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S1 Compounds

Table S1: Compounds used from the different measurement campaigns. •: measured in that cam-
paign, –: not measured or not present in sufficient quantities.

Rhine Danube
Compound Abbr. Usage Ruff et al. SMPC SMPC ICPDR ICPDR

2015 P1 P3 JDS3 JDS4
5-Methyl-Benzotriazole∗ 5MB corrosion inhibitor – • • • •
Acesulfame ACE artificial sweetener • • • • •
Aliskiren ALI pharmaceutical – • • – –
Amisulpride AMI pharmaceutical • • • • –
Atazanavir ATA pharmaceutical – • • – –
Atenolol ATE pharmaceutical • • • – •
Benzotriazole BEN corrosion inhibitor – • • – –
Bezafibrat BEZ pharmaceutical – • • – –
Bicalutamid BIC pharmaceutical – • • – –
Carbamazepine CAR pharmaceutical • • • • •
Citalopram CIT pharmaceutical – • • – •
Clarithromycin CLA pharmaceutical • • • – –
Clopidogrel carbox. acid CLO pharm. metabolite • • • – –
Cyclamate CYC artificial sweetener • • • – •
Diclofenac DIC pharmaceutical • • • • •
Ephedrin EPH pharmaceutical • – • – –
Fexofenadine FEX pharmaceutical – • • – –
Gabapentin GAB pharmaceutical • • • • –
Hydrochlorothiazide HYD pharmaceutical • • • – –
Irbesartan IRB pharmaceutical • • • • –
Ketoprofen KET pharmaceutical – • • – –
Lamotrigine LAM pharmaceutical • • • • •
Levetiracetam LEV pharmaceutical • • • – –
Lidocaine LID pharmaceutical • • • • •
Mefenamic acid MEF pharmaceutical – • • – –
Metformin MET pharmaceutical • – – • –
Moclobemide MOC pharmaceutical – • • – –
Metoprolol MTO pharmaceutical • • • – •
Olmisartan OLM pharmaceutical – • • – –
Oxcarbazepine OXC pharmaceutical – • • – –
Oxypurinol OXY pharm. metabolite – • • – –
Phenazone PHE pharmaceutical • • • • •
Pregabalin PRE pharmaceutical – • • – –
Propranolol PRO pharmaceutical • • • – –
Ranitidine RAN pharmaceutical – • • – –
Saccharin SAC artificial sweetener • • • – –
Sitagliptin SIT pharmaceutical • • • – –
Sulfamethoxazole SUL pharmaceutical • • • • •
Trimethoprim TRI pharmaceutical • • • – –
Valsartan VAL pharmaceutical • • • • •
Venlafaxine VEN pharmaceutical • • • • –

∗ In the Rhine the sum of 5MB and the conservative 4-Methyl-Benzotriazole due to analytical limitations.
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S2 A Benchmarking Method for Rivers

S2.1 Benchmarking with a single pollution source

Benchmarking equations derive from the relative behaviour of mass-balance models (??). Here we

derive simple benchmarks for cases when pollutants originate from a single source. Assume that

pollutants emitted into a surface water body degrade with first-order kinetics at a non-negative rate.

Then, for each pollutant 𝑆, the following general equation applies:

d𝑀S(𝑡)
d𝑡 = −𝑘S𝑀S(𝑡) (S1)

where 𝑀S(𝑡) is the mass of 𝑆 at time 𝑡, and 𝑘S is the degradation rate constant (which can be 0 for

non-degrading compounds.

S2.1.1 Solution for a lake

Hydraulic steady state with constant volume (𝑉 ) and thus similar incoming and outgoing discharge:

d𝑀S(𝑡)
d𝑡 = 𝑉 d𝐶S

d𝑡 = 𝑄𝐶S,in − 𝑄𝐶S − 𝑘S𝐶S𝑉 (S2)

which by division by 𝑉 becomes:

d𝐶S

d𝑡 = 1
𝜏 (𝐶S,in − 𝐶S) − 𝑘S𝐶S (S3)

where 𝜏 is the hydraulic residence time in the system. In a permanent scenario with constant 𝐶S,in the

following equilibrium concentration develops (where the above equation is equal to 0):

𝐶S,eq = 𝐶S,in
1 + 𝑘S𝜏

(S4)

The benchmark ratio between two compounds named 𝑆 and 𝐵 in terms of steady state concentra-

tions:

𝐶S,eq
𝐶B,eq

= 𝐶S,in (1 + 𝑘B𝜏)
𝐶B,in (1 + 𝑘S𝜏) (S5)
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From this one can express 𝑘S from observed concentrations and 𝑘B:

𝑘S = 1
𝜏 (𝐶B,eq𝐶S,in

𝐶S,eq𝐶B,in
(1 + 𝑘B𝜏) − 1) (S6)

When 𝐵 is conservative (𝑘B = 0), this simplifies into:

𝑘S = 1
𝜏 (𝐶B,eq𝐶S,in

𝐶S,eq𝐶B,in
− 1) (S7)

S2.1.2 Solution for a river section

Downstream of the emission point, steady-state concentrations depend on the travel time (𝑡):

d𝐶S(𝑡)
d𝑡 = −𝑘S𝐶S (S8)

Utilizing that for a steady flow with a constant flow velocity 𝑣 there is a simple relation between travel

time and downstream distance (𝑡 = 𝑥
𝑣 ):

d𝐶S(𝑥)
d𝑥 = −𝑘S

𝑣 𝐶S (S9)

Solving with a known initial concentration (𝐶S,in) yields:

𝐶S(𝑥) = 𝐶S,inexp(−𝑘S
𝑥
𝑣 ) (S10)

The benchmark ratio for compounds 𝑆 and 𝐵 is:

𝐶S(𝑥)
𝐶B(𝑥) = 𝐶S,inexp (−𝑘S

𝑥
𝑣 )

𝐶B,inexp (−𝑘B
𝑥
𝑣 ) (S11)

Leading to

𝑘S = 𝑘B + 𝑣
𝑥 𝑙𝑜𝑔 (𝐶B(𝑥)𝐶S,in

𝐶S(𝑥)𝐶B,in
) (S12)

which can be solved at various distances (or travel times) downstream of the emission point based on

the value of the 𝐶B(𝑥)/𝐶S(𝑥) ratio, thereby yielding multiple estimates for 𝑘S.
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S2.2 Benchmarking in rivers with many unknown polluting sources

The approach behind equation (S12) is not well suited for multiple emission sources, as the relation

between 𝑘S and 𝑘B quickly gets complicated as the number of sources increases, and solving the

corresponding equations require the exact knowledge of source locations and the 𝐶S,in ∶ 𝐶B,in ratios

at each source. Thus, for the scale of long rivers a different approach is needed that (i) can handle lots

of emission sources, and (ii) does not require the specifications for each source, as these are seldom

available.

Equation (S12) demonstrates that it would be enough to know the concentration ratio at a single lo-

cation to calculate 𝑘S from 𝑘B, so an entire longitudinal concentration ratio profile contains plentiful

information that can be presumably used to develop a catchment-scale benchmarking algorithm that

can cope with incomplete emission information and lots of emission points.

S2.2.1 Emission and transport model

Assume that the actual emissions (ℰ) of 𝐵 and 𝑆 by direct inputs and tributaries are (i) numerous,

discrete and equidistantly placed along the river, (ii) are independent from neighbouring sources, (iii)

and follow statistical distributions that apply to the entire length of the river. Furthermore, assume that

𝐵 is conservative (𝑘B = 0). Let 𝑞(𝑥) denote the lateral incoming discharges along the river, also

coming from a single distribution. Then the emissions of 𝑆 and 𝐵 can be calculated from multiplying

𝑞 with the concentrations of 𝑆 and 𝐵 in the influents (𝑐S and 𝑐B, respectively). Assuming that 𝑞,
𝑐S, and 𝑐B follow the same three distributions everywhere, the emission amounts ℰS = 𝑞 𝑐S and

ℰB = 𝑞 𝑐B will be homoscedastic too, that is their distributions will not change along the river. There is

no need to require dependence between 𝑐S and 𝑐B, which would be anyway weak considering the usual
variability of directly emitted concentrations and the varying extent of degradation in the differently-

sized tributaries. However, due to the common role of 𝑞, ℰS and ℰB will be correlated.

From the assumption that emission at each emission point is a stochastic variable and therefore the

emission profile along the river is a discrete stochastic process, the transported fluxes of 𝑆 and 𝐵,

and accordingly the benchmark ratio will all be stochastic processes too. In the following we derive

the statistical properties of these processes.

The transported flux𝐹𝑆(𝑥) [g d−1] will approach to a certain value downstream (in finite time if 𝑘𝑆 > 0,
see Figure S1). Due to the large assumed number of emission points, at a certain river cross-section

the expected value of the transported flux E[𝐹S(𝑥)] is determined by the average emission rate and

not by the difference between individual emissions. Then E[𝐹S(𝑥)] comes from the integral of equation

(S10):

E [𝐹S(𝑥)] = ∫
𝑥

𝜒=0
E[ℰS] ⋅ exp(−𝑘S

𝜒
𝑣 ) d𝜒 (S13)
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Figure S1: A synthetic example of strongly varying equidistant emissions along an upstream river
section and the corresponding flux profiles and the concentration ratio profile. Compound 𝑆 degrades
fast with a half-life length of 15 km, while 𝐵 is conservative. Thick lines show a specific realization,
shaded areas indicate uncertainty intervals at 80% confidence level.
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where E[ℰS] is the mean distance-specific emission rate [g m−1 d−1] along the river.

The solution of this integral equation is:

E [𝐹S(𝑥)] = E[ℰS] 𝑣
𝑘S

(1 − exp(−𝑘S
𝑥
𝑣 )) (S14)

For conservative compounds, the limit solution is (logically) the product of distance-specific emission

rate and the river length for any 𝑥 and 𝑣:

𝑙𝑖𝑚
𝑘S→0

𝐸 [𝐹S(𝑥)] = E[ℰS] 𝑥 (S15)

Proof: It is known that

𝑙𝑖𝑚
ℎ→0

expℎ − 1
ℎ = 1 (S16)

Let ℎ be −𝑘S
𝑥
𝑣 , so by considering that 𝑥 and 𝑣 can be both nonzero:

𝑙𝑖𝑚
𝑘S→0

1 − exp (−𝑘S
𝑥
𝑣 )

𝑘S
𝑥
𝑣

= 1 (S17)

and then

𝑙𝑖𝑚
𝑘S→0

𝑣
𝑘S

(1 − exp(−𝑘S
𝑥
𝑣 )) = 𝑥 (S18)

leading to

𝑙𝑖𝑚
𝑘S→0

𝐸[ℰS] 𝑣
𝑘S

(1 − exp(−𝑘S
𝑥
𝑣 )) = E[ℰS] 𝑥 (S19)

– Q.E.D.

So assuming that 𝐵 is conservative:

E[𝐹B(𝑥)] = E[ℰB]𝑥 (S20)

To estimate the variance of 𝐹S (and 𝐹B) at a certain location 𝑥 use the 𝜉 distance between two sub-

sequent sources. The variance of the accumulated flux at a specific 𝑥 declines with the square of 𝑘S,

but it can be summed up along the river in a similar way as the mean:

Var[𝐹S(𝑥)] = Var[ℰS]𝑣
2𝑘S𝜉

(1 − exp(−2𝑘S𝑥
𝑣 )) (S21)

Var[𝐹B(𝑥)] = Var[ℰB]𝑥𝜉 (S22)
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S2.2.2 Approximation for the mean and variance of the benchmark ratio along the river

The expected value and the variance of a ratio of two random variables does not have closed equation

except cases with certain assumptions on the distribution and covariance of the components. To

avoid having to make specific assumptions on the distributions of concentrations and the emissions,

we apply the delta-method, that is a Taylor-series expansion around the means to estimate the selected

statistical moments (??):

E [𝑋
𝑌 ] ≈ E[𝑋]

E[𝑌 ] − Cov[𝑋, 𝑌 ]
E[𝑌 ]2 + E[𝑋]

E[𝑌 ]3Var[𝑌 ] (S23)

and

Var [𝑋
𝑌 ] ≈ Var[𝑋]

𝐸[𝑌 ]2 − 2 E[𝑋]
E[𝑌 ]3Cov[𝑋, 𝑌 ] + E[𝑋]2

E[𝑌 ]4 Var[𝑌 ] (S24)

To assemble the mean and variance of the benchmark ratio, we substitute 𝐹S(𝑥) for 𝑋 and 𝐹B(𝑥) for
𝑌 . As E[𝐹S(𝑥)], E[𝐹B(𝑥)], Var[𝐹S(𝑥)], and Var[𝐹B(𝑥)] are already known, the only open question is
Cov[𝐹S(𝑥), 𝐹B(𝑥)].

It is known that Cov[𝑍𝑉 , 𝑍𝑊] = E[𝑉 ]E[𝑊]Var[𝑍] for independent 𝑍, 𝑉 , and 𝑊 (?). Thus, con-

sidering that it is mostly 𝑞 (= 𝑍 ) that can create covariance between 𝐹S (= 𝑍𝑉 ) and 𝐹B (= 𝑍𝑊 ),

we get:

Cov[𝐹B, 𝐹S] = E[𝐹S]
E [𝑞] E[𝑐B]Var [𝑞] (S25)

Having all components, the expected value of the benchmark ratio can be expressed:

E [𝐹S

𝐹B
] ≈ E[𝐹S]

E[𝐹B] − Cov[𝐹S, 𝐹B]
E[𝐹B]2 + E[𝐹S]

E[𝐹B]3Var[𝐹B] (S26)

which leads to

E [𝐹S

𝐹B
] ≈ 𝑣

𝑘S
(1 − exp(−𝑘S

𝑣 𝑥)) (1
𝑥
E[ℰS]
E[ℰB] + 1

𝑥2 (E[ℰS]Var[ℰB]
𝜉E[ℰB]3 − E[ℰS]E[𝑐B]Var[𝑞]

E[𝑞]E[ℰB]2 ))
(S27)

The unknown statistical properties of emissions can be merged into aggregate parameters:

E [𝐹S

𝐹B
] ≈ 𝑣

𝑘S
(1 − exp(−𝑘S

𝑣 𝑥)) (𝛼
𝑥 + 𝛽

𝑥2 ) (S28)
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where 𝛼 = E[ℰS]
E[ℰB] and 𝛽 = E[ℰS]

E[ℰB]2 (Var[ℰB]
𝜉E[ℰB] − E[𝑐B]Var[𝑞]

E[𝑞] ).

For large 𝑥, the effect of 𝛽/𝑥2 is losing its relative importance for most possible values of 𝛽. Thus, in
an analogy to Taylor-series approximations, it can be assumed that 𝛽 = 0 for 𝑥 ≫ 0.

Similarly, the variance of the bechmark ratio is:

Var [𝐹S

𝐹B
] ≈ Var[𝐹S]

𝐸[𝐹B]2 − 2 E[𝐹S]
E[𝐹B]3Cov[𝐹S, 𝐹B] + E[𝐹S]2

E[𝐹B]4Var[𝐹B] (S29)

which leads to

Var [𝐹S

𝐹B
] ≈ 𝑣

𝑘S
(1 − exp(−𝑘S

𝑣 𝑥)) ( 𝛾
𝑥2 (1 + exp(−𝑘S

𝑣 𝑥)) − 𝛿
𝑥3 ) (S30)

with 𝛾 = Var[ℰS]
2𝜉E[ℰB]2 and 𝛿 = 2E[ℰS]E[𝑐B]Var[𝑞]

E[ℰB]3 − − Var[ℰB]
𝜉E[ℰB]4

Outside the initial range, the effect of the cubic term can be neglected (𝛿 = 0 for 𝑥 ≫ 0).

S2.2.3 Heteroscedastic emissions

Large rivers may flow through regions with different distributions of 𝑐S and 𝑐B. Such differences should
only be considered when they are systematic and affect longer sections of the river. Such a case is

an international river that has significantly different emission patterns in its upstream and downstream

countries. To calculate the statistical properties of the benchmark ratio along the river, the locations of

turning points between the distinct emission regimes must be known.

Let’s assume that a river flows through different emission regimes that are labelled with roman numerals

and that it is long enough to neglect 𝛽/𝑥2 from equation (S28). In this case, the expected value of the

benchmark ratio for a single section would be:

E [𝐹S

𝐹B
] ≈ 𝛼 𝑣

𝑘S𝑥
(1 − exp(−𝑘S

𝑣 𝑥)) (S31)

Each regime has its own, different 𝛼 = E[ℰS]
E[ℰB] and its downstream limit coordinate 𝑋. Starting from

upstream, the first regime is thus characterised by 𝛼I = ( E[ℰS]
E[ℰB])I

and 𝑋I, the following is by 𝛼II =
( E[ℰS]
E[ℰB])II

and 𝑋II, and so on.

At each regime boundary, the course of E [𝐹S
𝐹B

(𝑥)] changes. In regime 𝑗 (where 𝑥 ∈ [𝑋𝑗−1, 𝑋𝑗]) the
course must be calculated considering the actual regime and all upstream regimes too:

S9



E [𝐹S

𝐹B
(𝑥)]

𝑗
=

𝑗−1
∑
𝑙=1

{(E[ℰS]
E[ℰB])𝑙

exp (−𝑘′
S (𝑥 − 𝑋𝑙)) − exp (−𝑘′

S𝑥)
𝑘′
S𝑥

} +

+ (E[ℰS]
E[ℰB])𝑗

1 − exp (−𝑘′
S (𝑥 − 𝑋𝑗−1))

𝑘′
S𝑥

(S32)

where 𝑋0 = 0 and 𝑘′
S = 𝑘S

𝑣 . This equation assumes that E[ℰB] is the same in all sections and thus

that 𝐹B(𝑥) is a linear function of 𝑥. For carbamazepine, this condition was fulfilled in the Danube

(Figure S2).
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Figure S2: Carbamazepine flux along the Danube River in the JDS3 campaign. Dots indicate measure-
ments, line is a linear fit to the data.

Remark: When E[ℰS]
E[ℰB] is the same everywhere in equation (S32), regardless of the placement of 𝑋 limits,

we arrive at equation (S31).

As equation (S30) demonstrates for homoscedastic emissions, the variance of benchmark ratio de-

pends on intricate properties of the emission statistics. This makes the variance under heteroscedastic

emissions extremely complicated. Generally, according to numerical simulations, the same decaying

pattern applies as for the homoscedastic case, yet the section boundaries are all breaking points and

variance may even locally increase downstream. As a workaround, one can utilise the fact that to-

tal variance is likely to be dominated by measurement variance except the most upstream part of

long rivers. Thus, benchmark variance can be calculated based on the most upstream section alone,

thereby neglecting smaller changes downstream.

S2.2.4 Calculation algorithm

Here we describe the step-by-step procedure of fitting the homoscedastic benchmark model to API

data.
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1. Select the conservative benchmark compound 𝐵 and the compound of interest (𝑆).

2. Obtain concentration (or flux) data for compounds 𝑆 and 𝐵 along the main channel of the river.

The two compounds must have been measured in the same cross-sections.

3. Assign a downstream distance coordinate to each sampling site. The starting point should be

just upstream of where emissions are likely to start. The benchmarking method assumes that

the flux of both 𝑆 and 𝐵 is 0 at 𝑥 = 0.

4. Calculate the 𝐶𝑆/𝐶𝐵 ratios at each cross-section. If one of the compounds is missing at a

certain cross-section, remove that section from the fitting data.

5. Fit the model to the data

(a) Assign prior parameter distributions to 𝑘′
𝑆,𝛼, 𝛽, 𝛾, 𝛿, and𝜎. It has to be noted that 𝑘′

𝑆 can

be slightly negative if the benchmark compound is not completely resistant to removal,

so there the prior should allow such values, while preventing too high absolute numbers.

It is recommended to restrict the prior distributions of the other parameters to the non-

negative domain as otherwise their assigned meaning would be violated. An exponential

prior distribution helps to keep a parameter value positive while strongly favouring smaller

numbers. If you don’t want to use parameter priors, just assume that all of them are

uniform distributions over a wide domain or discard them from the rest of the calculation

algorithm. Doing sowill increase parameter uncertainty and the risk of gettingmeaningless

parameter values.

(b) Calibrate the model by maximising model posterior probability of parameters. Perform

the following calculation steps in a desired optimiser function/framework (as the simplest

solution, you can use optim() with method = "Nelder-Mead" in R):

i. Guess a set of values for 𝑘′
𝑆, 𝛼, 𝛽, 𝛾, 𝛿, and 𝜎.

ii. Calculate the prior probability of the parameter set by multiplying the probability den-

sity values of each parameter value and the corresponding prior distribution.

iii. For each cross-section calculate the expected value of the benchmark ratio with

equation (S28) and the variance of the benchmark ratio with equation (S30) using the

previously guessed parameter values. Then calculate the likelihood of parameters at

each cross-section from the observed benchmark ratio and the probability density

function of a normal distribution with the given expected value (mean) and variance.

iv. The total likelihood of the parameter set is the product of the cross-section likeli-

hoods. To ease calculation, use log-likelihoods and sum them up instead of multi-

plying.
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v. The posterior probability is the product of prior probability and the total likelihood.

When using log-likelihood, add the logarithm of the prior probability.

vi. Based on the posterior probability, guess a new set of values and start a new iteration

in point ii.

6. Perform MCMC to assess parameter uncertainty. MCMC sampling is based on the posterior

probability of parameters and produces a quasi-random sample of model parameters that –

when enough iterations are available – is statistically representative of the posterior parameter

probability distribution. MCMC starts from an arbitrary parameter combination, then in each

iteration a random but close parameter combination is proposed, which is either accepted or

rejected by the jump algorithm. When the new parameter combination belongs to a better

posterior probability as the old one, it is accepted. Otherwise, it is accepted randomly, with a

probability depending on the difference in posterior (more worse posteriors are accepted with les

probability). Upon accept, the new parameter combination will replace the old one as the base

for further jumps. MCMC requires thousands of model runs and posterior evaluations, and can

be done with several alternative R packages, such as mcmc, rjags, rstan, etc. MCMC samples

are typically pre-processed before interpreting. Subsequent parameter samples are normally

correlated as the jump distance between subsequent rounds is bounded by the acceptance

rule. That’s why it is common to apply a thinning factor, which simply keeps every nth step

and discards the others. Efficient MCMC algorithms adjust the size and correlation structure of

the jump distribution to keep acceptance rates optimal. This interferes with the convergence

of the MCMC chain to the posterior, so the normal procedure is to restrict jump distribution

adjustments to a first n iterations (called as the burn-in period), which are later discarded from

processing. We used the Metropolis-Hastings algorithm of MCMC, thinned the chain by a factor

of 5 to reduce correlation in the sample and dedicated the first 100 000 rounds of the 110 000

total rounds to burn-in.

7. Compare campaigns

(a) Select the two campaigns (A and B) to be compared.

(b) Select the subset of compounds that is present in both campaign A and B.

(c) For each compound in the subset

i. Load the MCMC samples of 𝑘′
𝑆 from the two campaigns, neglecting the first itera-

tions belonging to burn-in.

ii. Calculate the median values of 𝑘′
𝑆 from both samples.

(d) Rank the compounds in the subset based on their median 𝑘′
𝑆 values in campaigns A and
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B separately.

(e) Compare the ranks from the two campaigns to each other. Kendall’s 𝜏 and the corre-

sponding 𝑝 value can be calculatedwith cor.test(ranks.a, ranks.b, method="kendall")
in R, where ranks.a and ranks.b are the rankings of the subset compounds in the two

campaigns.

(f) Outliers can be detected by robust linear regression, using MASS::rlm(ranks.b ranks.a
+ 0, psi = psi.bisquare) in R. Weights are obtained by taking the w property of the

result of the rlm call. We used a weight threshold of w<0.5 to label a point as an outlier.

S3 Parameter priors used in model calibration

Table S2: Prior parameter distributions used to fit observed 𝐶S/𝐶B profiles
Parameter Prior type Distribution properties
𝛼𝑖 lognormal mean=most upstream𝐶S/𝐶B reading, relative standard deviation=20%

for the uppermost (Rhine, Danube), 100% for other sections (Danube)
𝛾 exponential mean=1
𝑘′
S uniform minimum=−0.1, maximum=+0.1 [km−1], negative values allowed to

describe back transformation of conjugates, where applicable
𝜎 exponential mean=10% of observed mean 𝐶S/𝐶B
𝑋𝑖 (Danube) uniform limits=real boundaries of DE-AT, AT-SK, SK-HU, HU-RS±30 [km]

S4 Ranking of uncertain quantities

S4.1 Calculating optimal ranks for uncertain quantities

Assigning ranks to highly uncertain quantities is itself uncertain and for a larger set of quantities it

is combinatorically difficult. ranking 40 different samples of 𝑘′
𝑆 has 40! ≈ 1048possible solutions,

while most of the combinations are obviously far from reasonable. To find the optimal ranking, we use

Thurstone’s model, which relies on probabilities of inequality relations between neighbouring elements

of the ranking (?). In such a case the likelihood of the ranking is:

𝐿(𝑅) =
𝑛

∏
𝑖=2

𝑃(𝑘′
𝑆𝑖−1

< 𝑘′
𝑆𝑖

) (S33)

where 𝑛 is the number of compounds to be ranked.

The independent MCMC samples provide an empirical estimate for 𝑃(𝑘′
𝑆𝑖

< 𝑘′
𝑆𝑗

) = ∑[𝑘′
𝑆𝑖

<
𝑘′

𝑆𝑗
]/𝑚 for compounds 𝑖 and 𝑗, where [… ] is the Iverson bracket and 𝑚 is the size of the MCMC
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samples. From such pairwise relations a full probability matrix 𝒫 can be composed, showing all pos-

sible relations.

Our hypothesis is that sorting the compounds based on the medians of their 𝑘′
𝑆 samples yields an

optimal ranking in the above defined likelihood model. When a sample is compared to itself, 𝑃(𝑘′
𝑆𝑖

<
𝑘′

𝑆𝑖
) = 1

2 . We show that the same applies for non-identical samples having continuous symmetric

unimodal distributions when their median is the same. The consequence of this hypothesis is that

ranking by medians can determine an order where 𝑃(𝑘′
𝑆𝑖

< 𝑘′
𝑆𝑖+1

) > 1
2 . For the sake of brevity,

from this point on we denote the two samples of 𝑘′
𝑆 with 𝑋 and 𝑌 , their means by �̄�, and ̄𝑌 , their

medians by �̃�, and ̃𝑌 , respectively.

Getting the probability for the 𝑋 < 𝑌 inequality would generally require calculating the following

integral:

𝑝(𝑋 < 𝑌 ) = ∫
∞

−∞
∫

𝑦

−∞
𝑓𝑋(𝑥)𝑓𝑌 (𝑦)d𝑥d𝑦 (S34)

where 𝑓𝑋 and 𝑓𝑌 are the probability density functions of 𝑋, and 𝑌 , respectively.

Luckily, the relation can be translated into a univariate form by using the difference variable 𝐷 =
𝑋 − 𝑌 :

𝑃(𝑋 < 𝑌 ) = 𝑃(𝐷 < 0) (S35)

The distribution of 𝐷 has the following property due to the additive behaviour of mean

E(𝐷) = E(𝑋) − E(𝑌 ) (S36)

then

𝑃(𝐷 < 0) = ∫
0

−∞
𝑓𝐷(𝜉)d𝜉 = 𝐹𝐷(0) (S37)

where 𝑓𝐷 is the probability density function of 𝐷 and 𝐹𝐷 is the cumulative distribution function of 𝐷.

�̃� is defined as:

𝑃(𝐷 ≤ �̃�) = ∫
�̃�

−∞
𝑓𝐷(𝜉) d𝜉 = 1

2 = ∫
∞

�̃�
𝑓𝐷(𝜉) d𝜉 = 𝑃(𝐷 ≥ �̃�) (S38)

𝐹𝐷(0) = 1
2 means that �̃� = 0. When 𝑋 and 𝑌 are independent and have symmetrical distributions

then the median is equal to the mean: �̃� = �̄�. According to the additivity of independent means, the

mean of 𝐷 can be calculated from the means of 𝑋 and 𝑌 : �̄� = �̄� − ̄𝑌 .
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When �̄� − ̄𝑌 = 0 then it follows that:

�̄� = ̄𝑌 (S39)

and due to the symmetry of distributions of 𝑋 and 𝑌 :

�̃� = ̃𝑌 (S40)

–Q.E.D.

From the proven hypothesis it follows that when 𝑃(𝑋 < 𝑌 ) ≠ 1
2 then the then the medians and

means of 𝑋 and 𝑌 are not the same. When �̃� < ̃𝑌 then 𝑃(𝑋 < 𝑌 ) > 1
2 . Thus, one can sort 𝑋

and 𝑌 according to their medians. For symmetrically distributed 𝑋 and 𝑌 sorting by the mean would

be sufficient too, as �̄� = �̃�. However, sorting by the median works for asymmetrically distributed

samples too, given that both 𝑓𝑋 and 𝑓𝑌 can be made symmetrical with the same transformation. The

reason for this is that common transformations 𝑡(… ) do not change the order of elements, so

𝑡(𝑋) = 𝑡(�̃�) (S41)

Samples of 𝑘′
𝑆 are typically not symmetrical, but get closely normal after a log-transformation (see

Box-plots in Fig. ??). Thus, rankings obtained by order of medians are presumably not optimal, but

good approximations of the most likely solution.

The above defined likelihood of a ranking depends on the number of ranked items. To define a com-

parable metric for the quality of rankings, we define the unambiguity of an (optimal) ranking (𝑈(𝑅))
from the geometric mean of 𝑃(𝑘′

𝑆𝑖−1
< 𝑘′

𝑆𝑖
) probabilities as:

𝑈(𝑅) = 2 exp( log𝐿(𝑅)
𝑛 − 1 ) − 1 (S42)

𝑈(𝑅) takes its maximum (1) when 𝑃(𝑘′
𝑆𝑖−1

< 𝑘′
𝑆𝑖

) = 100% for all 𝑖, and is at its minimum (0%) for

a totally undecidable ranking (where 𝑃(𝑘′
𝑆𝑖−1

< 𝑘′
𝑆𝑖

) = 1
2 for all 𝑖, e.g. because we try to rank exact

copies of the same sample.

The similarity of two rankings of the same set of compounds is expressed by Kendall’s rank correlation

coefficient (𝜏 ). Compounds behaving differently in compared campaigns are detected by robust linear

regression, using Tukey’s score function (𝜓). The weight threshold for outliers was 50%.
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S4.2 An approximate uncertainty range for ranks

The uncertainty range for the rank of a certain compound can be estimated with an algorithm that

resembles local sensitivity analysis. The likelihood of a specific ranking is approximated from the

compound’s relation to the others, ignoring relations unrelated to the compound in question. Relations

are determined based on the 𝒫 matrix containing all possible 𝑃(𝑘𝑆𝑗
< 𝑘𝑆𝑖

) values.

We assume that in a ranking that has the 𝑖th compound at rank 𝑅𝑖 = 𝑟 the other compounds are

assigned to ranks 𝑟𝑗 < 𝑟𝑖 if they have a 𝑃(𝑘𝑆𝑗
< 𝑘𝑆𝑖

) < 0.5. The others are ranked above the

compound (𝑟𝑖 < 𝑟𝑗).

Let 𝑃 ′ be the ordered list of 𝑃(𝑘𝑆𝑗
< 𝑘𝑆𝑖

) for all 𝑗. Then the left-sided estimate for the likeli-

hood:

𝑃(𝑅𝑖 = 𝑟)left ∝ ∏𝑖−1
𝑘=1 (1 − 𝑃 ′

𝑘) ∏𝑛
𝑙=𝑖 𝑃 ′

𝑙

The right-sided estimate is:

𝑃(𝑅𝑖 = 𝑟)right ∝ ∏𝑖
𝑘=1 (1 − 𝑃 ′

𝑘) ∏𝑛
𝑙=𝑖+1 𝑃 ′

𝑙

Harmonising the two estimates:

𝑃(𝑅𝑖 = 𝑟) ∝ min (𝑃 (𝑅𝑖 = 𝑟)𝑙𝑒𝑓𝑡, 𝑃 (𝑅𝑖 = 𝑟)𝑟𝑖𝑔ℎ𝑡)

The approximate confidence interval for the ranking can be extracted from the discrete probabilities

by using a cut-off limit.

S16



S5 Calculating total system half-lives from in the Rhine

For a given stream reach and compound, first-order total system degradation rate constants can be

calculated from compound properties and reach characteristics (??). We used typical values for the

Rhine main channel, and posterior estimates for compound properties from (?).

Param. Meaning Unit Value

𝑆𝑆𝐶 suspended solids concentration kg m−3 0.030

𝑍w water depth m 4.0

𝑍a depth of active sediment layer m 0.025

𝑓oc,sed sediment organic carbon content kg kg−1 0.005

𝑆 fine sediment dry mass in active layer kg m−2 3.0

𝐾oc sediment adsorption coefficient m3 kg−1 by compound

𝑘′
bio second-order biotransformation rate constant m3 (kg OC d)−1 by compound

𝑘photo,surf surface phototransformation rate constant d−1 by compound

𝑘hydr hydrolysis rate constant d−1 by compound

The fraction of time spent in settled sediment is

𝜙settled =
𝑆

𝑆𝑆𝐶⋅𝑍w
1

𝐾oc⋅𝑓oc,sed⋅𝑆𝑆𝐶 + 1 + 𝑆
𝑆𝑆𝐶⋅𝑍w

(S43)

The aqueous fraction in the water column (𝑓aq,w [–]) is

𝑓aq,w = 1
1 + 𝐾oc ⋅ 𝑓oc,sed ⋅ 𝑆𝑆𝐶 (S44)

The aqueous fraction in the sediment (𝑓aq,sed [–]) is

𝑓aq,sed = 1
1 + 𝑆⋅𝐾oc⋅𝑓oc,sed

𝑍𝑎

(S45)

The total system first-order biotransformation rate (𝑘biotransf [d
−1]) is

𝑘biotransf = 𝑘′
bio ⋅ 𝑓oc,sed (𝑆𝑆𝐶 ⋅ 𝑓aq,w (1 − 𝜙settled) + 𝑆

𝑍𝑎
⋅ 𝑓aq,sed ⋅ 𝜙settled) (S46)

The first-order water column phototransformation rate (𝑘photo [d
−1]) is

𝑘photo,w = 𝑘photo,surf ⋅ exp(−(11 ⋅ 𝑆𝑆𝐶 + 0.22)𝑍w

2 ) ⋅ 𝑓aq,w (S47)
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The first-order total system hydrolysis rate (𝑘hydr,ts [d
−1]) is

𝑘hydr,ts = 𝑘hydr (𝑓aq,w (1 − 𝜙settled) + 𝑓aq,sed ⋅ 𝜙settled) (S48)

Then finally the total system attenuation rate (𝑘ts [d
−1]) is

𝑘ts = 𝑘biotransf + 𝑘photo,w + 𝑘hydr,ts (S49)

which an be converted into a half-life (𝐷𝑇50,ts [d]) as

𝐷𝑇50,ts = ln(2)
𝑘ts

(S50)
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S6 Fits of the benchmark model to measured data

Model fits are first ordered by campaign and then by compound. Campaigns are in their time order,

compounds are in alphabetical order of their abbreviations,

S6.1 Rhine campaigns

S6.1.1 Ruff et al. (2015)
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Figure S3: Model fits on benchmark ratios in the Ruff et al. (2015) campaign. Dots indicate observa-
tions, dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level,
the darker is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S4: Model fits on benchmark ratios in the Ruff et al. (2015) campaign. Dots indicate observa-
tions, dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level,
the darker is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S5: Model fits on benchmark ratios in the Ruff et al. (2015) campaign. Dots indicate observa-
tions, dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level,
the darker is the parametric uncertainty, while the lighter includes observation uncertainty too.
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S6.1.2 SMPC P1
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Figure S6: Model fits on benchmark ratios in the SMPC P1 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the
darker is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S7: Model fits on benchmark ratios in the SMPC P1 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the
darker is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S8: Model fits on benchmark ratios in the SMPC P1 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the
darker is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S9: Model fits on benchmark ratios in the SMPC P1 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the
darker is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S10: Model fits on benchmark ratios in the SMPC P1 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker
is the parametric uncertainty, while the lighter includes observation uncertainty too.
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S6.1.3 SMPC P3
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Figure S11: Model fits on benchmark ratios in the SMPC P3 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker
is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S12: Model fits on benchmark ratios in the SMPC P3 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker
is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S13: Model fits on benchmark ratios in the SMPC P3 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker
is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S14: Model fits on benchmark ratios in the SMPC P3 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker
is the parametric uncertainty, while the lighter includes observation uncertainty too.
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Figure S15: Model fits on benchmark ratios in the SMPC P3 campaign. Dots indicate observations,
dashed line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker
is the parametric uncertainty, while the lighter includes observation uncertainty too.
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S6.2 Danube campaigns

S6.2.1 JDS3
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Figure S16: Model fits on benchmark ratios in the JDS3 campaign. Dots indicate observations, dashed
line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker is the
parametric uncertainty, while the lighter includes observation uncertainty too. Dotted vertical lines
indicate the posterior position of emission boundaries.
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Figure S17: Model fits on benchmark ratios in the JDS3 campaign. Dots indicate observations, dashed
line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker is the
parametric uncertainty, while the lighter includes observation uncertainty too. Dotted vertical lines
indicate the posterior position of emission boundaries.

S33



S6.2.2 JDS4
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Figure S18: Model fits on benchmark ratios in the JDS4 campaign. Dots indicate observations, dashed
line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker is the
parametric uncertainty, while the lighter includes observation uncertainty too. Dotted vertical lines
indicate the posterior position of emission boundaries.

S34



0 500 1000 1500 2000 2500

0.
0

0.
1

0.
2

0.
3

0.
4

PHE:CAR (JDS4)

x [km]

C
(P

H
E

):
C

(C
A

R
)

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●●

●

●

● ●

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

SUL:CAR (JDS4)

x [km]

C
(S

U
L)

:C
(C

A
R

) ●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

● ●

●

●

●
●

●

● ●

●

0 500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

VAL:CAR (JDS4)

x [km]

C
(V

A
L)

:C
(C

A
R

)

●

●

●

●
●

●

●

●

●

●

●●
●

●
● ●

●

●

●
●

●

●

●
●

Figure S19: Model fits on benchmark ratios in the JDS4 campaign. Dots indicate observations, dashed
line is the best model fit. Shaded areas indicate uncertainty at 95% confidence level, the darker is the
parametric uncertainty, while the lighter includes observation uncertainty too. Dotted vertical lines
indicate the posterior position of emission boundaries.
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S6.3 Relative fir error by campaign
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Figure S20: Relative fit error (𝜎 divided by the mean benchmark ratio) by campaign.
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S7 Carbamazepine profiles in the two rivers
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Figure S21: Carbamazepine concentration (upper row) and flux profiles (lower row) in the two rivers.
Left panels show the Rhine, right panels show the Danube. Flux was calculated where concentration
data had associated flow or it could be assigned based on measurement location and time.
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S8 Glossary

Abbreviations, symbols and acronyms (except compound codes):

API: Active pharmaceutical ingredient

B: The benchmark compound

CB: Concentration of 𝐵
CS: Concentration of 𝑆
DT50: Dissipation half-life

ICPDR: International Commission for the Protection of the Danube River

ICPR: International Commission for the Protection of the Rhine

JDS: Joint Danube Survey of ICPDR

kS: First-order dissipation rate constant

k′
S: Longitudinal first-order dissipation rate constant

MCMC: Markov chain Monte Carlo

OECD 308: Laboratory simulation test guideline for aerobic and anaerobic transformation in aquatic

sediment systems

R: A specific ranking

REACH: European Regulation framework for Registration, Evaluation, Authorisation and Restriction of

Chemicals

S: The substance of interest

SMPC: Sondermessprogramm Chemie, Special Chemical Monitoring Programme of ICPR

U(R): The unambiguity of an (optimal) ranking

v: Flow velocity

WWTP: Wastewater treatment plant

𝛼: Empirical model coefficient

𝛽: Empirical model coefficient

𝛾: Empirical model coefficient

𝛿: Empirical model coefficient

𝜎: Observation error

𝜏 : Kendall’s rank correlation coefficient
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