins
select for resistance in their competitors [121].

(c) The consequences of sex for endosymbiont-encoded
killer phenotypes

Horizontal transmission via cytoplasmic mixing is seemingly
the only feasibleway formycoviruses to spread to new lineages
[148]. Althoughmycoviruses can be attenuated during sporula-
tion, they do persist in low frequencies [136]. While clonal
mating events may only reduce mycovirus copy number, out-
crossing provides the possibility for offspring to inherit
endosymbionts from both parents, as they often do with mito-
chondria [147,149]. Past research found that distinct killer
systems fromdifferent hosts cannot coexist together in daughter
cells, having found that only one helper and satellite virus com-
bination ever persisted [150,151]. Combinations of viruses from
one parent are expected to persist due to their coadaptation
from past vertical transmission, and the greater effectiveness
of their toxins [121]. Mismatched viral class combinations
have however been found in S. cerevisiae (M1 and L-Alus
instead of M1 and L-A1), supposedly from past mating events
[152]. These findings may suggest that toxin effectiveness is
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not a priority, or that selection against mismatching is weak or
absent. Novel host-helper-satellite combinations may even
induce intergenomic epistasis [153].

(d) Model system for game theoretic and related
questions

Virally encoded killer systems are context-dependent mutual-
isms with asymmetric obligations for association (figure 1).
For fungi, the net cost-benefit outcome of having a virally
encoded killer phenotype (figure 1c) is dependent on the
levels of competition and resistance, and the relatedness of
competitors to toxin-producers (figure 1d ). By contrast,
both helper and toxin-encoding satellite viruses are obligately
dependent on their hosts (figure 1a), the latter’s dependence
being indirect through its dependence on helper viruses
(figure 1e). Toxin-encoding satellite viruses depend entirely
on helper viruses (figure 1b), though competitive context
again determines whether helper viruses are dependent on
their satellites by an indirect mutualism (figure 1f ). These
conditions provide a unique experimental platform for
game theoretic questions, as does the consideration that part-
ner choice, host sanctions, fidelity feedbacks and public
goods can all be observed in natural or synthetic combi-
nations of fungi, helper viruses and satellite viruses.
Research should address how these stabilizing mechanisms
interact with context dependence and dependence asymme-
try in the system. However, the major goal should be to
establish whether signatures of coevolutionary dynamics on
killer phenotype-encoding genetic elements and their back-
ground genomes resemble those expected from antagonistic
or mutualistic interactions.
5. The underexplored chromosomal basis of killer
phenotypes

(a) Does a chromosomal basis of toxin production
improve fitness?

The norm of past fungal killer phenotype research has been to
investigate the remarkable multi-viral basis of antagonistic
allelopathy despite chromosomally encoded killer phenotypes
being most common (figure 2; electronic supplementary
material, table S1). A chromosomal basis of toxin production
is usually ascertained through refutation of an endosymbiotic
basis, which typically involves demonstrating that removing
mycoviruses does not equate to loss of a killer phenotype
[154–156]. The underlying genetics of toxin production has
rarely been established for chromosomally encoded killer
systems [157–159].

A translocation bias of endosymbiotic toxin-encoding
genes into the nuclear genome may be partly responsible
for the prevalence of chromosomal killer phenotypes
[117,139]; when coupled with toxin-encoding genes that are
not endosymbiotic in origin [157–159], it should come as no
surprise that chromosomally encoded killer phenotypes are
most common. Selection may also favour chromosomally
encoded killer phenotypes as they can mitigate against the
aforementioned costs of relying on endosymbionts for toxin
production (§4). Polymorphism in the genetic basis of toxin
production may however be maintained by fitness costs
associated with chromosomally encoded killer phenotypes.
Genomic integration may disrupt functional host genes, as
is an occasional consequence of prophage integration into
bacterial genomes [160]. Redundant toxin-encoding pseudo-
genes across Saccharomycotina [139] indicate that there is
not selection to maintain functional killer phenotypes
upon genome integration. Moreover, nuclear mutation rates
are low which may undermine toxin adaptability once
competitors evolve resistance. By contrast, there is selection on
toxin-encoding endosymbionts to maintain themselves as
being distinct from the nuclear genome (counteracting the
translocation bias) [144]. Furthermore, toxin-encoding endosym-
bionts that maintain functional toxins should be selected for.
Endosymbiont-based killer genes with their plausibly higher
mutation rates [161–163] may additionally provide more
opportunity for counter-adaptation once resistance emerges.

This is however all mere speculation requiring explora-
tion. We do not know whether selection acts on the relative
fitness of chromosomally encoded killer phenotypes and
their virally encoded equivalents in natural environments,
or anything about the proportion of chromosomally encoded
killer phenotypes that have endosymbiotic origins. Certainly
there are more chromosomally encoded killer phenotypes to
be uncovered; genome-wide scans, as well as tetrad analysis
and sequencing can be used to find them [164].
(b) Does sex disrupt chromosomal killer phenotypes?
Asexual reproduction of fungi results in non-recombined
inheritance of chromosomally encoded toxin genes. Sexual
reproduction and recombination can create novel genetic
diversity [165–168], including in toxin-encoding genes that
are found at chiasma. Novel allelic combinations in toxin-
encoding genes may enable killer toxins to overcome compe-
titor resistance, but they may also be rendered inoperative
[169,170]. If toxin-encoding genes are not present in all hap-
lotypes, or if they are found at different loci, recombination
would probably disrupt their functionality. Toxin-encoding
genes could be found at different loci if they have endosym-
biotic origins with independent integration events, or if they
are associated with transposable elements [171]. Chromoso-
mally encoded killer phenotypes may in turn depend on
zygosity, yet the presence of heterozygosity at killer loci
and consequences of such on the phenotypes expressed
remain unexplored.
6. Fungal killer phenotypes and the mode
of host reproduction

The consequences of reproduction mode for killer pheno-
types remains uncharted among conducted research. A
variety of reproductive strategies are available to Dikarya
[172,173]. Multiple alternatives can be wielded by the same
individuals, such that many are facultatively sexual and
reproductive mode is determined by their ecology and popu-
lation genetic structure [11,174–176]. The form of sexual
reproduction can vary from selfing (homothallism) to out-
crossing (heterothallism), whereby specific abiotic and biotic
conditions determine which occurs. Fungal killer phenotypes
thus present a remarkable system to explore how ecology and
mating system interact to influence a phenotypic function.
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7. Fungal killer phenotypes: interference
competition strategy or toxin–antitoxin
systems?

Throughout this review, we have discussed fungal killer
phenotypes with two functions in mind: the interference
competition and toxin–antitoxin system functions. The
interference competition function proposes that killer pheno-
types are maintained for eliminating niche-overlapping
competitors and that toxin production is to the benefit of
the collective genomes of the fungi [42,43]. The toxin-
antitoxin system hypothesis, grounded in toxin-immunity
linkage, proposes that killer phenotypes are maintained by
eliminating clonal siblings that lose their killer phenotypes
[138,144,177]. This hypothesis inherently posits that the fit-
ness of killer phenotype-encoding genetic elements and
their host cell’s background genomes are misaligned.

There is mixed evidence for both functions. Some species
are only known to eliminate allospecifics, in support of the
interference competition function, while others that can elim-
inate conspecifics lend moderate support to a toxin–antitoxin
system [42]. Under both hypotheses, there are specific targets
of killer toxins. Under the toxin–antitoxin hypothesis, toxin
production has evolved to kill conspecifics that have lost
their killer phenotypes while the interference competition
hypothesis typically predicts that killer phenotypes have
evolved to eliminate competitors from the same niche
[43,178]. There is however the problem of mistaking a fortui-
tous toxin-sensitive competitor for a target. Killer assay
experiments for focal killer phenotypes exploring how relat-
edness and niche overlap influence toxin effectiveness could
be a first step in unravelling the functions in nature.

The evolution of RNAi deficiency certainly goes against
the toxin–antitoxin model (§4). RNAi could prevent the
hostage-like intergenomic conflict predicted from toxin-
antitoxin systems, so it is implausible that selection would
act against having such a defence. However, the strongest
evidence for a toxin–antitoxin system has been found in
the endosymbiotic dsDNA killer systems, as opposed to
the dsRNA equivalents that tend to be RNAi-deficient.
Thus there is a certainly a case to be made for considering
the function of each killer phenotype on a case by case basis.

As we have previously pointed out, the need for clonal con-
gregation for effective concentrations of toxins suggests that
killer phenotypes may be primarily used to eliminate distantly
related competitors that would otherwise invade their popu-
lations, cheat and deplete resources (§3). This certainly
resembles the toxin–antitoxinmodelwhereby killer phenotypes
eliminate mutant killer phenotype-free clones that could other-
wise spread to fixation if bearing a killer phenotype is costly.
The distinction between interference competition and toxin-
antitoxin system models of killer phenotype function may
thus be best clarified by considering how they initially evolved
and in which context the phenotype is found to be beneficial.
8. Concluding remarks
Many fungiwith killer phenotypes are ecologically, economically
and medically important species; thus understanding how
fungi use their killer phenotypes, and the drivers of toxin effec-
tiveness, is fundamental to understanding how they modify
their populations, communities and ecosystems. What makes
this phenomenon so unique is its feasibility for addressing such
diverse topics across the disciplines of ecology and evolution.
Organismal approaches to the study of killer phenotypes have
played a subservient function to the interest in its cell biology
and applications to biotechnology. Nonetheless, a better under-
standing of the ecology and evolution of this phenomenon
would certainly be of use to other disciplines interested in this
phenomenon. Here, we have outlined somemajor topics in evol-
utionary ecology that can be addressed using this system, though
theyonly scratch the surface. The discernibility of killing, particu-
larly in well-studied model organisms with well-documented
genetic architecture,makes it aparticularlyenticingphenomenon
for experimental evolutionary ecology. However, the study of
natural populations and communities is where the use of killer
phenotypes may be most valuable. Killer phenotypes are traits
whoseeffectiveness canbediscerned ex situwithoutanygreatdif-
ficulty, the value of such to the studyof coevolutionary dynamics
is indisputable. Evident throughout our review, however, is the
bias towards studying killer phenotypes in Saccharomyces or
other Saccharomycotina taxa. Fungal killer phenotypes are
found across the Dikarya, many of which remain barely studied;
future research should expand beyond the usual suspects to
reveal the functional phylogenetic utility of this phenomenon.
Future issues
(i) How are the various killer phenotypes in different

classes and phyla related, if at all? Howmany indepen-
dent emergences of the fungal killer phenomenon have
there been?

(ii) How do killer phenotypes contribute to the structure
of populations and communities? Do they drive tem-
poral turnover of diversity?

(iii) How does killing interact with other population-level
processes, e.g. public good sharing?

(iv) What is the genomic basis of non-homologous resistance
evolution? Can killers overcome resistance? Can antag-
onistic allelopathy drive coevolutionary dynamics?

(v) How do competitor coevolution and host-endosym-
biont coevolution feedback on one another?

(vi) Do chromosomal and endosymbiont-encoded killer
systems cooccur and compete? Does selection act
on their relative fitness?

(vii) What are the consequences of sexual reproduction for
killer phenotypes?

(viii) What are the functional origins of killer phenotypes
and do they vary from species to species?
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