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A B S T R A C T   

Space agencies are developing Bioregenerative Life Support Systems (BLSS) in view of upcoming long-term 
crewed space missions. Most of these BLSS plan to include various crops to produce different types of foods, 
clean water, and O2 while capturing CO2 from the atmosphere. However, growing these plants will require the 
appropriate addition of nutrients in forms that are available. As shipping fertilizers from Earth would be too 
costly, it will be necessary to use waste-derived nutrients. Using the example of the MELiSSA (Micro-Ecological 
Life Support System Alternative) loop of the European Space Agency, this paper reviews what should be 
considered so that nutrients recycled from waste streams could be used by plants grown in a hydroponic system. 
Whereas substantial research has been conducted on nitrogen and phosphorus recovery from human urine, much 
work remains to be done on recovering nutrients from other liquid and solid organic waste. It is essential to 
continue to study ways to efficiently remove sodium and chloride from urine and other organic waste to prevent 
the spread of these elements to the rest of the MELiSSA loop. A full nitrogen balance at habitat level will have to 
be achieved; on one hand, sufficient N2 will be needed to maintain atmospheric pressure at a proper level and on 
the other, enough mineral nitrogen will have to be provided to the plants to ensure biomass production. From a 
plant nutrition point of view, we will need to evaluate whether the flux of nutrients reaching the hydroponic 
system will enable the production of nutrient solutions able to sustain a wide variety of crops. We will also have 
to assess the nutrient use efficiency of these crops and how that efficiency might be increased. Techniques and 
sensors will have to be developed to grow the plants, considering low levels or the total absence of gravity, the 
limited volume available to plant growth systems, variations in plant needs, the recycling of nutrient solutions, 
and eventually the ultimate disposal of waste that can no longer be used.   

1. Introduction 

Many space agencies have been and are still working on Bio-
regenerative Life Support Systems (BLSS) for long-term crewed space 
missions (Guo et al., 2017; Wheeler, 2017). The goals of BLSS are to 
ensure the sustainability of the crew’s habitat by recycling waste and 
providing O2, clean water, and diverse kinds of food while removing CO2 
from the atmosphere (Guo et al., 2017). Examples of BLSS developed in 
the past are the Advanced Life Support program of the U.S. National 

Administration Space Aeronautics (NASA), and the BIOS-3 system of the 
Institute of Biophysics in Russia, while the Micro-Ecological Life Support 
System Alternative loop (MELiSSA) of the European Space Agency (ESA) 
and the Lunar Palace of the Beihang University in China are currently 
being developed (Guo et al., 2017; Lasseur and Mergeay, 2021; Wheeler 
et al., 2003; Wheeler, 2017). Higher plants are anticipated to be grown 
in most BLSS either to provide a complement to the crew’s diet with 
fresh vegetables or greens as currently done in the International Space 
Sation (ISS) for short missions (Stromberg, 2015) or to supply the crew 
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with food, O2, and water while capturing CO2 from the atmosphere 
during long-term missions (Ferl et al., 2002). For such missions, nutrient 
delivery to crops will depend on waste recycling to minimize resup-
plying from Earth (Poulet et al., 2022). Furthermore, making these nu-
trients available to plant uptake will require a constant flux of water 
from the media surrounding the plant roots, which will be challenging 
because of the effects on water fluxes of the absence of gravity in space 
and of microgravity on the surface of planets (Hatch et al., 2022). 

Crops such as wheat, soybean, lettuce, and potato have all been 
suggested for BLSS (Cloutier et al., 2001; De Micco et al., 2012; 
Poughon, 1997; Sheridan et al., 2017; Stasiak et al., 2012; Weihreter, 
2010; Wheeler et al., 2003; Zabel et al., 2016). Crop choices were based 
on specific criteria, such as crew requirements (vitamins, micro-
nutrients), crop cultivation methods (inputs, lighting, space, crew work 
required), amounts of food, water, and O2 produced, and time needed 
for preparation (Cloutier et al., 2001; Douglas et al., 2020; Poughon and 
Dussap, 2001). Romeyn et al. (2019) suggested the use of the Crop 
Readiness Level to assess how far crop testing is from being implemented 
during space missions; it ranges from level one (basic crop testing) to 
levels eight (plant successfully grown in space) and nine (plant suc-
cessfully consumed in space). Lettuce, for instance, has reached level 
nine since it has been both grown and consumed on the ISS (Stromberg, 
2015); tomato has recently reached level eight because it was grown in 
the ISS and brought back to Earth for analysis (NASA, 2023), while other 
crops like soybean and wheat are still at the earlier phase of level two, 
which is cultivar screening (De Micco et al., 2012; Stasiak et al., 2012). 

A plant requires 17 elements to grow (C, H, O, N, P, S, K, Ca, Mg, Fe, 
Mn, Cu, Zn, Mo, B, Ni, and Cl) (Marschner, 2012). In addition to these, 
adding Si might be useful to increase the tolerance of plants to stresses, 
while adding Se might improve the quality of edible products for the 
crew (Marschner, 2012). Most mineral nutrients are taken up in ionic 
water-soluble forms from the solution by the root system. The total 
amounts of nutrients needed by higher plants vary by species and cul-
tivars and depend on plant development stage and environmental con-
ditions (Bamsey et al., 2012). In its Veggie growth chamber, NASA uses a 
controlled-release fertilizer (Nutricote: 18% N, 6%P2O5, 8% K2O), 
mixed with arcillite, which is a combination of calcined montmorillonite 
and illite (Massa et al., 2017; Morsi et al., 2022), as a source of nutrients 
to grow plants on the ISS. In addition to releasing NPK, Nutricote also 
provides B, Cl, Cu, Fe, Mg, Mn, and Mo (Arysta LifeScience, 2006). This 
type of fertilizer is made by aggregating salts containing water-soluble 
nutrients and coating the aggregates with a polymer (Adams et al., 
2013; Arysta LifeScience, 2006). The properties of the polymer control 
the rate of release of nutrients to the solution (Adams et al., 2013). While 
this controlled-release fertilizer is proving highly useful for testing plant 
growth on the ISS, that will not be the case for long-term missions on 
which nutrients will have to come from waste streams and where the 
delivery of nutrients will have to be adapted to the needs of different 
plants. 

The nutritional status of plants growing in space has rarely been 
studied. Wolff et al. (2013) note that space-grown plants might accu-
mulate higher amounts of potassium and lower amounts of nitrogen 
than plants grown on Earth but do not offer reasons for that suggestion. 
In three sets of experiments, Khodadad et al. (2020) compared the 
concentration of nutrients in lettuce leaf tissue grown in the Veggie 
growth chamber on Earth and on the ISS. They observed only a few 
differences, with higher concentrations of sodium, phosphorus, sulfur, 
and zinc in their second experiment and in potassium in their third for 
plants grown on the ISS, while the iron concentration was lower in their 
third experiment for plants grown on the ISS. These differences were 
attributed to stress to the plants caused by flight, as suggested by a 
higher concentration of phenolic compounds in leaves of plants grown 
on the ISS. Liu et al. (2018) showed that roots of Petunia hybrida were 
less mycorrhized under simulated microgravity because of inhibited 
hyphae extension. As a result, the plants took up less phosphorus under 
simulated microgravity than under Earth gravity. This short review 

shows that we still do not fully understand the nutrition of plants 
growing in space. 

Plant nutrition requires a continuous flux of water transporting the 
nutrients from the solution to the root and then to the aerial parts. 
However, microgravity can lead to a loss of convective transport of gases 
at the leaf surface, which can lead to an increase in the boundary layer 
thickness around the leaves, significantly diminishing gas exchange 
(Poulet et al., 2018). Microgravity can also result in increased boundary 
layer thickness around roots, leading to a decrease in O2 transfer to the 
root and the appearance of anoxia and nutrient deficiencies during plant 
growth (Poulet et al., 2016). The buildup of boundary layers around 
leaves can be alleviated by the installation of an efficient ventilation 
system for the aerial plant parts (Poulet et al., 2018), but ensuring suf-
ficient water uptake and aeration at root level remains problematic 
(Hatch et al., 2022). Hatch et al. (2022) recently developed the Plant 
Water Management technology, in which water transfer is controlled by 
conduit geometry of tubing, surface tension, and wetting. The aptitude 
of the Plant Water Management technology to ensure proper water 
transfer to the plant was assessed using synthetic plant models 
(composed of wicks for the roots and an artificial leaf allowing evapo-
transpiration to occur) installed either on arcillite or in hydroponic 
systems. In-flight tests of both systems on the ISS demonstrated the 
successful transfer of water from a reservoir through the wick to the 
artificial leaf and atmosphere, and the release of air previously trapped 
in the water in the vicinity of the “root,” allowing for oxygenation of the 
“root zone” (Wasserman et al., 2022, 2022). The implementation of such 
a system in BLSS will require nutrients to be delivered in water-soluble 
ionic forms either to an arcillite substrate or in a hydroponic system so 
that they can be transported with water to the roots. 

In the present study, we review what needs to be considered so that 
nutrients recovered from waste streams in the MELiSSA loop could be 
used to design nutrient solutions appropriate for enabling various crops 
to efficiently deliver diverse food, O2, clean water, and capture CO2. We 
choose the MELiSSA loop as an example among the different BLSS 
because its compartments are explicitly connected to one another, 
showing which compartment is delivering what to which other 
compartment(s), and because a substantial amount of research has been 
published on it over the years, as shown in the review by Lasseur and 
Mergeay (2021). In the first part of the present study, we provide a short 
presentation of the MELiSSA loop (Fig. 1). We then analyze stepwise 
how the processes implemented in each MELiSSA compartment affect 
the form and availability of nutrients, and finally we address the chal-
lenges of preparing nutrient solutions adapted to the needs of various 
plants in the context of the MELiSSA loop. Note that, we do not discuss in 
this review the mineral nutrition of cyanobacteria included in the 
MELiSSA loop or the use of regolith found on the Moon or on Mars as a 
growth substrate (Paul et al., 2022). 

2. Description of the overall MELiSSA loop 

The MELiSSA loop was developed from knowledge of the functioning 
of aquatic ecosystems (Lasseur et al., 2010). Several kinds of organic 
waste are produced in a space habitat, such as urine, feces, gray water as 
defined for MELiSSA by Lasseur et al. (2018), kitchen residues, paper, 
and plant residues. All waste except urine (ESA, 2022) is currently 
planned to be transferred to the first compartment (C1) of the loop, the 
solid organic waste degradation compartment (Christophe Lasseur, di-
rector of the MELiSSA program, personal information), where anaerobic 
digestion takes place (Fig. 1). This digestion should allow for the hy-
drolysis of proteins, saccharides, and celluloses by thermophilic bacte-
ria, leading to the liquefaction of organic matter and the release of 
volatile fatty acids, minerals, and CO2. The CO2 produced in C1 can be 
used by plants and cyanobacteria (Limnospira indica) in the plant and 
algae compartment (C4). The volatile fatty acids and liquefied organic 
matter produced in C1 are transferred to the liquid organic waste 
degradation compartment (C2). In the current version of the MELiSSA 
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loop (ESA, 2022), these organic compounds are mineralized by Rhodo-
spirillum rubrum in the absence of O2 in C2. However, in the future this 
digestor could be replaced by a microbial electrochemical cell (MEC) 
(Christophe Lasseur, director of the MELiSSA program, personal infor-
mation), as proposed by Luther (2018), Luther and Rabaey (2020), and 
Popat (2020), to improve CO2 recovery from organic matter degrada-
tion. MECs are relatively recent systems made of a cathode that produces 
H2 from water electrolysis and of a microbial anode able to oxidize 
organic compounds to CO2 (Rousseau et al., 2020). In the current set up 
C2 does not produce CO2, but if a MEC is implemented in C2, the CO2 
produced will be transferred to C4. In both cases the ammonium and 
other minerals present in the solution can be further transported to the 
nitrifying compartment (C3). This compartment, which also receives the 
urine produced by the crew, contains a mix of Nitrobacter sp. and 
Nitrosomonas sp. that can transform ammonium first into nitrite and then 
into nitrate, using O2 derived from C4. The nitrate, what remains of the 
ammonium, and other mineral nutrients are then transferred from C3 to 
C4, which includes C4a, in which the cyanobacteria Limnospira indica is 
grown, and C4b, where higher plants grow. While both C4a and C4b 
remove CO2 from the atmosphere and produce O2 and food for the crew, 
the water released by transpiration from the higher plants in C4b pro-
vides the crew with clean water (Fig. 1). 

3. Nutrient recovery from the solid and liquid organic waste 
degradation compartments (C1 and C2) 

The transformation of carbon present in organic waste in CO2 in C1 
and C2 is important from a plant nutrition point of view to provide 
sufficient CO2 for photosynthesis and for the release of nutrients bound 
to these organic matters into the solution in forms available to plants; it 
is also important for minimizing final total waste volume. 

Biochemical equations describing the processes occurring in C1 and 
C2 appear in Hendrickx et al. (2006) and Poughon et al. (2009). These 
equations consider the stoichiometries of substrates and products in 
terms of their C, N, S, O, H, and P contents but do not provide infor-
mation on other elements. Until now, most of the experimental work 
done on C1 has focused on organic matter liquefaction—that is, on the 

transformation of solid organic matter in liquid—and on CO2 production 
(Lissens et al., 2004; Poughon et al., 2013). Lissens et al. (2004) reported 
a maximal rate of C liquefaction of 83%, but they produced mostly CH4, 
which is not wanted in the MELiSSA loop (Poughon et al., 2009) and no 
CO2. Poughon et al. (2013) reached 50% of organic matter degradation 
and did produce CO2, but only at low rates. Luther (2018) considers that 
C1 currently allows a recovery of only 15% of C added as waste in the 
form of CO2, while about 35% of this C and 45% of N added in waste are 
transferred in dissolved forms to C2. Lissens et al. (2004) note that only a 
third of phosphorus added to the reactor was recovered as orthophos-
phate at the reactor outlet. They interpreted this as due to the 
“adsorption (of phosphate) on particulate matter”. However, this could 
have three explanations. First, microorganisms have taken up phos-
phorus because they need it to grow. Mouginot et al. (2014) mention an 
average molar C:P ratio of 72:1 for bacteria. The second possibility is 
that phosphorus has precipitated with cations during anaerobic diges-
tion. This has been observed many times in organic waste (Barat et al., 
2009; Carliell and Wheatley, 1997; Frossard et al., 1994, 1997). Such 
precipitation processes can ultimately decrease phosphate availability 
for crops, as shown by Frossard et al. (1996). Third, phosphate may have 
left the reactor in forms other than orthophosphate, perhaps as colloidal 
phosphorus. 

Little information exists on nutrient recovery from C2. Favier-Teo-
dorescu et al. (2003) showed that Rhodospirillum rubrum grown in the 
absence of O2 in a photobioreactor under different light conditions was 
able to remove volatile fatty acids from the solution while producing 
only a limited amount of CO2. These authors suggest that this bacterium 
was storing high amounts of phosphorus in polyphosphate when sub-
mitted to excessive light conditions. More recently, Luther et al. (2018) 
and Luther and Rabaey (2020) suggested that installing a MEC in C2 
would improve the recovery of organic C added to C1 as CO2 up to 40%. 
Moreover, this MEC would remove 80%–100% of the volatile fatty acids 
(Fig. 2). 

With the aim of obtaining greater CO2 recovery from organic matter 
degradation but without assigning their research to any MELiSSA 
compartment, Zhang et al. (2019) used mild temperature hydrothermal 
oxidation with H2O2 on anaerobic fermentation filtrates to oxidize 

Fig. 1. Fluxes of substances in the current MELiSSA loop, adapted from ESA (2022). C1 is the solid organic waste degradation compartment, C2 the liquid organic 
waste degradation compartment, C3 the nitrifying compartment, C4a the algae compartment, C4b the plant compartment, and C5 the crew compartment. 
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organic C in CO2 and transform organic nitrogen into ammonium and 
nitrate. The highest C recovery as CO2 was 68%, and up to 80% of ni-
trogen was recovered as ammonium or nitrate, but no attention was paid 
to other elements. In subsequent work, Zhang et al. (2020) used super-
critical water oxidation in the presence of H2O2 to transform a model 
solid organic waste (a mix of toilet paper, feces, red beet, straw wheat, 
and lettuce) into CO2 and water in the absence of O2. They showed that 
more than 90% of the C fed to the reactor was transformed into CO2, 
with the rest found as dissolved organic C. Integrating chemical oxida-
tion with the MEC mentioned above has the potential to transform up to 
85% of the C added into CO2 (Luther and Rabaey, 2020; Luther et al., 
2018) (Fig. 2). However, Zhang et al. (2020) also observed that a large 
proportion of elements (Na, P, K, Mn, Fe, Ca, Mg, Ni, Cu, and Zn) 
entering the reactor was not recovered in the liquid phase after organic 
matter oxidation. Zhang et al. (2020) suggest that these elements had 
precipitated in the reactor and that strategies should be developed to 
avoid the precipitation of minerals in the reactor. They also observed 
higher concentrations of Cr in the outlet compared to the inlet, sug-
gesting that the reactor was releasing this element. 

In view of the above-reported points, we recommend that for each 
process conducted within C1 and C2, an input-output mass balance be 
established for each chemical element (that is, for both nutrients and 
toxic elements) to quantify their recovery rate and the release of un-
wanted elements within the system. We also recommend further 
developing methods that will increase the mineralization rate of organic 

carbon into CO2, as well as methods to capture nutrients released from 
the mineralized organic matter. 

4. Nutrient recovery from the nitrifying compartment (C3) 

Substantial information has been gathered on nutrient recovery from 
human urine (Larsen et al., 2021; Wald, 2022), as fresh human urine 
contains large concentrations of nitrogen and phosphorus (Rose et al., 
2015). However, we do not have yet information on how to recycle 
nutrients when both urine and substances derived from C2 are trans-
ferred to C3. Therefore, we will focus in this section on nutrient recovery 
from urine as a model. We first review phosphorus recovery from urine 
and the availability of the recovered phosphorus to plants before turning 
to nitrogen recovery in nitrate and then discussing the impact of salinity 
on nitrification. 

Very rapidly after its release from the human body, the urea that is 
present at a high concentration in fresh urine becomes hydrolyzed by 
urease-producing microorganisms. This leads to an increase in pH (up to 
9) and carbonate concentration, causing the precipitation of struvite 
(MgNH4PO4⋅6H2O) and calcium phosphate minerals such as octacal-
cium phosphate (Ca8H2(PO4)6⋅5H2O), which over time becomes hy-
droxyapatite (Ca5(OH)(PO4)3) (Barat et al., 2009; Udert et al., 2003b). 
In undiluted stored urine, about 30% of phosphorus precipitates; this 
percentage increases if urine is mixed with Ca- and Mg-rich solutions 
(Udert et al., 2003c). Another option to precipitate calcium and 

Fig. 2. Modifications suggested in the MELiSSA loop to provide higher plants with nutrients. C1 is the solid organic waste degradation compartment, C2 the liquid 
organic waste degradation compartment, C3 the nitrifying compartment, C4a the algae compartment, C4b the plant compartment, and C5 the crew compartment. A 
final decision on C2 has not yet been made by ESA. Instead of hosting photoheterotrophic bacteria, it might host a microbial electrochemical cell (MEC) that is more 
efficient in terms of transforming organic matter in CO2. Furthermore, proposals have been made to couple the MEC with chemical oxidation to achieve even greater 
efficiency in transforming organic matter into CO2. The transfer of protons and hydroxyls is not shown. They will be generated by water electrolysis in the sodium, 
phosphate, calcium, and magnesium removal units and transferred to the C4b to stabilize the pH in the nutrient solution, hydroxyls will be transferred to C3 to 
improve the nitrification rate, and protons will be used to solubilize calcium and magnesium phosphate minerals. 
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magnesium phosphates and facilitate the separation of these elements 
from the solution is to use the approach developed by De Paepe et al. 
(2020), who proposed stabilizing urine at pH 11 to 12 through the 
production of hydroxyls derived from water electrolysis, which also 
leads to the precipitation of P minerals. This approach allows for the 
removal of 40% of phosphate from urine. Phosphate forms produced 
under these conditions have not yet been analyzed but could present 
sodium phosphates (such as Na3PO4⋅0⋅5H2O), newberyite 
(MgHPO4⋅3H2O), kovdorskite (Mg2PO4(OH)⋅3H2O), and amorphous P 
forms and less struvite than when precipitates are formed at pH 9 (Ma 
et al., 2014). The stabilized urine can then be diverted and nitrified as 
described by De Paepe et al. (2021). 

The availability of phosphate derived from struvite to plants growing 
in soilless systems appears to be good but variable. Arcas-Pilz et al. 
(2021) observed a lower phosphate availability from struvite than from 
water-soluble phosphate for Phaseolus vulgaris grown in perlite, while 
Hauck et al. (2021) showed that Tagetes patula × erecta took up as much 
phosphate from struvite-amended white peat as from water-soluble 
phosphate-amended peat for three of the four struvites they studied. 
These results suggest that the solubility of struvite itself can vary due, for 
example, to changes in the conditions under which it has been precipi-
tated. For instance, Ma et al. (2014) showed that varying the pH in the 
initial solution would lead to the formation of struvite crystals of 
different forms and to the coprecipitation of phosphate minerals other 
than struvite in low concentrations. But differences in plant responses 
following struvite addition could also be due to differences in growth 
conditions. The high efficiency of struvite in Hauck et al. (2021) study 
might be related to the high cation exchange capacity (CEC) (115 eq m −
3) and the more acidic pH of the white peat they used compared to the 
lower CEC (6 eq m − 3) and higher pH of perlite, as measured by Lemaire 
(1999). Indeed, a higher CEC and lower pH will lead to faster dissolution 
of P minerals (Hedley et al., 1995). Phosphate derived from hydroxy-
apatite, on the other hand, is known to be very slowly released to plants 
grown in hydroponics (Louw-Gaume et al., 2010). To circumvent the 
variable solubility of phosphate precipitates issued from urine treat-
ments, El Nakhel et al. (2021) dissolved them in sulfuric acid before 
adding them to nutrient solutions used to grow lettuce. This is probably 
the best option given the nutrient solution delivery systems envisaged 
for microgravity-grown plants (Hatch et al., 2022). The protons neces-
sary for this dissolution in the MELiSSA loop might be derived from 
water electrolysis using the above-noted method proposed by De Paepe 
et al. (2020). 

Unless urease is inhibited at pH higher than 11, pH values of 9 
typically triggered by urea hydrolysis increase the risk of ammonia 
volatilization (Udert et al., 2003a, 2003b). Urine can be nitrified to 
avoid this loss of NH3 to the atmosphere and to decrease ammonium 
concentration in the nutrient solution provided to the plant (Udert et al., 
2003a). Nitrification includes two steps, both of which occur under 
aerobic conditions. Ammonium is first transformed into nitrite by 
ammonia-oxidizing bacteria. This reaction is associated with proton 
release. Then, nitrite is converted to nitrate by nitrite-oxidizing bacteria. 
The accumulation of nitrite has to be prevented, not only because it is 
highly toxic to many organisms, but also because high nitrite concen-
trations will prevent the growth of nitrite-oxidizing bacteria (Udert and 
Wächter, 2012), leading to increased N2O emissions (Faust et al., 2022). 
Nitrite-specific electrodes are being developed to prevent nitrite accu-
mulation during urine nitrification (Britschgi et al., 2020). The pro-
duction of hydroxyls through water electrolysis can also be used to 
neutralize the protons produced through nitritation and can thus in-
crease the overall rate of ammonium transformation in nitrate, as re-
ported by De Paepe et al. (2021). Ilgrande et al. (2019) showed that 
nitrifiers that travelled on the ISS for seven days retained their func-
tionality upon return to Earth, suggesting that nitrification could have 
useful space applications. 

Urine also contains high concentrations of sodium and chloride 
(Rose et al., 2015). Sodium and chloride are essential for humans but 

toxic to many plants. If NaCl is not removed from the solutions entering 
C3, it might also decrease nitrification efficiency and, more specifically, 
the activity of nitrite-oxidizing bacteria such as Nitrobacter winogradskyi, 
leading to nitrite accumulation (Jeong et al., 2018) and increased N2O 
emissions (Faust et al., 2022). Guo et al. (2021) observed that the 
addition of chloride led to a decrease in nitrification rates in soils. 
Janiak et al. (2021) observed a strong negative impact of increased 
salinity on nitrite-oxidizing bacteria, reducing the rate of nitrate pro-
duction from urine. However, the dilution of urine with water to 
decrease salinity in their study was sufficient to rapidly restore high 
rates of nitrate production. Given the difficulties of removing NaCl from 
urine (see Section 5), partial nitritation/anammox (PN/A) could be 
implemented to produce N2 directly from urine (Lackner et al., 2014; 
Spiller et al., 2022; Timmer et al., 2022). The N2 produced could help 
replace the slow losses of pressurized gases, including N2, that occur 
from the habitat into the low-pressure space on the surface of the habitat 
and to vacuum in outside space (Timmer et al., 2022; Wieland, 1994). 
However, implementing complete denitrification of nitrogen from urine 
would lead to a strong reduction of nitrogen forms available to plants 
and require that most plants grown in the MELiSSA loop be legumes 
associated with rhizobia, substantially reducing the crew’s dietary 
diversity. 

We suggest that phosphate, calcium, and magnesium should be 
precipitated from the urine produced by the crew and from other pro-
cessed liquid organic waste leaving C2 before allowing the nitrogen-rich 
solution to enter the nitrifying compartment (Fig. 2), as previously 
proposed by De Paepe et al. (2020). As for the organic waste degradation 
compartments C1 and C2, we suggest creating a full elemental balance 
between the inputs and outputs to and from C3 and assessing the 
changes in nitrogen and phosphate forms during their transfer through 
C3. It will also be important to assess the amounts of nitrogen that 
should be denitrified as N2 and that needed to be recycled to plants. 
Finally, we suggest further assessing the impact of sodium and chloride 
on the biological processes taking place in C3. 

5. Challenges to providing crops in compartment 4b with 
balanced nutrition based on nutrients recovered from other 
MELiSSA loop compartments 

The preceding sections suggest that two streams of nutrients could be 
delivered within the MELiSSA loop to higher plants: one containing high 
concentrations of phosphate, calcium, and magnesium derived from the 
precipitates obtained from urine and effluent derived from the liquid 
organic waste degradation compartment (C2), and a nitrogen-rich so-
lution derived from the nitrifying compartment (C3; see Fig. 2). As po-
tassium does not produce insoluble precipitate with phosphate and has 
chemical properties similar to ammonium, potassium will probably end 
up in the solution going through the nitrifying compartment. If sodium 
and chloride are not removed, they will most probably also be trans-
ferred to the hydroponic system via the nitrifying compartment, but we 
see later in this section that options exist to remove sodium. Since the 
majority of sulfur is probably mostly bound to organic matter, the 
degradation of organic matter will likely lead to the release of sulfur as 
sulfate, which will also be transferred to the solution going through the 
nitrifying compartment. Finally, it is not yet possible to foresee in which 
of these two streams micronutrients will be present. It will therefore be 
necessary to measure all elements (including the toxic ones) in these two 
streams to test the above-mentioned hypotheses. 

Using water derived from condensates collected in the habitat rather 
than water released by plants by transpiration, which is of high quality 
and should be reserved for the crew, it will be possible to mix the 
nitrogen-rich solution with the P/Ca/Mg-rich solution to produce a 
nutrient solution as similar as possible to the one used by Wheeler et al. 
(2003). Whereas that solution allowed those authors to grow a wide 
variety of crops, it did not consider the specific needs of each crop and 
could thus lead to nutrient imbalance or luxurious consumption; that is, 
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nutrient uptake beyond the level needed by the crop. Nutrient imbal-
ances can have a powerful impact on plant growth and crop quality; for 
instance, an excess of ammonium can limit potassium uptake, an excess 
of chloride can limit nitrate and phosphate uptake, and too much cal-
cium and potassium limit magnesium uptake (Bamsey et al., 2012; 
Geilfus, 2018; Marschner, 2012; Sambo et al., 2019). From an agro-
nomic point of view, excessive nitrogen nutrition can lead to longer 
vegetative growth in cereal and thus a delay in the harvest, while a lack 
of potassium or an excess of nitrogen will decrease potato tuber pro-
duction and tuber quality during storage. Furthermore, given the 
resource scarcity inherent in BLSS, it is necessary to target the highest 
possible nutrient use efficiency by crops (defined as the ratio between 
the amount of nutrient in exported plant part and the amount of nutrient 
added) and therefore to prevent the luxury consumption of nutrients to 
the greatest possible extent. Ideally, to reach a maximal nutrient use 
efficiency, it would be necessary to prepare stock solutions of different 
nutrients and mix them to deliver precise concentrations of nutrients to 
the hydroponic systems. However, this would require that nutrients 
present in these streams be separated from one another. In principle, this 
goal can be achieved using cation and anion exchange resins, but those 
will be difficult to use in the MELiSSA context because such resins might 
be rapidly subjected to fouling (saturation of the resin with organic 
compounds) and lose their efficiency to exchange ions (Wiercik et al., 
2020). 

In any case, whether crops will be fed only with the two nutrient 
streams noted above or more precisely using different stock solutions, 
element concentrations and pH levels in the nutrient solution will have 
to be constantly monitored and possibly adjusted during plant growth 
(Son et al., 2016). The pH value of the nutrient solution in which a plant 
will be growing will need to be adjusted because in soilless systems 
optimal plant growth occurs at pH values between 5 and 7 (Bamsey 
et al., 2012), with higher values leading to a loss of nutrient solubility 
and lower values to element toxicities. The dominant form of nitrogen in 
a nutrient solution has a powerful impact on the development of its pH 
during plant growth. Nitrate-based plant nutrition leads to a pH increase 
in the solution, while ammonium-based nutrition results in solution 
acidification (Marschner, 2012). The ratio of nitrate to ammonium 
coming from the nitrifying compartment will therefore have to be 
fine-tuned so that the pH of the nutrient solution remains constant 
during plant growth. Another possibility to acidify or alkalinize the 
nutrient solution would involve adding protons or hydroxyls to the so-
lution using the water electrolysis process proposed by De Paepe et al. 
(2020). Optode sensors are used to measure soil solution pH in situ 
(Meller et al., 2020) and could be adapted to measure changes in pH in 
nutrient solutions. A simple measure of the electric conductivity of the 
solution will not detect nutrient imbalances in the solution because 
electric conductivity is a proxy for the total ion concentrations in a so-
lution. Online ion-selective sensors are therefore needed to determine 
the concentrations of single ions (Bamsey et al., 2012; Richa et al., 2021; 
Son et al., 2016). Bamsey et al. (2012, 2014) developed bulk optodes 
able featuring low mass, volume, and cost to measure potassium and 
calcium activities in nutrient solutions. The current lifetimes of these 
optodes are 50 h for potassium and 30 h for calcium and should be 
extended to last much longer. Jakobsen et al. (2023b) were able to 
conduct nearly real-time monitoring of potassium, nitrate, and ammo-
nium using ion-specific electrodes within an accuracy of 2 mg nutrient L 
− 1 during one month of lettuce growth in a closed-loop system, while 
Jakobsen et al. (2023a) monitored and controlled nitrate concentration 
in a similar system for one month, with a low-drift, fast-response time 
electrode and an accuracy of 3%. Finally, Phillips et al. (2007) showed 
that cation-selective polymeric membrane electrodes could precisely 
measure sodium concentration in undiluted urine. Such sensors could 
also be used in nutrient solutions to measure changes in sodium con-
centration over time. Sensors able to precisely measure the concentra-
tion of each nutrient (including phosphate, sulfate, etc.) and toxic 
elements over the long run still have to be developed. 

Nitrogen losses from soilless systems have rarely been measured 
(Daum and Schenk, 1996; Yang and Kim, 2020). However, they have 
been measured in the hydroponic compartment of aquaponic systems (i. 
e., systems combining fish and plant production). Hu et al. (2015) and 
Yang and Kim (2020) confirmed that ammonia losses were negligible at 
pH < 7. However, Zou et al. (2016) showed that around 30% of total N 
inputs could be lost at pH 6.0 by denitrification from their aquaponic 
system, with the vast majority being lost as N2. As discussed in section 
four on nitrification, N2 production can help compensate for leaks of 
gases from the spacecraft, but this will also lead to a loss of available N 
for plants. Such N2 losses can be corrected by N2 fixation carried out by 
cyanobacteria (Langenfeld et al., 2021), even at low N2/CO2 partial 
pressure (Verseux et al., 2021) in C4a, and by legumes when grown in 
the presence of rhizobia in C4b. Given the crucial role of N2 in the at-
mosphere of the spaceship and of available nitrogen for plant produc-
tion, it will be necessary to include a full nitrogen mass balance, 
including the different compartments of the MELiSSA loop, as proposed 
by Loader et al. (1997). This will enable determining whether N2-sym-
biotic fixation by plants and cyanobacteria should or should not be 
fostered. 

Growing crops in the long term in closed systems will result in the 
accumulation of toxic compounds in the nutrient solution of C4b. As 
urine and feces are rich in sodium and chloride, these elements will 
accumulate in the nutrient solution of C4b over time, causing toxicity 
symptoms and eventually yield decrease (Kingsbury and Epstein, 1986; 
Slabu et al., 2009) and ultimately leading to the need to renew the so-
lution (Carmassi et al., 2005). Ideally, sodium and chloride should be 
removed from the urine of the crew after its excretion (Fig. 2). Aponte 
and Colón (2001) proposed a six-compartment system to remove sodium 
with electrodialysis. This system can remove 98% of sodium from urine, 
but it also removes other ions such as potassium, phosphate, and 
ammonium and therefore would not be suitable for the MELiSSA loop, 
where those nutrients are required for plant growth. Wang and Wei 
(2020) proposed using nanofiltration to recycle monovalent mineral 
salts from urine. Although they were successful in removing sodium and 
chloride from urine, they also removed a significant amount of potas-
sium, which is essential for plant growth. Recently, building on the work 
by De Paepe et al. (2020), Demey et al. (2022) developed a method 
including alkalinization, electrodialysis, and ion exchange to remove Na 
from urine. This approach achieved 98% sodium removal while main-
taining other nutrients in fluxes that can be recycled to the plant. 
However, whether this method is able to sufficiently decrease the 
chloride concentration in the solution is not yet known, and the authors 
do not explain how they would deal with the problem of resin fouling. 
Nevertheless, their method sounds promising and should be further 
developed, such as for removing sodium and chloride from the effluent 
coming out of the liquid organic waste degradation compartment (C2). If 
after having removed sodium and chloride from this effluent and urine, 
some was left, it should be possible to implement specific crop man-
agement options to mitigate the impact of the remaining sodium and 
chloride on plant growth. One option, as proposed by Bañuelos and Lin 
(2006), would be to grow crops in a sequential manner, with beans first, 
as the most salt-sensitive crop; as NaCl accumulates, crops that are more 
and more tolerant could be grown, such as soybean, onion, potato, and 
rice, followed by spinach, tomato, wheat, and beet (Galvani, 2007) and 
finally Salicornia sp. (Ushakova et al., 2008). Salt-tolerant cultivars of 
these crops should of course be systematically preferred to salt-sensitive 
ones. It should be possible to further increase the salinity tolerance of 
these crops by inoculating halotolerant bacteria to the nutrient solution, 
which could limit sodium uptake by crops due to the sodium sorption 
capacity of the biofilm they produce (Haque et al., 2022). 

Growing crops in hydroponics over the long term can also lead to the 
release of toxic organic substances such as phenols by roots. These need 
to be eliminated either by activated carbon or by microorganisms 
(Hosseinzadeh et al., 2017; Lee et al., 2006). Finally, other organic 
compounds that we do not yet know might also be produced in the 
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various compartments of the MELiSSA loop and have a toxic effect on 
plants. Plant pathogens and other pests can also accumulate in hydro-
ponic systems (Nelson, 1987; Schuerger, 2021; Stanghellini and Ras-
mussen, 1994). This issue can be resolved by disinfecting the nutrient 
solution with UV, as described in Xie et al. (2017), and the seeds with 
bleach and HCl or with ethanol, as described by Massa et al. (2017); 
however, this would kill both the pathogens and beneficial organisms 
(Son et al., 2016). Another option is to inoculate beneficial organisms in 
the nutrient solution (Sheridan et al., 2017). Their establishment will 
avoid the development of pathogens by occupying their ecological niche 
(Vallance et al., 2011) and might have positive impacts on plant growth 
and quality (Lee and Lee, 2015; Sambo et al., 2019). Beyond the issue of 
plant pathogens, human pathogens might also accumulate in different 
compartments of the MELiSSA loop (Douglas et al., 2020), requiring 
sterilization using, for example, UV radiation of nutrient-rich solutions 
coming into the hydroponic system. 

Finally, methods will have to be developed for recycling the nutrient 
solution when it becomes unsuitable for plant growth. The approach 
reported by Demey et al. (2022) might be an option to remove Na, P, Ca, 
and Mg, while a MEC coupled with chemical oxidation in C2 could be 
used to mineralize organic matter (Fig. 2). But once no further use of the 
spent solution is possible, water will have to be evaporated and recu-
perated while the solids will have to be deposited, perhaps as con-
struction materials as proposed in the Water Wall Life support system 
(Gormly et al., 2012; Guo et al., 2017). 

6. Concluding remarks 

In the conclusions of the review paper by Clauwaert et al. (2017) on 
nitrogen cycling in BLSS, the authors state that most of the work done by 
the time of their study had focused on carbon, oxygen, and water, with 
very little work carried out on other nutrients. A substantial amount of 
effort relevant to BLSS has been since then dedicated to nitrogen and 
phosphate, and work has also started on potassium, calcium, and mag-
nesium, but many nutrients (such as sulfur) remain to be studied. 

Whereas substantial efforts have been made on recovering nutrients 
(mainly nitrogen and phosphate) from human urine, much work re-
mains to be done to recover the elements present in other liquid and 
solid organic waste. It is essential to continue research into removing 
sodium and chloride from urine and other organic waste to prevent the 
spread of these elements to the rest of the MELiSSA loop. A full nitrogen 
balance at habitat level will have to be achieved: on one hand, sufficient 
N2 will be needed to keep atmospheric pressure at a proper level and on 
the other, enough mineral nitrogen will have to be provided to the plants 
for biomass production. Overall, we suggest adapting the current 
schema of the MELiSSA loop shown in Fig. 1 by adding a module that 
enables removing sodium, chloride, phosphate, calcium, and magne-
sium from urine and from the effluent derived from C2 and integrating 
the two streams of elements going to the hydroponic system to produce 
the nutrient solution (Fig. 2). Even though the dosing of nutrients 
derived from these two streams (P, Ca, and Mg on one side and N and 
likely other elements to be measured on the other) should allow for a 
broad range of crops to be grown, it will not be possible to design 
nutrient solutions adapted to each crop. We will need to assess the 
nutrient use efficiency for these crops and study how it can be increased. 
We will also have to consider the type of water to be used to produce the 
nutrient solution and the recycling of the nutrient solution; finally, some 
substances will have to be definitively removed from the loop at some 
point in time. 

The use of nutrients derived from waste by plants will have to be 
assessed not only under classical terrestrial conditions but also under 
sealed conditions, as in the Plant Characterization Unit (Pannico et al., 
2022), and under simulated microgravity (e.g., with clinostats as in Liu 
et al., 2018) before being studied in the Advanced Plant Habitat, hard-
ware that has recently been validated on the ISS (Monje et al., 2020). It 
will be important to consider model substrates for these experiments 

such as synthetic feces, as proposed by Penn et al. (2018), and fresh 
synthetic urine, as proposed by Sarigul et al. (2019), to obtain results 
relevant to recycling nutrients from waste. 

This information will have to be integrated within the overall 
MELiSSA plant model (Ciurans et al., 2022; Poulet et al., 2020) to assess 
how plants will react when growing under suboptimal conditions and 
how CO2 capture and O2, water, and food production will be affected. 
Beyond that, the plant model will need to be integrated into the full 
MELiSSA loop model (Poughon et al., 2009) to assess how the different 
processes can be synchronized with one another and how the biomass of 
a sub-optimally grown plant will feedback on the functioning of C1, C2, 
and C3, on the composition of the newly produced nutrient solution, and 
on the performance of the subsequent crops. 
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