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ABSTRACT: The assessment of environmental hazard indicators
such as persistence, mobility, toxicity, or bioaccumulation of
chemicals often results in highly variable experimental outcomes.
Persistence is particularly affected due to a multitude of influencing
environmental factors, with biodegradation experiments resulting
in half-lives spanning several orders of magnitude. Also, half-lives
may lie beyond the limits of reliable half-life quantification, and the
number of available data points per substance may vary
considerably, requiring a statistically robust approach for the
characterization of data. Here, we apply Bayesian inference to
address these challenges and characterize the distributions of
reported soil half-lives. Our model estimates the mean, standard
deviation, and corresponding uncertainties from a set of reported
half-lives experimentally obtained for a single substance. We apply our inference model to 893 pesticides and pesticide
transformation products with experimental soil half-lives of varying data quantity and quality, and we infer the half-life distribution
for each compound. By estimating average half-lives, their experimental variability, and the uncertainty of the estimations, we provide
a reliable data source for building predictive models, which are urgently needed by regulatory authorities to manage existing
chemicals and by industry to design benign, nonpersistent chemicals. Our approach can be readily adapted for other environmental
hazard indicators.
KEYWORDS: environmental fate data, biodegradation half-lives, soil, censored data, uncertainty, Bayesian inference

■ INTRODUCTION
In the EU, different chemical regulations require different
levels of hazard and risk assessment, partially depending on the
amounts of substances used and produced.1−4 The recently
amended regulation for chemicals, labeling, and packaging
(CLP) in Europe now requires hazard assessment covering
toxicity, bioaccumulation, persistence, and mobility for
substances and mixtures introduced into the EU market, to
prioritize those with great potential for negative environmental
impacts.5 Experimental determination of these hazard
indicators is costly and time-consuming, and the necessary
data for a confident hazard assessment are missing for many
substances on the market.6 Computational models that predict
environmental hazard indicators are necessary to fill data gaps
for existing chemicals and to screen for environmentally safe
chemicals during the industrial research and development of
new chemicals,7 ultimately supporting the phase-out of harmful
chemicals on the market. However, model training requires
reliable and abundant experimental data of sufficient quality,
which is scarce, in particular for biodegradation end points.
In addition to the scarcity of data, the main issue is the high

variability of environmental hazard indicator data. For example,

OECD 307 studies require experimental determination of
biotransformation half-lives of a substance in three different
types of soil.8 While testing in diverse soils is considered
necessary to draw general conclusions about the persistence of
a chemical in the environment, this will lead to variability in
the determined end point data. In the case of soil
biodegradation, sources of variability include physicochemical
parameters (e.g., temperature and acidity), soil characteristics
(e.g., soil texture, cation exchange capacity, biomass content,
and organic carbon content), and the composition, activity,
and enzymatic potential of the microbial community. Other
factors that contribute to the variability of biodegradation data
include low but environmentally relevant concentrations of
spiked chemicals entailing larger analytical errors and the
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kinetic model used to derive half-lives from concentration−
time series.9 While in most cases (pseudo) first-order kinetics
are assumed and used to estimate half-lives, some studies
employ different kinetic models, typically assuming a fast and a
slow degradation phase, to derive degradation half-lives.
Hence, the resulting half-life estimates depend on the choice
of kinetic models leading to considerable methodological
uncertainty. If many experimental values for a single substance
are available, then the total variability can be statistically
determined as the product of the natural variability of the
environmental samples and the methodological uncertainty.
However, if only a single or few data points are reported, the
total variability remains unknown or uncertain, respectively.
Other issues are experimental outcomes that lie beyond the

limits of what can be reliably determined given the specific
experimental setup, leading to so-called censored values, i.e.,
values that can be given as only “smaller than” (left-censored)
or “larger than” (right-censored) the reporting limit. A popular
strategy is to remove censored values from the data set.
However, this introduces statistical bias, and when exper-
imental data are scarce and expensive, removing censored
values means further reducing an already small data set.10 For
persistence assessment, right- or left-censored values indicate
that the substance is highly recalcitrant or highly biodegrad-
able, respectively, and thus, its structure is particularly
informative for machine learning models that predict
biodegradation from molecular structure [i.e., Quantitative
Structure Biodegradation Relationships (QSBRs)].
Here, we propose a procedure for handling variable

environmental end point data and demonstrate it on soil
biotransformation half-life data. We use Bayesian inference to
derive the distribution that describes our knowledge about the
true half-life distribution, including censored data points.
Bayesian inference is a well-established statistical approach for
describing data distributions, and it can be applied in cases in
which descriptive statistics fail (e.g., low data regimes and
censored data).11,12 Bayesian inference combines data points
and prior assumptions encoded as probability distributions to
calculate a posterior distribution, which estimates the true
distribution underlying the data in a consistent manner across
many different compounds with varying data quality and
quantity. We apply our procedure to enhance the quality and
reliability of a data set of 6309 experimental soil
biotransformation half-lives for 893 pesticides and pesticide
transformation products. The data are obtained from the
EAWAG-SOIL package on enviPath, which was previously
extracted from publicly available regulatory reports.13

■ MATERIALS AND METHODS
Extraction of Data from enviPath. The reported soil

biotransformation half-lives were downloaded from enviPath in
April 2023 using the workflow available on GitHub (https://
github.com/FennerLabs/pepper). The workflow is encoded in
Python, and requests to the database are performed via the
enviPath-python Application Programming Interface (API)
available at https://git.envipath.com/enviPath/enviPath-
python.
For each substance in the data set, one or more reported

half-life values are available. Each reported half-life resulted
from a single experiment and was calculated from a
concentration−time series using kinetic models. A substance
can have several reported half-lives obtained by different
researchers in different years under different experimental

conditions and calculated using different kinetic assumptions.
For each compound in the EAWAG-SOIL package (https://
env ipa th .o rg/package/5882d f9c -dae1 -4d80 -a40e -
db4724271456), all reported soil biodegradation half-life
values were extracted, including available experimental
metadata. Compound entries without any associated half-
lives were not considered. The following metadata were
collected for each reported half-life: study name, kinetic model
used to estimate half-life from concentration−time series,
comment on half-life, SMILES of 14C-labeled spike compound,
acidity (pH), cation exchange capacity (CEC), organic carbon
(OC) content, biomass concentration at start and end of the
experiment, temperature, type and value of water storage
capacity, humidity, and soil texture.

Curation of Data. Composite substances (i.e., salts) were
manually checked, and the non-active parts of the molecule
(e.g., Na+) were removed to retain only active substances. If
several active substances were present in one compound entry,
then the entry was removed. While the persistence of mixtures
is out of the scope of this study, such data points could be used
in the future to expand the approach to mixtures. Stereo-
isomers and duplicate compound entries were merged into
single entries based on canonical SMILES without stereo-
chemical information. Compounds were further annotated
with InChI keys to facilitate identification. Half-life values were
reported in days and converted to log units [log(DT50)]. For
each substance, the mean, median, and standard deviation were
calculated from log(DT50) (descriptive approach). The final,
curated data set is available on GitHub along with the
corresponding data curation workflow and as Tables S1 and
S2.

Bayesian Inference Model. Different experiments of the
same substance i will report different half-lives DT50. To
estimate the average log half-life μi, we assume that the
logarithm (base 10) of the reported half-lives of substance i can
be described by a normal distribution

Nlog DT ( , )i j i i50, , min+ (1)

where σmin describes the minimal variability due to
experimental conditions and σi describes the experimental
noise. Unfortunately, the data are too sparse to explicitly derive
the influence of different experimental conditions, particularly
across the entirety of substances.14 We therefore estimated the
minimal experimental variability from 27 reference substances
for which the half-life distribution is well characterized by >20
data points. The mean standard deviation of the reference
compounds was found to be 0.38 log(d), ranging from 0.2 to
0.7. Therefore, we set σmin to 0.2 log(d) to avoid overconfident
results.
We further consider that half-life data can be left- or right-

censored. We assumed a global lower censoring threshold of
0.1 day and a global upper threshold of 1000 days. This choice
is motivated by the OECD 307 guideline, which suggests
concentration measurements at 1 day intervals in the
beginning of the experiment, and an incubation time of
≤120 days.8 Reported half-life values that were extrapolated by
more than one log unit, and therefore beyond the global
censoring thresholds, are highly uncertain and considered here
as left- or right-censored. In some cases, the half-life value is
reported as beyond a specific threshold (e.g., >365 days). In
this case, the indicated value is adopted as a local censoring
threshold.
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Prior Definition and Justification. The prior distribution
knowledge of the mean half-life (μi) and the standard deviation
of the experimental variability (σi) are listed in Table 1. The

chosen distributions (normal vs log-normal) reflect the
observed distributions of the mean and standard deviation,
respectively, of the half-life data. The parameters of the prior
were chosen on the basis of the methodological constraints of
the soil biodegradation studies and the reported half-life
distributions of the reference substances (Table 1 and Figure
1). The prior for μi is centered in the measurable range [−1 to
3 log(d)], and a large standard deviation of 2 was chosen to
cover the measurable range. The prior for σi is based on the
reference data set previously used to determine σmin. For most
compounds of the reference data set (59%), the standard
deviation lies below the prior mean of 0.4, and hence, the prior
is not too restrictive. Alternatively, one could choose a larger
prior mean of the standard deviation of 0.6 as a worst-case
scenario, which is larger than the standard deviation of >90%
of the reference substances.

Posterior Distribution and Sampling. The model based
on eq 1 was implemented in Python, and for each substance in
the data set, the posterior distributions of the average log half-
life μi and the variability σi were inferred by Monte Carlo
sampling. The posterior samples were summarized by mean
and standard deviation. Samples of it were obtained with the
Goodman & Weare’s Affine Invariant Markov chain Monte
Carlo (MCMC) Ensemble sampler (https://github.com/dfm/
emcee, version 3.1.3)15 using 10 walkers and 2000 iterations. A
burn-in of 100 samples was discarded, and the remaining
samples were used to calculate the mean half-life (μmean), the
uncertainty of the mean (μstd), and the experimental variability
(σmean).

■ RESULTS AND DISCUSSION
Uncertainty Estimates and Inclusion of Censored

Values for Soil Biodegradation Half-Lives. The EAWAG-
SOIL data set contains 6309 half-life values for 893
compounds. Of these, 220 half-life values were beyond the
global censoring thresholds (115 ≤ 0.1 day, and 105 ≥ 1000
days). Another 91 values were within the global censoring

thresholds but specifically censored (78 on the left and 13 on
the right) according to comments provided in enviPath. This
means that upon removal of censored values, our data set
would be reduced by 312 half-life values (5%) to 5998 and we
would lose 21 substances (2%) for which only censored values
are available. Bayesian inference allowed us to recover
meaningful half-life estimations for these 21 substances.
The average half-life μi of all substances is 1.23 log(d) for the

descriptive approach and Bayesian inference (Figure 2). While
the distributions of μi are similar for both approaches, the
distributions of the σi differ, with a mean σi of 0.30 log(d) for
the descriptive approach and a mean σi of 0.42 log(d) for the
Bayesian inference approach. The higher average variability
estimated by the Bayesian approach is in line with the chosen
mean for the prior of σi. However, the difference between the
two approaches decreases with an increasing number of data
points for a given substance, suggesting that both methods
converge under a high-data regime (Figure 2). Finally,
Bayesian inference provides uncertainty estimates for 83
substances with only one or two half-life values, for which
the calculation of a standard deviation is not possible with a
descriptive approach. This analysis shows that Bayesian
inference can reliably estimate the mean and uncertainty of
data points, but its outcome is sensitive to the prior
assumptions, in particular if only a few data are available.
Hence, careful prior choice and justification are crucial.

Posterior Distribution for Different Example Cases.
To illustrate the outcome of our approach, we present the
results for nine substances representing different cases of data
availability (Figure 3). In a low-data regime, Bayesian inference
yields high uncertainty estimates of the mean (μstd). When
many data points are available for a single substance, the
probabilistic and the Bayesian inference distributions converge,
and the uncertainty of the mean decreases. The variability
estimates (σmean) increase when data points show a higher
spread and remain close to the prior otherwise. When data
points lie beyond the censoring thresholds, so does the
Bayesian-inferred mean with a decreasing uncertainty and
variability when more censored data points are added.
It is important to note the difference between estimated

mean experimental variability σmean and the uncertainty of
estimated mean half-live μstd. The former describes the
estimated variability of experimental data and is not necessarily
reduced by the addition of more data points. On the contrary,
the standard deviation of the MCMC samples μstd can be
interpreted as an indicator of the confidence in the inferred
σmean, and it always decreases with the addition of data points.

Table 1. Choices of Parameters for Prior Distribution

variable distribution mean [log(d)] standard deviation [log(d)]

μi normal 1 2
σi log-normal 0.4 0.4

Figure 1. Prior distribution of μ and σ + σmin for a range of plausible half-life values in log(d).
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For example, the compounds methyl-2-butyl sulfone and IN-
A4098 (triazine amine) have a similar σmean of 0.47 log(d).
However, the distribution of the first compound is inferred
using only one data point, and therefore, the confidence in the
inferred μi is low [μstd = 0.56 log(d)]; for the second
compound, μi is inferred on the basis of 59 data points and
therefore the confidence is high [μstd = 0.06 log(d)]. Hence,
μstd describes the uncertainty of the inferred mean and is

particularly useful for evaluating the need for more experi-
ments for a given compound.

Applications in Half-Life Modeling and Regulation.
The presented method using soil half-life data as an example
can be readily adapted for application to biodegradation half-
lives in activated sludge, water, or water/sediment systems,
with an appropriate re-evaluation of prior assumptions. For
example, Hofman-Claris and Claßen16 proposed a simplified

Figure 2. Distribution of soil biodegradation half-lives in log(d). Distribution of descriptive (orange) and inferred (blue) mean half-lives (top left).
Distribution of descriptive (orange) and inferred (blue) standard deviations (top right). Distribution of descriptive and inferred standard deviations
by the number of reported half-lives available for a given substance (bottom).

Figure 3. Different cases of data availability and how they affect the inferred distribution. Single reported half-lives [in log(d)] are shown as
scattered data points along the y-axis. Dashed orange lines show the descriptive mean and median, and dashed blue lines show the inferred mean;
the range of reasonable half-life values lying within the censoring thresholds is colored gray. To visualize the inferred distributions and their
uncertainty, 1000 randomly chosen MCMC samples are visualized as normal distributions (thin blue lines). Abbreviations: std, standard deviation
of reported half-lives; ND, not defined; N.c., not censored.
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determination of water degradation half-lives for highly
persistent substances using unlabeled spike compounds, aiming
to efficiently pinpoint persistent compounds with half-lives
above the persistence threshold (DT50 > 40 days). This type of
study is cheaper and faster than experiments with radiolabeled
spike compounds, but it systematically results in censored
values, therefore requiring appropriate statistical tools such as
Bayesian inference for the correct interpretation of data.10

We suggest that the method might also be advantageous for
analyzing data sets on toxicological, bioaccumulation, or
mobility indicators or other types of environmental data with
high variability and uncertainty. Data sets for training machine
learning models can particularly benefit from reliable variability
and uncertainty estimates. Uncertainty estimates could also
impact regulation because they address the “threshold
problem”. In regulatory hazard assessment, a substance is
classified as persistent if its half-life value lies above a
regulatory threshold.17 However, for the same substance,
reported half-life values may lie above and below the threshold
or a single measurement may lead to an erroneous persistence
classification. These issues could be addressed by including a
Bayesian uncertainty estimate to classify substances with an
associated confidence metric. For example, a substance could
be considered nonpersistent if 95% of experiments would
indicate nonpersistence (usage of σmean), or it could be
considered nonpersistent if there is a 95% probability that its
average half-life lies below the persistence threshold (usage of
μstd). In this regulatory context, however, the definition of the
prior distribution might be decisive, and further research and
delibration among stakeholders would be needed to develop a
methodology for defining defensible prior distributions.
Beyond the methodological demonstration of how Bayesian

inference can be applied to derive distributions to deal with
variable environmental end points transparently and reprodu-
cibly, we further provide here a curated data set of pesticide
soil biodegradation half-lives compiled from regulatory reports,
including descriptive as well as inferred half-lives. We also
provide all necessary code to reproduce the extraction,
curation, and analysis of data. We hope that this work will
support future efforts to improve or validate half-life prediction
models and to make statistically informed, robust regulatory
decisions.
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Kümmerer, K. Toward Application and Implementation of in Silico
Tools and Workflows within Benign by Design Approaches. ACS
Sustainable Chem. Eng. 2021, 9, 12461−12475.
(8) OECD. Test No. 307: Aerobic and Anaerobic Transformation in
Soil. 2002.
(9) Generic guidance for Estimating Persistence and Degradation
Kinetics from Environmental Fate Studies on Pesticides in EU
Registration.
(10) Helsel, D. R. Statistics for Censored Environmental Data Using

Minitab and R; John Wiley & Sons, 2011.
(11) Box, G. E. P.; Tiao, G. C. Bayesian Inference in Statistical

Analysis; John Wiley & Sons, 2011.
(12) van de Schoot, R.; Depaoli, S.; King, R.; Kramer, B.; Märtens,
K.; Tadesse, M. G.; Vannucci, M.; Gelman, A.; Veen, D.; Willemsen,
J.; Yau, C. Bayesian statistics and modelling. Nat. Rev. Methods Primers
2021, 1, 1.
(13) Latino, D. A. R. S.; Wicker, J.; Gütlein, M.; Schmid, E.; Kramer,
S.; Fenner, K. Eawag-Soil in enviPath: a new resource for exploring
regulatory pesticide soil biodegradation pathways and half-life data.
Environmental Science: Processes & Impacts 2017, 19, 449−464.
(14) Wang, Y.; Lai, A.; Latino, D.; Fenner, K.; Helbling, D. E.
Evaluating the environmental parameters that determine aerobic
biodegradation half-lives of pesticides in soil with a multivariable
approach. Chemosphere 2018, 209, 430−438.
(15) Foreman-Mackey, D.; Hogg, D. W.; Lang, D.; Goodman, J.
emcee: The MCMC Hammer. PASP 2013, 125, 306.
(16) Hofman-Caris, R.; Claßen, D. Persistence of gabapentin, 1H-
benzo-triazole, diglyme, DTPA, 1, 4-dioxane, melamine and urotropin
in surface water: Testing of chemicals according to the OECD 309
guideline. KWR, 2020.
(17) REACH, 2017: Guidance on information requirements and
chemical safety assessment, Chapter R.11: PBT/vPvB assessment,
European chemicals agency (ECHA); COMMISSION DELEGATED
REGULATION (EU) 2023/707 of 19 December 2022 amending
Regulation (EC) No 1272/2008 as regards hazard classes and criteria
for the classification, labelling and packaging of substances and
mixtures. Official Journal of the European Communities 2023, 66, 7−39.

Environmental Science & Technology Letters pubs.acs.org/journal/estlcu Letter

https://doi.org/10.1021/acs.estlett.3c00526
Environ. Sci. Technol. Lett. 2023, 10, 859−864

864

https://doi.org/10.1021/acsenvironau.2c00024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenvironau.2c00024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.1c03070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.1c03070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1039/C6EM00697C
https://doi.org/10.1039/C6EM00697C
https://doi.org/10.1016/j.chemosphere.2018.06.077
https://doi.org/10.1016/j.chemosphere.2018.06.077
https://doi.org/10.1016/j.chemosphere.2018.06.077
https://doi.org/10.1086/670067
pubs.acs.org/journal/estlcu?ref=pdf
https://doi.org/10.1021/acs.estlett.3c00526?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

