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Abstract

Models that simulate water flow and quality, particularly related to nitrate ions, are commonly used on a 
catchment-scale. However, tracking nitrate ions is a challenging task due to the intricate processes that affect 
them, such as phase exchanges, transformations, and interactions with various environmental media. In general, 
models capable of carrying out all tasks required to simulate water flow and quality at the same time, are rare. 
Additionally, most available models focus only on specific compartments of the watershed, such as surface 
water, topsoil, unsaturated zone, or groundwater. Taken together, these two challenges can lead to 
oversimplified representations of a system’s hydrology, as catchment internal processes become neglected due 
to missing information (lack of informative measurements, or models not focusing on all watershed 
compartments). Attempting to combine these models or to couple different watershed compartments results 
in complex calculations, increased run times, and a large number of parameters to estimate. Artificial 
Intelligence (AI) models have been massively used in environmental studies but, so far, the majority of them 
have been tested theoretically and not under real conditions. To overcome these challenges, stable isotope data 
are often employed to calibrate and validate internal catchment processes of these models. While water stable 
isotopes (δ18O and δ2H of H2O) have been extensively used in many water flow models, the use of nitrate 
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isotopes (δ15N and δ18O of NO3
-) in water quality models remains poorly explored. Nitrate isotopes can help trace 

the origin of NO3
- contamination and disentangle the complex reactions and dynamics that nitrate undergoes 

during transport. Hence, we propose that incorporating nitrate isotopes into catchment-scale water flow and 
quality models can substantially enhance the accuracy of these models. This review provides an overview of the 
current use of catchment hydrological models in predicting flow and fate of solutes. We discuss their limitations 
and highlight the potential of combining these models with nitrate isotopes. Ultimately, this approach may 
reduce prediction uncertainties and provide more effective guidance for water management decisions. 

Keywords: catchment hydrology, solute transport modeling, nitrate isotopes, model limitations, pollution

1. Introduction

The SDG6 (Sustainable Development Goal 6) "Clean Water and Sanitation" is a global goal adopted by the United 
Nations General Assembly in 2015. It aims to ensure access to clean water and sanitation for all people, as well 
as improving water quality and increasing water-use efficiency. However, the global nitrogen (N) delivery to 
surface waters has increased from 44 to 71 Tg N yr−1 during the period 1970-2015, which is the result of a global 
increase in anthropogenic source contribution from 60 to 74 % (Beusen and Bouwman, 2022). Furthermore, ~20 
% of global studied aquifers were found to be highly contaminated on nitrate (NO3

-), making nitrates as one the 
most widely spread contaminant among N-species (Abascal et al., 2022).

Nitrate (NO3
-) pollution in aquatic systems is a major environmental problem primarily as a result of 

anthropogenic activities, such as agricultural activities through the use of N-containing fertilizers, sewage 
disposal, and animal breeding operations (Fig. 1). Nitrate is known for its detrimental effects on surface water 
ecosystems, particularly causing eutrophication and hypertrophication in rivers, lakes and coastal areas 
(Townsend-Small et al., 2007; Romanelli et al., 2020). These conditions often lead to algae blooms, fish kills, and 
other ecosystem-scale changes (Kharbush et al., 2023). On the other hand, exceedance of threshold levels of 
nitrate in drinking water can lead to a condition called methemoglobinemia, or "blue baby syndrome," which 
can be fatal for infants (Fan and Steinberg, 1996). Nitrate is also a precursor in the formation of N-nitroso 
compounds (NOC), which are carcinogens and teratogens, and may result in cancer, birth defects, or other 
adverse health effects (Schullehner et al., 2018; Ward et al., 2018; Picetti et al., 2022). Overall, nitrate pollution 
in aquatic systems is a problem of global concern that requires effective strategies to control.

Increased N availability enhances terrestrial productivity; however, excessive soil N input often leads to nitrate 
leaching into ground- and surface waters. For example, nitrate leaching can originate from forestry activities 
(harvest, litter, etc.), and especially drainage operations for organic soils in Nordic conditions (Marttila et al. 
2018). However, nitrogenous species undergo changes in various environments, such as in soils and the 
subsurface (saturated and unsaturated zone), surface water, in the hyporheic zone, at the suspended particles 
of the overlying water above the sediment, and in riparian zones. These nitrogen transformations are heavily 
influenced by the presence of oxygen and can vary depending on the location. For example, in oxic conditions, 
organic tissue is broken down and released as ammonium (NH4

+), which can then be transformed into nitrite 
(NO2

-) and nitrate (NO3
-) through a process called nitrification (Taillardat et al., 2019). However, in anoxic 

conditions, nitrate can be reduced to non-reactive N2 through denitrification (Li et al., 2019). Denitrification is 
mediated by heterotrophic bacteria and occurs mostly at higher than the topsoil depths and at the water-
sediment interfaces. In topsoils where oxygen levels vary, both nitrification and denitrification can potentially 
take place at the same time (Hall et al. 2016). Additionally, nitrate can also undergo other transformations, such 
as dissimilatory anaerobic reduction to ammonium (DNRA), while ammonium in the presence of nitrite may 
undergo anaerobic oxidation to N2 through the anammox process (Zhou et al., 2014). These transformations are 
controlled by a combination of factors, such as the presence of electron donors, e.g., organic carbon (Trudell et 
al., 1986; Steiness et al., 2021), sulfides (Postma, 1991; Böhlke et al., 2007), and ferrous iron (Postma, 1990; 
Korom et al., 2012), the presence of a microbial community to transform nitrogen (Jørgensen et al., 2009; 
Torrentó et al., 2010), and the residence time of water (Petersen et al. 2020ab; Steiness et al., 2021), which links 
it to catchment water flow. 

Nitrate concentration levels in water bodies can be the result of N sources and biogeochemical transformations. 
For instance, lysimeters experiments in soils showed that the nitrate that leaches under the sub-root zone is not 
directly the combination of the sources of nitrogen but mostly reflects a “new” nitrate produced from the 
mineralization/nitrification of the soil organic matter (Sebilo et al., 2013). Furthermore, N accumulation in the 
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root zones and the soils, particularly in long-term fertilized areas, creates a time lag in the response of any land-
use changes and the N concentrations in the water bodies. Moreover, the inherent delay of N transport through 
the unsaturated and saturated zone creates another time lag (Baillieux et al., 2015).  The delay in the transport 
of water and nutrients in surface waters and groundwater through soil and the unsaturated zone depends on 
their hydraulic properties and heterogeneity (e.g., hydraulic conductivity, porosity, thickness of the unsaturated 
zone), known as hydraulic legacy, and the occurrence of biogeochemical processes (e.g., rates of organic N 
mineralization), known as biogeochemical legacy (Van Meter et al., 2016; Vero et al., 2017).

The efficient monitoring and forecasting of the amount, flow, and quality of water, particularly regarding nitrate 
pollution levels, is necessary for sustainable water resources management (Burri et al., 2019). Using models to 
simulate water quantity (including flow) and quality (including solute and reactive transport) in a river catchment 
under different scenarios can help to anticipate the effects of different water and nutrient management 
strategies and provide stakeholders with information on how to protect the water resources and remedy the 
negative impact on them (e.g., Gong et al., 2019; Peña-Arancibia et al., 2019; Zhang et al., 2020a; Hrachowitz et 
al., 2021; Son et al., 2022). The different scenarios of interest are diverse, such as changing climatic conditions 
(Fu et al., 2019), land use management and change (Lei et al., 2022) or the impact of dams (Zhang et al., 2011). 
In a broad sense, a distinction can be made between water quality and water quantity (or synonymous used 
water flow) models to describe two different environmental processes. Water quantity (or flow) models describe 
water flow through, for example, the integrated land surface, surface water and groundwater, whereas water 
quality models attempt to simulate changes in pollutant concentrations as they move through the environment, 
including water quantity. This can be done on a smaller scale or, as we consider, mostly on a catchment scale 
and therefore represent catchment models. We use the term catchment models to encompass models that 
simulate and predict water quality and quantity (including flow) in streams or rivers, groundwater and soil at a 
catchment-scale. Modeling the flow of water through a catchment and the transport and reaction of solutes 
regarding water quality is becoming an increasingly interdisciplinary field. Due to this complexity, there are 
various models and concepts for simulating processes within a catchment, which are overall divided into 
physically-based models and conceptual models. The definition and examples of these different model concepts 
are provided in section 3.

To make well-informed decisions, it is important to use models that are validated against real-world 
measurements of fluxes (e.g., runoff, and nutrient/pollutant loads) and state variables (such as soil water 
content and groundwater levels). In recent years, modern sensors have led to obtaining high frequency solute 
data (Bogena et al., 2018; Mennekes et al., 2021). This has increased data availability and amount for model 
evaluation, allowing models to have a high spatiotemporal resolution when estimating catchment water flow 
and solute transport. Despite the wide variety of methods for measuring fluxes and state variables as well as 
modern sensors, catchment heterogeneity can never be investigated in all its detail and thus, uncertainty in the 
obtained results remains (Moeck et al., 2020). Furthermore, many catchments do not have spatiotemporal high-
resolution data and suffer from a lack of data that is especially an issue when trying to predict water flow or 
solute transport in regions where monitoring is difficult or not possible (Razavi and Coulibaly, 2013; Ramón et 
al., 2021). In addition to data-related challenges with model validation, it is important to choose the ‘right 
model’, as different models are suited for different processes and locations, especially when simplified models 
are used (e.g., Baginska et al., 2003; García et al., 2016; Smith et al., 2016; Akanegbu et al., 2018). 

Different types of transport and reaction models can be used to study water quality dynamics at different scales 
and levels of complexity. For example, geochemical models, which are typically used to analyse the chemical 
reactions in natural or engineered geological systems quantitatively based on a set of mathematical equations, 
help to predict at how water, soil, and rock interact to determine the main reactions and changes that affect 
water quality on commonly small-scale model applications. In contrast, catchment models often use 
descriptions of chemical and biological processes to predict water quality at the catchment or hydrological 
response unit (HRU) level (Neitsch et al., 2011; Nguyen et al., 2019). Similarly, models that focus on simulating 
water flow throughout a catchment vary in complexity from simple models that fit a sine wave to tracer data 
(such as δ18O and δ2H of H2O) to obtain fast runoff components (Jasechko et al., 2016; Kirchner, 2016) to 
complex, soil water flow models (Fang et al., 2015; Saari et al. 2020), and integrated models that fully couple 
surface and groundwater components (Brunner and Simmons 2012; Ala-Aho et al. 2015; Moeck et al., 2015; 
Schilling et al., 2019). Both water flow and quality models operate at different temporal and spatial scales. 
Hydrological water flow studies for example focus on short-term flow dynamics (e.g., peak flows), short- and 
long-term water age dynamics (Stockinger et al., 2014; Birkel et al., 2019), and the long-term impact of different 
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land uses on flow dynamics (e.g., Orlowski et al., 2016; Zaherpour et al., 2018). Similarly, water quality models 
can be used to predict water chemistry over a range of timescales and from various sources, depending on the 
solute of interest. For example, nitrate studies often focus on longer timescales (Frind et al., 1990; Zhang et al., 
2013; Jessen et al., 2017; Matiatos et al., 2019), while studies of phosphorous or pesticide dynamics tend to 
focus on short-term storm dynamics (Paudel et al., 2010; Rosenbom et al., 2014; Rosenbom et al., 2015; Dupas 
et al., 2018; Gassmann et al., 2021; Dagés et al., 2023).

There is a wide range of catchment-scale models for both water quality and flow modeling. This is partly because 
of new scientific discoveries that have led to improved or completely new models, and partly because of the 
specific environmental conditions at the sites where the models have been developed. Different physiographical 
and climatic conditions require different descriptions of processes for various hydrological compartments, 
especially for simplified models, which increases the computational power required. A common approach is to 
simplify less important, secondary processes, which has led to a relative disconnection between the catchment 
hydrological (water flow) and water quality (solute transport) scientific communities and their respective models 
(Hrachowitz et al., 2016). Models that focus on solute transport tend to rely on simplified representations of 
hydrological processes through water flow routines, while water flow models are not designed for routing 
solutes through a catchment or modeling their biogeochemical dynamics. While many water flow models at the 
catchment scale use water stable isotopes (18O, 2H) as tracers to explicitly account for both effects of pressure 
propagation and actual water flow (Beven and Germann, 2013), they do not account for the transport or 
concentration changes of nutrients or contaminants due to biogeochemical reactions (O’Donnell and Hotchkiss, 
2019). Water stable isotopes are regularly used as tracers in water flow models because they provide additional 
information regarding actual water transport. For example, they can help differentiate between water from 
precipitation, snowmelt, and groundwater discharge, and quantify the relative contributions of each source to 
a stream or aquifer, and also give estimation of the water age in the catchment. In this regard, they are valuable 
tools for refining these models by ruling out unrealistic solutions (e.g., Stadnyk et al., 2013; Tetzlaff et al., 2018; 
He et al., 2019). 

On the other hand, AI models (i.e., Machine Learning (ML) and Deep Learning (DL)), have been increasingly used 
in river water quality and other environmental-related (e.g., climatology, agriculture) studies (Tiyash et al. 2020). 
AI models are inspired by the learning mechanisms of the human brain and were initially introduced in the 1950’s 
(McCarthy, 1956). Machine Learning (ML) techniques are reliable tools in delivering exceptional predictive 
accuracy, making them particularly valuable for applications involving uncertain processes (Zhang et al. 2020b). 
These applications are often called “black-box” predictions, offering accurate results but lacking in providing a 
mechanistic understanding of the systems under study (e.g., Kim et al., 2021; Muñoz-Carpena et al, 2023). 
Beyond their predictive accuracy compared to mechanistic models (Adran et al., 2021) ML techniques can help 
unveil the fundamental principles governing hydrological systems (e.g., Chang et al., 2019; Bortnik et al., 2021; 
Nearing et al., 2021), identifying key factors within datasets (e.g., Vystavna et al., 2021), imputation of missing 
data (e.g., Sahoo and Ghose, 2022), emulating computationally intensive models (e.g., Lim and Wang, 2022), or 
enhancing the resolution of remote sensing products (e.g., Srivastava et al., 2013).

Modeling the transport of nitrate (NO3
-) is a complex task due to the various reactions and dynamics that need 

to be taken into account. Nitrogen transport models, similar to those for other contaminants, are typically based 
on a hydrological model, since water serves as the transport medium for NO3

-. However, the non-conservative 
nature of nitrate and its biogeochemical transformations present challenges for these models. Disregarding 
changes to nitrate concentrations due to biogeochemical reactions, most of the observed spatiotemporal 
variability of nitrate is an effect of hydrological variability. In this regard, the movement of nitrate is governed 
by hydrological transport principally through advection, dispersion and less through molecular diffusion. 

Nitrate isotopes constitute a powerful tool to trace the origin of nitrate pollution in aquatic systems given that 
conventional chemical indicators are incapable of unravelling what NO3

- concentrations in rivers or aquifers 
embody at any point in time, apart from regulatory pollutant exceedances (Xue et al., 2009; Nestler et al., 2011; 
Fenech et al., 2012). This is because different natural and anthropogenic sources of nitrate pollution, such as 
agricultural runoff, sewage wastes, and atmospheric deposition, have relatively distinct isotopic signatures 
(section 2) and are closely linked to land use practises. For example, Voss et al. (2006) found an increasing 
contribution from manure and septic wastes in water quality degradation as the percent of agricultural and 
urban land in the rivers of the Baltic Sea catchment increased. In another study, Yu et al. (2017) used nitrate 
isotopes to show that the Yellow River catchment undergoes nitrate pollution from variable sources; soil N in 
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the upper section and chemical fertilizer and manure wastes in the lower section, particularly in the low flow 
season. Using nitrate isotopes, Li et al. (2019b) showed that fertilizer application accounted for 43% of the total 
anthropogenic solute inputs to the Wei River, the largest tributary of the Yellow River. More recently, nitrate 
isotope techniques showed that organic wastes from point and non-point sources are the dominant source of 
nitrate pollution in many European rivers (Matiatos et al., 2023). 

Nitrate isotopes provide insights into complex nitrogen-related processes (e.g., nitrification, denitrification), 
which help disentangle the system’s resilience to pollution and the fate of nitrogen contaminants in the 
catchment. For example, Suárez et al. (2019) applied nitrate isotope techniques in an agricultural catchment and 
revealed that soil microbial nitrification was the most important contributor to the nitrate in the river runoff 
compared to direct leaching of nitrate from mineral fertilizers and atmospheric nitrate deposition. Wang et al. 
(2021a) found that biogeochemical processes, such as nitrification and sedimentary denitrification, co-existed 
in different parts of the Jiulong River Estuary, with variable dominance of the first over the latter depending on 
the hydrological conditions. In a global survey, Matiatos et al. (2021) showed that N-cycling processes are 
temperature and climate dependent and that sources of nitrate pollution are more probable to be detected 
during winter. 

Despite being a powerful tool in hydrological studies, nitrate isotopes have never been used as part of catchment 
hydrology models. Similar to water stable isotopes being used in water flow models to improve the 
representation of catchment-internal processes, we argue that nitrate stable isotopes can be useful tools in 
improving the transport and biogeochemical reaction routines of water quality models. In this regard, here we 
provide a general overview of nitrate isotope characteristics and reactions, and various catchment water flow 
and quality models and AI models, before discussing the limitations of these models and what would be needed 
for nitrate stable isotopes to be incorporated into models to improve results. We do this by synthesising both 
recent papers that reflect the current development in the field, and some older key papers that have had a major 
impact and are still relevant to date. In doing so, we highlight both modelling and observational methods, and 
also reflect on potential ways forward for this field. In the following sections, the principles, and uses of nitrate 
isotopes (section 2) and catchment-scale water quality models (section 3) will be discussed, as well as limitations 
of these models and how nitrate isotopes could help overcome them (sections 4, 5). 

2. Nitrate isotopes

NO3
- is composed of nitrogen (N) and oxygen (O). Nitrogen has two stable isotopes, 14N and 15N, which have a 

relative abundance of 99.63% and 0.37%, respectively (Rosman and Taylor, 1998). Oxygen has three stable 
isotopes, 16O, 17O, and 18O, with a relative abundance of 99.76%, 0.037%, and 0.20%, respectively. The "δ" (delta) 
notation, which expresses the relative difference of the ratio of the rare-to-common stable isotope to an 
international standard, is given in per mil (‰). Thus, the delta value of isotopes is given by:

(1)𝛿𝑠𝑎𝑚𝑝𝑙𝑒(‰) = (𝑅𝑠𝑎𝑚𝑝𝑙𝑒 ―  𝑅𝑠𝑡𝑑

𝑅𝑠𝑡𝑑 ) × 1000 ‰ 

where R is the absolute ratio of 15N/14N for nitrogen and 18O/16O or 17O/16O for oxygen of the sample Rsample and 
the reference material Rstd, respectively. The international standard for N is atmospheric nitrogen (Mariotti, 
1983), for which the ratio 15N/14N is 0.003673, whereas for oxygen isotopes it is VSMOW with values 18O/16O = 
2005.2 × 10-6 (Baertschi, 1976) and 17O/16O = 382.7 × 10-6 (Kaiser, 2008). 

Nitrate isotopes (δ15N, δ18O of NO3
−) can help to identify the origin of NO3

- contamination given each NO3
- source 

shows an expected range of “δ” values (Fig. 2). For example, the δ15N-NO3
− values typically exceed +15 ‰ when 

originating solely from manure or sewage wastes, δ15N-NO3
− values range from 0 ‰ to +15 ‰, when originating 

from soil and are <0 ‰ when originating solely from nitrified synthetic fertilizers or NH4
+ in rain (Heaton, 1986; 

Mariotti et al., 1988; Fogg et al., 1998; Kendall, 1998; Bateman and Kelly, 2007). The δ18O-NO3
− values are 

typically >+25 ‰ or <+20 ‰ when nitrate synthetic fertilizers are present or any other terrestrial source, 
respectively, and >+60 ‰, when nitrate originates from atmospheric deposition (Wassenaar, 1995; Kendall, 
1998; Mayer et al., 2002). On a global scale the δ15N-NO3

− values in river waters and groundwater typically vary 
between ~-10.0 ‰ and +30 ‰ due to multiple nitrate pollution sources and N-cycling processes (Matiatos et al., 
2021). On the other hand, the δ15N-NO3

− values in precipitation typically range between ~-15.0 ‰ and ~+15.0 
‰ due to the influence of a variety of factors, including the sources of nitrogen (e.g., power generators, vehicles, 
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agriculture), the mechanisms by which it is transformed and transported in the atmosphere, and the conditions 
under which it is deposited on the surface (Song et al., 2021).

In addition to tracing the origin of nitrate contamination, nitrate isotopes also provide insights into the fate of 
nitrogen contaminants. Microbial processes, such as nitrification, denitrification, or volatilization can alter the 
concentration of nitrate and other nitrogen species, depending on the physical and chemical conditions. This 
can lead to changes in the isotopic fractionation of 15N and 18O of NO3

- (Böttcher et al., 1990; Matiatos et al., 
2021). The isotopic fractionation factor a, which is defined as the ratio of the reaction rate for two isotopes, is a 
key measure of these processes (Sebilo et al., 2006):

For nitrogen

 (2)𝑎𝑁 =
𝑘15𝑁

𝑘14𝑁

For oxygen,                    

 (3)𝑎𝑜 =
𝑘18𝑂

𝑘16𝑂

where a is the isotopic fractionation factor, and k15N, k14N, k18O, k16O are the instantaneous reaction rates for 
the molecules containing 15N, 14N, 18O and 16O, respectively.

The isotopic enrichment factor, ε (for nitrogen εN and for oxygen εO), expressed in ‰ is defined as:

 (4)𝜀 = 1000(𝑎 ― 1)

The following relationship between the rate of production of the isotopic forms of the product can be derived:

 (5)
(

𝑑15𝑁𝑝
𝑑𝑡 )

(
𝑑14𝑁𝑝

𝑑𝑡 )
= (10 ―3𝜀 + 1)(

15𝑁𝑠

14𝑁𝑠
)

(NS nitrogen in the substrate and NP nitrogen in the product)

or

 (6)
(

𝑑18𝑂𝑝
𝑑𝑡 )

(
𝑑16𝑂𝑝

𝑑𝑡 )
= (10 ―3𝜀 +1)(

18𝑂𝑠

16𝑂𝑠
)

Denitrification with the reduction of nitrate (NO3
-) and nitrite (NO2

-) to gaseous nitrogen (N2) and nitrous oxide 
(N2O) is a strongly fractionating process that results in a significant increase of the δ15N and δ18O values of the 
residual nitrate with a typical δ15N:δ18O ratio of 1:2 (Kendall, 1998). Thus, denitrification is a reactive loss of 
NO3

−, which generates higher nitrate isotope values than those of a simple dilution by hydrological dispersion 
processes, which are non-fractionating (Semaoune et al., 2012). Another fractionation process is assimilation, 
which refers to the transformation of oxidized N species, like NO3

−, to NH4
+ before being consumed by aquatic 

organisms. The isotope fractionation of the NO3
− substrate due to assimilation typically yields a change to 

approximately 1:1 in the δ15N:δ18O ratio of NO3
− (Kendall et al., 2007), which is larger than that of the 

denitrification process. Lastly, nitrification is described by two partial oxidation reactions mediated by 
autotrophic organisms, which result in the production of intermediate species, such as nitrite (NO2

−), and has 
nitrate (NO3

−) as its final product. The influence of 18O in water and molecular O2 on the 18O of NO3
− produced 

during nitrification is typically described using a simple isotope mass balance equation (Kendall, 1998):

 (7)𝛿18𝑂 ― 𝑁𝑂 ―
3 =

2
3𝛿18𝑂 ― 𝐻2𝑂 +

1
3𝛿18𝑂 ― 𝑂2
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N transformation processes are associated with different degrees of isotopic fractionation. For example, 
incubation experiments showed that nitrate reduction during denitrification can range between -52.8 and -10.0 
‰ depending on the bacteria culture, the temperature, the moisture and the substrate availability (Denk et al. 
2011; Rohe et al., 2014; Snider et al., 2009; Lewicka-Szczebak et al., 2014). The isotopic fractionation due to 
nitrification is variable depending on the oxidation stage. For example, the oxidation of NH4

+ oxidation to the 
intermediate product of NO2

- can induce an isotopic fractionation from -38 to -24 ‰ (Casciotti et al., 2003; 
Mariotti et al., 1981), whereas the oxidation of NO2

- to NO3
- triggers an enrichment of +13 ‰ (Casciotti et al., 

2009). Granger et al. (2010) showed that the isotope effect of assimilation can vary between +0.4 to 8.6 ‰ 
depending on the plankton strains.

Due to the different impacts of the transformation processes on nitrate isotope ratios, isotopic fractionation 
may give insights into the relative importance of individual nitrogen cycling processes at the catchment scale 
when aided by water quality models, in particular by reactive solute transport models. The results of those 
models are strongly linked to water flow models, as the travel time distribution of water flows (transit times, 
see section 3) controls the reaction time at the water-substrate interfaces, with longer transit times favoring 
nitrate removal (Tanner and Kadlec, 2013; Yang et al., 2021). 

Besides these relatively traditional tracers, Δ17O (= δ17O – 0.52 × δ18O, also referred to as the 17O-excess) tracks 
the mass-independent fractionation through systems (Michalski et al., 2003) and can provide additional 
constraints on nitrate dynamics in watersheds. Δ17O is particularly sensitive to the atmospheric deposition of 
nitrate and was used by Liu et al. (2013) to estimate a contribution of 0-7% from atmospheric deposition to the 
nitrate in the Yellow River in China. More recently, Ji et al. (2022) used the tracers 17O, 18O and 15N to study the 
relative contributions from atmospheric deposition, nitrogen fertilizer, soil nitrogen, and municipal sewage to a 
river network in eastern China. Further, 17O was used as a natural tracer for the gross nitrification rate of a 
temperate forest leaching nitrate into the stream (Huang et al., 2020). In addition, 17O in water can be used to 
better quantify water flow, and measurements of 17O in water has recently become more feasible due to 
developments in isotope measurement techniques (Kim et al., 2022; Terzer-Wassmuth et al., 2023; Xia et al., 
2023).

So far, nitrate isotopes have been commonly used in statistical mixing models to calculate the proportional 
contributions of nitrate sources in water samples based on the assumption that any change in isotopic 
composition is the direct result of mixing of two or more sources of known composition (Xu et al., 2016). Source 
apportionment models, such as IsoSource (Phillips and Gregg, 2003), IsoError (Phillips and Gregg, 2001), and 
IsoConc (Phillips and Koch, 2002), have been applied in the past but do not consider possible changes in the 
isotopic composition due to fractionation-related processes. More recently, the MixSIAR model (Parnell et al., 
2010), can better constraint the uncertainties (seasonal variation of isotopes, multiple sources > 3, and isotope 
fractionation). In brief, the MixSIAR model computes the proportional contributions of potential sources to the 
mixtures (samples) through their tracers (stable isotopes) after applying a Marchain Monte Carlo method to 
estimate the probability distribution (Stock et al., 2018). The overlap of isotope composition between different 
nitrate sources and the spatial variability in the isotope value of mixing water decrease the accuracy of these 
models. Some studies have successfully used these models to quantify nitrate sources in water environments 
(Xue et al., 2012; Matiatos, 2016; Re et al., 2021; Torres-Martínez et al. 2021; He et al., 2022; Yuan et al., 2023). 
More recent studies (e.g., Ji et al., 2022; Wu et al., 2023) have coupled these Bayesian mixing models with 
uncertainty analysis based on a probability statistical method introduced by Ji et al. (2017). 

3. Catchment-scale water flow and quality models 

Modeling the flow of water through a catchment and the transport of solutes is becoming an increasingly 
interdisciplinary field. New challenges arise from the need to keep the description of multiple interacting 
processes across different scales and parts of a catchment physically and numerically consistent. Due to this 
complexity, there are various models and concepts for simulating processes within a catchment, which are 
overall divided into physically-based models and conceptual models (Fig. 3). 

Physically-based models are based on an understanding of the physical processes involved, and incorporate 
mass conservation principles (e.g., the Richards equation used in the ParFlow or HydroGeoSphere model 
(Brunner and Simmons, 2012; Maxwell et al., 2014) or the advection-dispersion equation as applied in the PHAST 
or MT3D-USGS models (Parkhurst et al., 2010; Bedekar et al., 2016). These models require robust numerical 
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techniques to solve the equations and provide high-resolution spatiotemporal outputs (Ashby and Falgout, 
1996). Physically-based models are continually evolving, driven by advances in computational methods and 
power, laboratory and field experiments, and the need to better understand and predict impacts on water flow 
and solute transport due to, for example, changes in land use changes climatic conditions. 

Conceptual models, unlike physically-based models, use transfer functions that are not necessarily based on 
physical knowledge but describe flow and transport in a physical meaningful (conceptual) way to convert a 
measured input signal to an output signal. For example, the TRANSEP model uses gamma and beta distributions 
as transfer functions to transform precipitation into runoff (Schmieder et al., 2019), whereas the DYNAMIT 
model uses process-based StorAge Selection (SAS)-functions to link the age distribution of water stored in a 
catchment to the age distribution of water in runoff (Hrachowitz et al., 2021). Conceptual models can also be 
further classified into subclasses such as “lumped”, “black-box” or “white-box”, and “semi-mechanistic” models 
(Braake et al. 1999). However, in practice, model types often overlap. For example, physically-based models use 
simplifications due to the limited spatiotemporal resolution of soil and geological structures and 
hydrometeorological measurements needed to calibrate them, while knowledge of physical processes is 
incorporated into conceptual models. For a detailed overview of recent model developments using time-variable 
water flow we refer to Benettin et al. (2022).  

Models at the catchment scale often consist of a combination of individual models for the simulation of 
environmental subareas such as the root zone, groundwater, and surface water (Fu et al., 2019). The couplings 
between these single environmental subarea models can range from sequential to fully coupled with complete 
feedback mechanisms between the different environmental domains. Integrated catchment models may consist 
of a single model approach or a combination for the whole catchment. An example of a stand-alone integrated 
conceptual model is the Soil and Water Assessment Tool (SWAT) model. Examples of a combined approach are 
STONE (Wolf et al., 2003), with a chain of many model codes; the Hydrologiska Byrans Vattenbalansavdelning 
(HBV)-N (Arheimer and Brandt, 2002) model, where the physically-based root zone model SOIL-N is used 
together with a lumped conceptual catchment model HBV; a compound approach of Styczen and Storm 
(1993a,b) where the physical based root zone model (DAISY) was coupled with the distributed physically-based 
catchment model (MIKE SHE); and an integrated approach is the SWATMOD model (Sophocleous et al., 1999; 
Bailey et al., 2017), which uses the root zone part of SWAT together with the physically-based groundwater 
model MODFLOW. In the study of Conan et al. (2003) this latter model was used together with MT3DMS (Zheng 
and Wang, 1999) for nitrate transport modeling.

As a relatively new alternative to the aforementioned model-types, machine learning (ML) models (as part of 
Artificial Intelligence) are emerging in environmental sciences (Beven, 2020; Gonzales-Inca et al. 2022; Mosaffa 
et al., 2022) (Fig. 3). ML methods are being applied to large data sets to improve scientific understanding and 
increase the efficiency of data processing and management, though their full potential has not yet been 
completely exploited (Beven, 2020). For example, Bhattarai et al. (2021) evaluated nine different ML algorithms 
for simulating nitrate and phosphorus concentrations in five different watersheds. Their analysis revealed that 
land use and related nitrate inputs (diffuse vs point sources) were determinant in the quality of results, having 
obvious implications for the prediction of nitrate fate. Artificial Neural Networks (ANN) performed best for 
rivers/streams in urban and agricultural watersheds, while Regression Trees with Bayesian Optimization (RT-BO) 
performed best for the forested watershed. Similarly, Wang et al. (2021b) applied ML methods to simulate 
nitrate concentrations and other contaminants in streams for the Texas Gulf Region, assessing the effect of 
urbanization in the region. These above-mentioned model types profit from advancements in satellite data 
availability, sensor technology and rapid transfer of data, improved computational power and increasing 
availability of data from “uncommon” measurements such as nitrate isotopes. 

3.1 Conceptual models

Conceptual models use transfer functions that do not necessarily have a physical process basis to turn an input 
signal into an output response. The transfer functions may simulate the variable(s) of interest even if the 
function itself is not based on any physical process. The catchment is often represented as a black box, meaning 
that the spatial process distribution in the catchment is not represented. These models usually do not have 
spatial variation in model parameters or results, so they “lump together” the spatial and sometimes temporal 
heterogeneity of a catchment (lumped models). However, these “lumps” can be smaller than the total 
catchment area when using the concept of hydrological response units (HRU), which are areas of a catchment 
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that produce the same output response to an input signal. These semi-distributed models allow for some 
variability but have less spatiotemporal resolution than a fully distributed physically-based model.

One example of a simple water flow model is the fraction of young water approach (Kirchner, 2016). This 
approach uses the ratio of sine wave amplitudes fitted to δ18O or δ2H tracer input and output signals to estimate 
the percentage of river water that is younger than approximately three months. The only input variables are the 
input and output tracer signals, as well as precipitation and streamflow measurements for weighing the tracer 
signals. The advantage of this approach is its ease of use, even in data scarce catchments. However, the temporal 
resolution of the tracer data has been shown to influence the obtained results (Stockinger et al., 2016). It can 
be used to derive temporally varying results (Stockinger et al., 2019) or runoff-dependent results (von Freyberg 
et al., 2018). The main disadvantage is that it does not provide any insight into process knowledge for the 
obtained results and it does not include equations or storage components representing catchment flows and 
storages, so it cannot be used for detailed solute transport. The only way it can be linked to solute transport is 
by the general conclusion that on average a certain percentage of river water is younger than three months, 
which allows for a rough estimate of solutes quickly passing through the catchment. However, this approach 
does not consider reaction dynamics in the soil, making it unsuitable for coupling with (reactive) solute transport, 
especially for nitrate transport. Nitrate is not a conservative tracer and reacts during nitrification and 
denitrification processes. Thus, even if the input and output of nitrate were perfectly well defined, incomplete 
knowledge about the biogeochemical transformations nitrate is exposed to would lead to errors in estimating 
nitrate transport through a catchment. Since the fraction of young water approach features no conceptual boxes 
that represent the unsaturated zone or the groundwater zone, it cannot be directly improved by equations 
describing nitrification and denitrification in those catchment domains. The sole result of the fraction of young 
water is a percentage estimate of water younger than three months in streamflow, and any modifications of the 
nitrate input signal must be computed separately.

Another simple approach is the use of a convolution integral. The convolution integral approach is a 
mathematical method that is similar to cross-correlation of two time series, with one of the time series being 
reversed. It is commonly used in hydrology, particularly in the analysis of precipitation time series. The approach 
involves convolving the precipitation time series with a transfer function that can take on various mathematical 
shapes, such as a beta or gamma distribution. The transfer function represents the proportion of a past rainfall 
event that arrives at a certain point in time, effectively modeling the transit time distribution (TTD) of a 
catchment (Botter et al., 2013). The convolution integral approach is included in many conceptual box models, 
such as the TRANSEP model (Weiler et al., 2003), and is relatively easy to implement, however, subjective choice 
has to be made about the shape of the transfer function. Previous studies have used the approach as a time-
invariant TTD (Stockinger et al., 2014), even though transit times can vary over time (Basso et al., 2015). SAS 
functions (Harman, 2015; Rinaldo et al., 2015) have been proposed as an alternative to capture time-variance in 
transit times more effectively (see next paragraph for more details). The ability to couple the TTDs derived from 
the convolution integral approach to nitrate transport depends on the model structure used. Simplistic model 
structures make it difficult to incorporate solute transport, as they cannot account for spatial heterogeneity in 
nitrate reaction dynamics, both horizontally from a point in space to another that might have different land use 
or nitrate inputs, and vertically, through different soil depths where the soil water content and thus nitrification 
and denitrification conditions might strongly differ. An alternative approach would be to incorporate reaction 
equations into the water flow model itself, modifying the nitrate concentrations based on biogeochemical 
processes occurring in the conceptual box, prior to transportation of the nitrate input signal by the water with 
transit times defined by the TTD. Yang et al. (2021) already used nitrate as an additional tracer to constrain 
estimates for water flow and incorporated simple nitrate reaction dynamics.

SAS functions connect the age distribution of water (i.e., water ages are often defined as specific metrics, such 
as travel time, residence time or young water fractions to provide insights into mechanisms of variations in flow 
paths, Kirchner et al., 2000; Botter, 2012; McDonnell and Beven, 2014) stored in catchments to the age 
distribution of the river water at any given point in time. Thus, these functions show when and under which 
conditions a catchment mainly releases water of a specific age (e.g., dominantly releasing young water from soil 
storage to become streamflow). For example, Hrachowitz et al. (2021) used SAS functions to demonstrate that 
after deforestation, the catchment released a larger proportion of young water compared to before 
deforestation. Understanding the concept of different water ages within catchments is important because water 
transports nitrate, and nitrate concentrations can vary with water age. For example, old fractions of 
groundwater can be more enriched in nitrates due to legacy effects from long-term fertilizer application or 
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depleted in nitrate due to denitrification (Wang et al., 2013; Erostate et al., 2018; Lutz et al., 2022; Matiatos et 
al., 2022). With the time-variant nature of SAS functions, it is theoretically possible to incorporate time-varying 
nitrate dynamics, making SAS functions even more suitable for adding nitrate information to water flow models 
compared to convolution integral approaches.

So far only water stable isotopes and no nitrate isotopes have been used in conceptual models to elucidate 
hydrological processes, such as the fractions of water composing the runoff. For example, Weiler et al. (2003) 
coupled a TRANSEP model with water stable isotopes to separate the storm hydrograph. In another study, 
Segura et al. (2012) modelled catchment rainfall-runoff and stable isotope tracer response using a lumped 
conceptual model that integrates the unit hydrograph and isotope hydrograph separation methodologies. A 
more detailed review of the use of water stable isotopes in hydrograph separation can be found in Klaus and 
McDonnell (2013). On the other hand, Benettin et al. (2017) applied a transport model through the “direct-SAS” 
approach to reproduce the observed δ2H values and unravel travel time distributions in a river catchment. In the 
same work, the authors highlight the challenge of using SAS functions in the application to large-scale transport 
of harmful chemicals like nitrates, and in the proper estimation of solute mass loads exiting a catchment.

3.2 Physically-based models

In physically-based hydrological models water flow and solute transport in both the surface and subsurface 
domain, including soils, are typically governed by the Richard equation and advection-dispersion equations, 
which consider flow and sorption/desorption of contaminant, but also contaminant exchange between surface 
and subsurface due to infiltration, diffusion and bed exchange (Frey et al., 2021; Schilling et al., 2022; Peel et al., 
2023).

Physically-based models can cover only a single environmental subarea, such as the root zone, or the entire 
catchment using spatially distributed catchment models, seeking to describe the water and nitrate processes 
using numerical solutions for partial differential equations. To name a few, examples of root zone models are 
DAISY (Hansen et al., 1991; Abrahamsen and Hansen, 2000), SOIL-N (Johnsson et al., 1987), and ANIMO (Rijtema 
and Kroes, 1991). Due to the complex behaviour of nitrogen in soils, several models have been specifically 
developed for modeling nitrogen transformations and nitrate leaching. Examples are LEACHN as part of the 
LEACHM model (Wagenet and Hutson, 1989), WAVE (Vanclooster et al., 1995), NLEAP (Shaffer et al., 1991), 
Agriflux (Banton and Larocque, 1997), and Coupmodel (Jansson and Karlberg, 2004). An intercomparison of 
these models can be found in Diekkrüger et al. (1995) and Smith et al. (1997). One-dimensional models, such as 
SWAP (Kroes and Van Dam, 2003) or DRAINMOD (Skaggs, 1978; Moursi et al., 2022) have been widely used for 
simulating flow and solute transport through the saturated and unsaturated zones, whereas an example of 2D 
models to simulate unsaturated and saturated water flow is ANTHROPOG (Carluer and de Marsily, 2004). 

To upscale results, catchment scale models are typically used. The physically-based, semi-distributed and 
process-oriented SWAT model (Arnold et al., 1998; Abbaspour et al., 2015; Nguyen et al., 2022) used the 
representative elementary watershed concept by dividing the simulation domain in hydrologic response units 
to simulate water flow, solute transport, and sediment transport in agricultural catchments. Nitrogen 
transformations can be simulated with SHETRAN, a physically-based, spatially distributed river catchment 
model, that can be used in three-dimensions for coupled flow and nitrate transport (Birkinshaw and Ewen 2020). 
For example, in SHETRAN, the subsurface is a variably saturated heterogeneous region, comprising perched, 
unconfined and confined aquifers, and unsaturated zones, and at the surface there is vegetation, overland flow 
and stream networks. The advection–dispersion equations are used for nitrate transport simulations with terms 
added for adsorption. The nitrogen transformations taking place are modelled using NITS (Nitrate Integrated 
Transformation component for SHETRAN). NITS has pools for both carbon and nitrogen in manure, litter and 
humus, further pools for ammonium and nitrate, and involves the simultaneous solution of seven ordinary 
differential equations plus several auxiliary equations.

A coupling between more mechanistic models for nitrogen transformation with more complex models for 
subsequent flow and transport models is quite common. For example, Bonton et al. (2012) combined the Agriflux 
(Banton and Larocque, 1997) and HydroGeoSphere (Brunner and Simmons, 2012) models to simulate 
transformation and transport of nitrogen compounds under variably-saturated flow conditions. The simulation 
for different agricultural parcels used the Agriflux model (Banton and Larocque, 1997) to simulate one-
dimensional vertical flow and nitrate transport in the unsaturated zone and nitrogen transformation, where 
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subsequently the HydroGeoSphere model is used to simulate transient groundwater flow and subsurface nitrate 
transport below the root zone. Zang et al. (2022) applied a quasi-3D feedback integrated model, accomplished 
by Hydrus 1D, MODFLOW, and MT3DMS. Overall, a small number of models have the capability for studying 
nitrate pollution in river catchments, including: CWSS (Reiche, 1994), DAISY/MIKE-SHE (Styczen and Storm, 
1993a,b; Refsgaard et al., 1999; Seidenfaden et al., 2022), NMS (Lunn et al., 1996) and INCA (Whitehead et al., 
1998). However, considerable advances have been made in physically-based spatially distributed river 
catchment modeling in the past few years, especially in relation to subsurface modeling, resulting in the 
development of SHETRAN (Ewen et al., 2000). 

Further examples for comprehensive three-dimensional models are the physically-based catchment models 
HMSMOD (Panday and Huyakorn, 2004), MIKE SHE (Refsgaard and Storm, 1996), CATFLOW (Maurer, 1997; Klaus 
and Zehe, 2011), HydroGeoSphere (Brunner and Simmons, 2012), Parflow (Maxwell et al., 2014), and to some 
extent the finite-difference groundwater model MODFLOW (Harbaugh and McDonald, 1996) where surface 
water simulations typically have been based on simpler conceptual approaches. Moreover, the HYDRUS model 
can be applied in one to three dimensional simulations (Šimunek et al., 2023). The coupled surface and 
subsurface HydroGeoSphere model (Bruner and Simmons, 2012) was used for example by Rozemeijer et al. 
(2010) to simulate the impact of drains in a 3D model to test an experimental tile drainage network in a Dutch 
agricultural sub-catchment, where nitrate transport occurred. Yang et al. (2022) investigated the dynamics of 
catchment-scale solute export from diffuse nitrogen sources. They highlighted that previous data driven studies 
suggested that the catchment topographic slope has strong impacts on the age composition of streamflow and 
consequently on in-stream solute concentrations. Yang et al. (2022) used the fully coupled surface and 
subsurface numerical HydroGeoSphere (HGS) to model groundwater, overland flow, and nitrate transport. 

Another example is the SWAT model (Abbaspour et al., 2015). The physical processes associated with water and 
sediment movement, crop growth, and nutrient cycling are modelled at the HRU scale; runoff and pollutants 
exported from the different HRUs are routed downstream. SWAT simulates N cycling, which is influenced by 
specified management practices, such as planting, harvesting, tillage passes, and nutrient applications, among 
others. N is divided in the soil into two parts, each associated with organic and inorganic N transport and 
transformations, where N is added to the soil by fertilizers, manure or residue application, fixation by legumes, 
and rain. In the SWAT model nitrification is calculated as a function of soil temperature and soil water content, 
while volatilization as a function of soil temperature, depth, and cation exchange capacity. Plant uptake of N is 
calculated as the difference between the actual concentration of the elements in the plant and the optimal 
concentration, following a supply and demand approach. Denitrification that takes place in the nitrate pool is a 
flux of N to the atmosphere and is calculated as a function of soil water content, temperature, organic carbon 
content, and available mineral N. Overall, N cycle and N species transformations and transport in catchment 
models, such as SWAT, are governed by the hydrological cycle and are modelled based on simulation routines 
of natural processes and agricultural management that incorporate predefined parameters and coefficients.

Unlike nitrate isotopes, water stable isotopes have been extensively used in physically-based models. For 
example, Jafari et al. (2021) simulated surface-ground water interactions using a SWAT-MODFLOW model by 
integrating insights from water isotopes. The use of isotope allowed determining the relative contribution from 
different sources of water into aquifer recharge and identifying areas with high surface-ground water 
interactions. Manna et al. (2019) validated the results of a spatially distributed numerical model (MIKE SHE), 
which was used to simulate the responses to precipitation in a catchment, by comparing the water stable 
isotopes in groundwater with those of precipitation. In a more recent study, Zhou et al. (2021) used the HYDRUS-
1D model to simulate variably-saturated water flow and solute transport in porous media, by including an option 
to simulate water stable isotope fate and transport while accounting for evaporation fractionation.

3.3 Artificial intelligence models

Artificial intelligence (AI) and ML are used to generate models from databases or to develop logic-based training 
algorithms. AI can sort and interpret massive amounts of hydrological and water quality data from various 
sources to carry out a wide range of tasks in data analysis to guide water management. The extracted 
information form databases using AI tools can help water related processes, validate conceptual and numerical 
hydrological and water quality models and develop non-parametric prediction tools (Singh and Gupta, 2012; 
Aldhyani et al., 2020). With regard to water quality models, a recent survey on the use of AI models showed that 
N-species are among the most preferred chemical variables to be simulated in river water quality (Tiyasha et al., 
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2021). Among the AI model types, the artificial neural networks (ANN), the fuzzy logic, the kernel based, the 
wavelet and the hybrid models are the ones that, till present, have been mostly used in the assessment of water 
quality in rivers using different types of architectures. 

The ANN models typically use three or more layers (input, hidden and output) and the training is done using 
learning algorithms, such as backpropagation, generalized regression and Bayesian regularization (McCulloch 
and Pitts, 1943; Maier and Dandy, 1999; Antanasijević et al., 2014). There are several types of ANNs (e.g., 
feedforward networks, recurrent networks, convolutional networks), with feedforward networks being the 
simplest type, which consists of a series of layers of neurons, with each layer connected to the next, from the 
input layer to the output layer. For example, Stemnkovic et al. (2020) used a three-layer ANN model to predict 
the concentration of nitrates in the Danube River based on other water quality data. 

On the other hand, fuzzy logic-based models are powerful tools for dealing with uncertainty and imprecision in 
systems that are complex or difficult to model using traditional mathematical methods (Jang, 1993). Fuzzy logic-
based models rely on fuzzy sets, which are defined by a membership function that assigns a degree of 
membership to an element of a set. These models allow for the incorporation of human expertise and intuition 
into the modeling process, which can improve the accuracy of the model. For example, Scannapieco et al. (2012) 
used fuzzy-logic based models to assess the water quality in rivers relation to achieving good ecological status 
as mandated by the 2000/60/EC, or Water Framework Directive (WFD).

Kernel-based models are a powerful AI tool particularly when working with complex, nonlinear data sets used 
for pattern recognition, regression analysis, and other tasks. They are based on the concept of kernel functions, 
which transform input data into a higher-dimensional feature space, where it may be easier to identify patterns 
and relationships. They work by finding a decision boundary that separates the data into different classes or 
regions and they are generally more robust to noise and outliers and less prone to overfitting (Vapnik, 1998).  
For example, Kamyab-Talesh et al. (2019) used kernel-based models to predict the water quality index in rivers 
and identified nitrate as the most influential parameter on the index. In another example, Sajedi-Hosseini et al. 
(2018) used Kernel-based and other AI models to predict nitrate contamination in groundwater in Iran.

Other AI-related methods are wavelet algorithm models (e.g., Yaseen et al., 2018), which are able to decompose 
a signal at specific scales and positions, which allows for the extraction of information from different frequency 
bands, and hybrid models, which are a combination of two or more different AI techniques capable of solving 
complex problems (e.g., Nourani et al., 2014). These models aim to leverage the strengths of different AI 
techniques and overcome their limitations to create more efficient and accurate solutions. AI is also able to 
recognize patterns and analyse high resolution images on land use (e.g., deforestation) and water status (e.g., 
eutrophication) from satellites and drones to detect regional and global changes (e.g., Das et al., 2022). Often 
AI and ML are used in hybrid models that combined physics-based and data-driven models (IAEA, 2022). This is 
also done at a more fundamental level to model the small-scale turbulent structures that can be present in fluid 
flows (Stoffer et al., 2021) and ultimately affect the main flow and dispersion of the suspended or dissolved 
substances, including nitrate in hydrological catchments. 

Efforts to use AI techniques in isotope-related studies are still scarce and focus mostly on water stable isotopes. 
For example, Nelson et al. (2021) used an AI model to predict water stable isotope time series in precipitation 
in Europe with the aim to address the lack of sufficient measurements spatially and in the long-term, which limits 
the use of the available values to assess hydrological and meteorological processes. Cemek et al. (2022) used 
different AI techniques to predict the isotopic composition (δ18O and δ2H) in groundwater, whereas, more 
recently, Erdélyi et al. (2023) combined conventional regression techniques with Random Forest to predict the 
water stable isotope composition of precipitation in areas with large spatial data variability. Sahraei et al. (2021) 
used AI techniques and physical and hydrological variables (e.g., meteorological data, catchment wetness, water 
temperature, pH) to predict water stable isotopes in streams and groundwater. In relation to nitrate isotopes, 
Yang et al. (2021) developed an AI model to predict the δ15N-NO3

− values in surface waters by using conventional 
hydrochemical variables, that could enhance the interpretation of δ15N-NO3

− data and potentially improve water 
quality management. However, at present the accuracy of ML based prediction is often insufficient to allow for 
autonomous decisions and is subject to data accessibility. 

In the adjacent field of air quality and atmospheric pollution, machine learning methods were used inside an 
‘emulator’ that mimics the behaviour of computationally demanding models, to find sources of pollution (Fillola 
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et al., 2023). Many of the machine learning methods used for such models are not domain-specific and 
development of similar models for pollution in hydrological catchments could benefit from these existing models 
from other domains. Single application or in combination with other tools, ML provides new insight into the 
relationship of variables that enable to account for highly non-linear and non-homogenous models and in non-
stationary and dynamic environments. For example, Vystavna et al. (2021) showed that relative humidity, air 
temperature and variables related to energy processes (e.g., solar radiation), control the water stable isotopic 
composition in lakes and consequently their evaporation rates. 

4. Model limitations and uncertainties

Each model type has its advantages and limitations, and the challenges posed to the model user that wants to 
represent both water flow and solute transport through a catchment are multifaceted (Fig. 4). Many modeling 
studies rely on simple empirical models when simulating nitrate pollution at the catchment scale because these 
model concepts can reflect their judgments and uncertainties (Quinn, 2004). Another approach is to apply 
physically-based, distributed models within complex, three-dimensional heterogeneous landscapes, potentially 
inducing equifinality (Beven, 2006 and reference therein) and predictive uncertainty problems. In physically-
based models, a large amount of model parameters must be either provided from measurements or calibrated 
to characterize processes in all components of the water balance. For example, model parameters related to the 
interaction between surface, soil and ground waters, or those related to transport mechanisms and reaction 
rates of solutes must be provided, but existing measurements are often only available as sparse field or literature 
information. 

Furthermore, the challenges in developing reliable and efficient models are associated with spatiotemporal 
heterogeneity in parameters and state variables, data quality uncertainties, nonlinearities, and scale effects in 
process dynamics, as well as complex initial system states and boundary conditions, which might be poorly 
understood (e.g., Gauthier et al., 2009). Although these models are physically-based and can simulate complex 
environmental processes, model parameters cannot be uniquely determined due to the uncertainty in state 
variables (e.g., observed discharge rates, groundwater levels) or because these state variables have not enough 
information content to uniquely calibrate model parameters. This can lead to large predictive uncertainty or 
numerical overfitting and errors, strongly impacting water management decisions (Sordo-Ward et al., 2016).

In contrast, a conceptual model approach relies on the simplification of a model structure, which on one hand 
limits the capability of the model to inform about catchment internal processes, but on the other hand it allows 
for a much more robust parameter optimization using millions of model-runs in inverse modeling with a limited 
number of available measurements of hydrometeorological variables. Thus, conceptual models are easily 
calibrated, with the caveat that multiple equally feasible parameter sets can be found (equifinality). Some 
studies (e.g., Orth et al., 2015; Moeck et al. ,2016) have shown that a simple model could simulate discharge and 
other variables equally well and, in some cases even better. However, if an event (e.g., an extreme runoff event, 
or unseen drought) has not been observed in the historical calibration dataset, it cannot likely be simulated as 
the model lacks information about the processes leading to this event. 

ML tools can sort and process massive amounts of data from various sources, generate models from datasets or 
logic-based algorithms and carry out a wide range of tasks with high predictive accuracy (Xu and Liang, 2021). 
However, they are still not easily interpretable. Although high predictive accuracy is crucial to all modeling tasks, 
it is often not the only purpose. Especially when dealing with complex systems, as is the case in catchment 
modeling, learning about the system behavior and understanding its internal and external interrelationships are 
essential. However, research on explainable AI or "interpretable machine learning" (e.g., Montavon et al., 2018; 
Samek et al., 2019; Molnar et al., 2020; Molnar, 2020) has strongly advanced in recent years, and catchment 
modeling and ties between internal model states and hydrological processes are being elucidated (Lees et al., 
2021). A promising ML algorithm, SHapley Additive exPlanations (SHAP), which measures the impact of variables 
considering the interaction with other variables, has been applied recently as an interpretable machine learning 
approach. SHAP algorithm calculates the importance of a feature by comparing what a model predicts with and 
without the feature (Aydin and Iban, 2022). 

No matter which model and approach is used, another often-ignored limitation is the time lag, which is difficult 
to simulate. As mentioned earlier this time lag of water and solute transport through the unsaturated and 
saturated zone paired with biochemical lag time must be quantified to obtain realistic and sound model 
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predictions (van Meter et al., 2016). The specific time lag is, however, very scale and location dependent and 
can differ according to climate, pedology, landscape and land use management (Vero et al., 2017). The spatial 
and temporal heterogeneity of the physical properties of the watershed, the extent of chemical processes and 
transformations, the length of residence times throughout the subsurface, and the influence of climatic and 
meteorological conditions that affect the overall time lag pose further challenges in producing sound simulations 
(Baillieux et al., 2015; Hocking and Kelly 2016; Hrachowitz et al., 2016; Osenbrück et al., 2006; Van Meter et al., 
2016; Vero et al., 2014; Vero et al., 2017). This is especially true for models that simulate only one or two 
compartments of the catchment and oversimplify other processes. Developing an approach that incorporates 
unsaturated, saturated, and surface components, biochemical factors, and appropriate scales would likely be 
helpful, but may be too data-intensive (Hrachowitz et al., 2016) This can lead again to model simplification or 
not enough data are available to determine model parameters in a trustworthy way.

In general, models capable of carrying out all tasks required to simulate and predict water quantity and quality, 
properly representing water flow and solute transport at the same time, are difficult to find in literature. 
Generally, the aim of many water flow models is to accurately predict runoff, which can be quite easily achieved 
with simple models. However, often several model setups and parameter sets can lead to similarly well-
simulated runoff curves (the equifinality concept), making predictions outside of the calibration period difficult. 
Another issue with too simple models is their inability to aid in understanding catchment-internal processes if 
they do not contain elements in their structure that represent those processes. 

5. The way forward and conclusions

Similar to coupling of water flow models with water stable isotopes to constrain their solution of water transit 
times, we propose coupling of solute transport models with nitrate isotopes to constrain the transport routines. 
For example, Yang et al. (2021) combined a simplified water quality model, in particular a nitrate reaction model 
of the soil zone, with a time-variable water flow routine and used, among other data, the measured nitrate 
concentrations in stream flow to calibrate the water flow routine. Since they used a nitrate reaction model, we 
argue that additionally using nitrate isotope data informing about nitrate reactions can additionally constrain 
the model, potentially leading to an even further improved estimate of water flow. Changes in nitrate levels in 
various domains, such as the unsaturated zone, groundwater, and riverbed, could result in similar nitrate 
concentrations in runoff. However, to the best of our knowledge, nitrate isotopes have yet to be utilized in water 
quality models for simulating solute transport. This points to the necessity to further explore their applicability. 

N loading input: Nitrate isotopes have the potential to enhance our understanding of not only the source, but 
also the fate of the initial nitrate or other N-species concentrations. They can help in determining the N loading 
input in a catchment and in understanding the dynamics of biogeochemical processes. For example, transport 
models like SWAT, often require users to select from a myriad of parameter combinations, making it challenging 
to ascertain which set of parameters accurately reflects a catchment’s characteristics (Panagopoulos et al., 
2011). Here, nitrate isotopes have a certain limit in the application but their role can be explored for the nitrate 
source tracing. Employing nitrate isotopes could greatly enhance our understanding of the total N output, when 
aggregating loads from different land use types and point sources. Using isotopic data to estimate the 
proportional contribution of nitrate sources assist modellers in conducting a more precise parameterization 
across the catchment, considering land cover types and topographical zones. This will help in the appropriate 
initialization and definition of N related parameters and coefficients. The problem of equifinality, the possibility 
of multiple plausible solutions, can thus be effectively mitigated by narrowing the solution space of spatially 
varying parameter combinations. This, in turn, would lead to more accurate model estimates of N loading at 
specific river locations, where observational data are available. For example, Husic et al. (2020) introduced 
nitrate isotope data in a statistical mixing model (MixSIAR) and coupled it with a transport model to apportion 
nitrate loading sources (soil, fertilizer, and manure) across three pathways (quick, intermediate, and slow) in a 
karst watershed. They found that approximately 60 % of nitrate is exported from the catchment, facilitated by 
the quick-fertilizer (16 %), the intermediate-manure (15 %), and slow-soil (27 %) pathways. 

Biogeochemical processes: Additionally, nitrate isotopes can provide estimates of biogeochemical processes 
rates, such as of denitrification, thereby allowing for more precise calibration of the parameters used to simulate 
these processes. This can lead to more accurate model predictions of the actual N availability in soil that can be 
used by plants or can migrate to surface and groundwater. Models simulating the nitrogen cycle, like HSPF, can 
be suitable to use nitrate isotopes in order to validate and quantify the biogeochemical processes. On the 
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contrary, models, which assume an unlimited nitrogen pool and thus biogeochemical transformation are 
overlooked, like INCA, seem more appropriate to benefit from the use of nitrate isotopes as tracers of origin. 

Nitrate isotopes can also help to locate the hot spots of biogeochemical processes within catchments. The 
occurrence of biogeochemical processes may vary spatially and temporally. This implies that nitrate 
concentrations may be influenced not only by different nitrate pollution sources but also by varying N-cycling 
histories. Deutsch et al. (2009), for example, demonstrated that N-transformation processes (denitrification and 
assimilation) occurred along the Elbe River, which led to changes in nitrate concentration, thus showing in-
stream N-transformations. Li et al. (2019a) found that around 12 % of nitrate was removed by denitrification in 
the Xijiang River during the dry season. N-transformation processes in the unsaturated and saturated zones may 
further complicate the modeling of nitrate concentrations, since rivers fed by groundwater may receive waters 
already subject to denitrification and with nitrate concentrations that do not truly reflect the origin of nitrate 
pollution. Riparian zones are also hot spots of NO3

− transformation and removal, especially in agricultural 
catchments. A nitrate isotope survey in the Seine River Basin (France) found that riparian denitrification 
accounted for up to 50 % of NO3

− removal in the Seine River and its tributaries during summer low-flow 
conditions (Sebilo et al. 2003, 2006). Moreover, wetlands, including marshes, bogs, and swamps, are biologically 
productive environments that regulate NO3

− removal primarily through plant uptake, microbial immobilization, 
and dissimilatory respiration processes. Reddy and DeLaune (2008) demonstrated that both denitrification and 
plant uptake of nitrate resulted in significantly lower NO3

− concentrations in the outflow of a low-flow small 
temperate wetland compared to incoming stream water, resulting in an NO3

− removal of 65-100 %. 

Holistic understanding of the hydrological system: At present, the relatively high degree of uncertainty in water 
quality predictions limits their application in decision-making processes. To overcome this limitation, we propose 
that a primary objective should be to integrate catchment-scale water quality models with stable isotope 
approaches, specifically those focused on nitrate pollution. Such integration is pivotal for a more holistic 
understanding of hydrological systems. One of the key challenges lies in bridging the gap between the catchment 
hydrology (water flow) and water quality (solute transport) scientific communities. By integrating respective 
models, it becomes feasible to account for the complex interactions between water flow and solute transport, 
including the non-conservative behavior of nitrogen species. It is anticipated that a more complete 
representation of the underlying processes will foster a more holistic understanding of how hydrological systems 
work. For future model development and improvement, key trends involve the integration of different model 
types or the use of fully coupled, physically-based models. Overly simplified models or standalone models may 
not fully address the complexities of nitrate loadings and reaction dynamics. Therefore, models coupled with 
nitrate stable isotopes are necessary for obtaining the most plausible results. Incorporating observational data 
along with nitrate isotopes in the model will likely enhance the identifiability of model parameters and thus 
improve the predictability of water quality models. Ultimately, this will aid stakeholders in making informed 
decisions and addressing water-related issues more effectively. 

Incorporation of AI models: AI models are progressively massively used in water quality studies but very scarcely 
in nitrate isotope surveys. However, their application so far is only tested theoretically and not in real conditions. 
Thus, the AI models developed should be tested against conventional and benchmarked models in catchment 
hydrology. AI models are also designed to perform specific tasks and may not perform well in new or unexpected 
situations due to lack of the ability to adapt to changing circumstances. Thus, the AI models should be trained 
on diverse datasets that cover a wide range of scenarios. The problem of missing or discontinuous data requires 
the use of additional AI models or can be overcome through the use of remote sensing applications. Additionally, 
recent technological advances in isotopic assays of nitrate (Altabet et al., 2019) have largely reduced the 
analytical cost to conduct high-frequency nitrate isotope analysis compared to the conventional techniques (Xue 
et al., 2010) and is expected to help overcome this drawback. Many AI models are black boxes, making it difficult 
to understand how they make decisions. Thus, more interpretable AI models that provide a clear understanding 
of how they make decisions or methods to extract explanations from the black-box models should be sought.

Acknowledgments

The results of this study have been discussed within the COST Action: “WATSON” CA19120 (www.cost.eu)



16

References

Abascal, E., Gómez-Coma, L., Ortiz, I. and Ortiz, A., 2022. Global diagnosis of nitrate pollution in groundwater 
and review of removal technologies. Science of the total environment, 810, p.152233.

Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S.R.I.N.I.V.A.S.A.N.B., Srinivasan, R., Yang, H. and Kløve, B., 2015. A 
continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution 
large-scale SWAT model. Journal of hydrology, 524, pp.733-752.

Abrahamsen, P., Hansen, S., 2000. Daisy: an open soil-crop-atmosphere system model. Environ. Model. Softw. 
15(3), 313-330. https://doi.org/10.1016/S1364-8152(00)00003-7.

Adnan, R.M., Petroselli, A., Heddam, S., Santos, C.A.G. and Kisi, O., 2021. Comparison of different methodologies 
for rainfall–runoff modeling: machine learning vs conceptual approach. Natural Hazards, 105, pp.2987-3011.

Akanegbu, J.O., Meriö, L.J., Marttila, H., Ronkanen, A.K., Klöve, B., 2018. A simple model structure enhances 
parameter identification and improves runoff prediction in ungauged high-latitude catchments. J. Hydrol. 563, 
395-410. https://doi.org/10.1016/j.jhydrol.2018.06.022.

Ala-Aho, P., Rossi, P.M., Isokangas, E., Kløve, B., 2015. Fully integrated surface–subsurface flow modelling of 
groundwater–lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal 
imaging. J. Hydrol. 522, 391-406. https://doi.org/10.1016/j.jhydrol.2014.12.054.

Aldhyani, T.H.H., Al-Yaari, M., Alkahtani, H., Maashi, M., 2020. Water Quality Prediction using Artificial 
Intelligence Algorithms. Appl. Bionics Biomech., 6659314. https://doi.org/10.1155/2020/6659314

Altabet, M.A., Wassenaar, L.I., Douence, C. and Roy, R., 2019. A Ti (III) reduction method for one-step conversion 
of seawater and freshwater nitrate into N2O for stable isotopic analysis of 15N/14N, 18O/16O and 17O/16O. 
Rapid Communications in Mass Spectrometry, 33(15), pp.1227-1239.

Altunkaynak, A., Özger, M. and Çakmakcı, M., 2005. Fuzzy logic modeling of the dissolved oxygen fluctuations in 
Golden Horn. Ecological Modelling, 189(3-4), pp.436-446.

Antanasijević, D., Pocajt, V., Perić-Grujić, A. and Ristić, M., 2014. Modelling of dissolved oxygen in the Danube 
River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. Journal of Hydrology, 
519, pp.1895-1907.

Arheimer, B. and Wittgren, H.B., 2002. Modelling nitrogen removal in potential wetlands at the catchment scale. 
Ecological engineering, 19(1), pp.63-80.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment. 
Part 1. Model development. Am. Water Resour. Assoc. 34, 73–89. https://doi.org/10.1111/j.1752-
1688.1998.tb05961.x.

Ashby, S.F., Falgout, R.D., 1996. A parallel multigrid preconditioned conjugate gradient algorithm for 
groundwater flow simulations. Nucl. Sci. Eng. 124 (1), 145–159. https://doi.org/10.13182/NSE96-A24230.

Aydin, H.E. and Iban, M.C., 2022. Predicting and analyzing flood susceptibility using boosting-based ensemble 
machine learning algorithms with SHapley Additive exPlanations. Natural Hazards, pp.1-35.

Baertschi, P., 1976. Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31(3), 341–344. 
https://doi.org/10.1016/0012-821X(76)90115-1

Baginska, B., Milne-Home, W., Cornish, P.S., 2003. Modelling nutrient transport in Currency Creek, NSW with 
AnnAGNPS and PEST. Environ. Model. Softw. 18(8-9), 801-808. https://doi.org/10.1016/S1364-8152(03)00079-
3.

https://doi.org/10.1016/S1364-8152(00)00003-7
https://doi.org/10.1155/2020/6659314
https://doi.org/10.13182/NSE96-A24230
https://doi.org/10.1016/0012-821X(76)90115-1
https://doi.org/10.1016/S1364-8152(03)00079-3
https://doi.org/10.1016/S1364-8152(03)00079-3


17

Bailey, R., Rathjens, H., Bieger, K., Chaubey, I. and Arnold, J., 2017. SWATMOD-Prep: Graphical user interface for 
preparing coupled SWAT-MODFLOW simulations. JAWRA Journal of the American Water Resources Association, 
53(2), pp.400-410.

Baillieux, A., Moeck, C., Perrochet, P. and Hunkeler, D., 2015. Assessing groundwater quality trends in pumping 
wells using spatially varying transfer functions. Hydrogeology journal, 23, pp.1449-1463.

Banton, O., Larocque, M., 1997. AGRIFLUX 2.0–User's manual. Software for the evaluation of environmental 
losses of nitrates and pesticides from agriculture (in French). INRS-Eau Rep. INRS-Eau, Quebec, Canada, 439.

Basso, S., Frascati, A., Marani, M., Schirmer, M. and Botter, G., 2015. Climatic and landscape controls on effective 
discharge. Geophysical Research Letters, 42(20), pp.8441-8447.

Bateman, A.S., Kelly, S.D., 2007. Fertilizer nitrogen isotope signatures. Isot. Environ. Health Stud. 43(3), 237-247. 
https://doi.org/10.1080/10256010701550732.

Bedekar, V., Morway, E.D., Langevin, C.D., Tonkin, M.J., 2016. MT3D-USGS version 1: A US Geological Survey 
release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW (No. 6-A53). 
US Geological Survey.

Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus, J., Harman, C. J., van der Velde, Y., Hrachowitz, M., 
Botter, G., McGuire, K. J., Kirchner, J. W., Rinaldo, A., & McDonnell, J. J., 2022. Transit Time Estimation in 
Catchments: Recent Developments and Future Directions. Water Resources Research, 58(11), e2022WR033096. 
https://doi.org/https://doi.org/10.1029/2022WR033096.

Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G. and Rinaldo, A., 2017. Using SAS functions and 
high-resolution isotope data to unravel travel time distributions in headwater catchments. Water Resources 
Research, 53(3), pp.1864-1878.

Beusen, A.H. and Bouwman, A.F., Future projections of river nutrient export to the global coastal ocean show 
persisting nitrogen and phosphorus distortion. Frontiers in Water, p.195.

Beven, K. 2006. A manifesto for the equifinality thesis. J. Hydrol. 320(1-2), 18-36.  
https://doi.org/10.1016/j.jhydrol.2005.07.007.

Beven, K., 2020. Deep learning, hydrological processes and the uniqueness of place. Hydrol. Process. 34(16), 
3608-3613. https://doi.org/10.1002/hyp.13805.

Beven, K., Germann, P., 2013. Macropores and water flow in soils revisited. Water Resour. Res. 49(6), 3071–
3092. https://doi.org/https://doi.org/10.1002/wrcr.20156

Bhattarai, A., Dhakal, S., Gautam, Y., Bhattarai, R., 2021. Prediction of Nitrate and Phosphorus Concentrations 
Using Machine Learning Algorithms in Watersheds with Different Landuse. Water 13, 3096. 
https://doi.org/10.3390/w13213096.

Bicknell, B.R., Imhoff, J.C., Kittle Jr, J.L., Donigian Jr, A.S. and Johanson, R.C., 1996. Hydrological simulation 
program-FORTRAN. user's manual for release 11. US EPA.

Birkel, C., Duvert, C., Correa, A., Munksgaard, N.C., Maher, D.T. and Hutley, L.B., 2020. Tracer-aided modeling in 
the low-relief, wet-dry tropics suggests water ages and DOC export are driven by seasonal wetlands and deep 
groundwater. Water Resources Research, 56(4), p.e2019WR026175.

Birkinshaw, S. J., & Ewen, J., 2000. Nitrogen transformation component for SHETRAN catchment nitrate 
transport modelling. J. Hydrol. 230(1-2), 1-17. https://doi.org/10.1016/S0022-1694(00)00174-8.

Bogena, H. R., Montzka, C., Huisman, J. A., Graf, A., Schmidt, M., Stockinger, M., von Hebel, C., Hendricks-
Franssen, H. J., van der Kruk, J., Tappe, W., Lücke, A., Baatz, R., Bol, R., Groh, J., Pütz, T., Jakobi, J., Kunkel, R., 

https://doi.org/https://doi.org/10.1029/2022WR033096
https://doi.org/10.3390/w13213096


18

Sorg, J., & Vereecken, H., 2018. The TERENO-Rur Hydrological Observatory: A Multiscale Multi-Compartment 
Research Platform for the Advancement of Hydrological Science. Vadose Zone J. 17(1), 1-22. 
https://doi.org/10.2136/vzj2018.03.0055

Böhlke, J.K., O'Connell, M.E., Prestegaard, K.L., 2007. Ground water stratification and delivery of nitrate to an 
incised stream under varying flow conditions. J. Environ. Qual. 36(3), 664-680. 
https://doi.org/10.2134/jeq2006.0084.

Bonton, A., Bouchard, C., Rouleau, A., Rodriguez, M.J., Therrien, R., 2012. Calibration and validation of an 
integrated nitrate transport model within a well capture zone. J. Contam. Hydrol. 128(1-4), 1-18. 
https://doi.org/10.1016/j.jconhyd.2011.10.007.

Bortnik, J. and Camporeale, E., 2021, December. Ten ways to apply machine learning in the Earth and space 
sciences. In AGU Fall Meeting Abstracts (Vol. 2021, pp. IN12A-06).

Böttcher, J., Strebel, O., Voerkelius, S., Schmidt, H.L., 1990. Using isotope fractionation of nitrate-nitrogen and 
nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 114, 413–424. 
https://doi.org/10.1016/0022-1694(90)90068-9.

Botter, G., 2012. Catchment mixing processes and travel time distributions. Water Resour. Res. 48(5). 
https://doi.org/10.1029/2011WR011160.

Botter, G., Basso, S., Rodriguez-Iturbe, I. and Rinaldo, A., 2013. Resilience of river flow regimes. Proceedings of 
the National Academy of Sciences, 110(32), pp.12925-12930.

Braake, H.T., Roubos, J.A., Babuška, R., 1999. Semi-mechanistic modeling and its application to biochemical 
processes, in Fuzzy Logic Control: Advances in Applications, pp. 205-226. 

Brunner, P., Simmons, C.T., 2012. HydroGeoSphere: a fully integrated, physically based hydrological model. 
Ground Water 50(2), 170-176. https://doi.org/10.1111/j.1745-6584.2011.00882.x.

Buchak, E.M., Edinger, J.E., 1982. User Guide for CE-QUAL-ELV2: A Longitudinal-Vertical, Time-Varying Estuarine 
Water Quality Model. EDINGER (JE) ASSOCIATES INC WAYNE PA.

Burri, N. M., Weatherl, R., Moeck, C., & Schirmer, M. (2019). A review of threats to groundwater quality in the 
anthropocene. Science of the Total Environment, 684, 136-154.

Carluer, N., De Marsily, G., 2004. Assessment and modelling of the influence of man-made networks on the 
hydrology of a small watershed: implications for fast flow components, water quality and landscape 
management. J. Hydrol. 285(1-4), 76-95. https://doi.org/10.1016/j.jhydrol.2003.08.008.

Casciotti, K.L., 2009. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochimica et 
Cosmochimica Acta, 73(7), pp.2061-2076.

Casciotti, K.L., Sigman, D.M. and Ward, B.B., 2003. Linking diversity and stable isotope fractionation in ammonia-
oxidizing bacteria. Geomicrobiology Journal, 20(4), pp.335-353.

Chang, H. and Zhang, D., 2019. Machine learning subsurface flow equations from data. Computational 
Geosciences, 23, pp.895-910.

Conan, C., Bouraoui, F., Turpin, N., de Marsily, G., Bidoglio, G., 2003. Modeling flow and nitrate fate at catchment 
scale in Brittany (France). J. Environ. Qual. 32, 2026– 2032. https://doi.org/10.2134/jeq2003.2026.

Dagès, C., Voltz, M., Bailly, J.S., Crevoisier, D., Dollinger, J. and Margoum, C., 2023. PITCH: A model simulating 
the transfer and retention of pesticides in infiltrating ditches and channel networks for management design 
purposes. Science of The Total Environment, p.164602.

https://doi.org/10.2136/vzj2018.03.0055
https://doi.org/10.2136/vzj2018.03.0055
https://doi.org/10.1016/j.jconhyd.2011.10.007
https://doi.org/10.2134/jeq2003.2026


19

Das, T.K., Barik, D.K. and Kumar, K.R., 2022, May. Land-Use Land-Cover Prediction from Satellite Images using 
Machine Learning Techniques. In 2022 International Conference on Machine Learning, Big Data, Cloud and 
Parallel Computing (COM-IT-CON) (Vol. 1, pp. 338-343). IEEE.

Denk, T.R., Mohn, J., Decock, C., Lewicka-Szczebak, D., Harris, E., Butterbach-Bahl, K., Kiese, R. and Wolf, B., 
2017. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biology and 
Biochemistry, 105, pp.121-137.

Deutsch, B., Voss, M., Fischer, H., 2009. Nitrogen transformation processes in the Elbe River: Distinguishing 
between assimilation and denitrification by means of stable isotope ratios in nitrate. Aquat. Sci. 71(2), 228-237. 
https://doi.org/10.1007/s00027-009-9147-9.

Diekkrüger, B., Söndgerath, D., Kersebaum, K.C., McVoy, C.W., 1995. Validity of agroecosystem models a 
comparison of results of different models applied to the same data set. Ecol Modell 81(1-3), 3-29. 
https://doi.org/10.1016/0304-3800(94)00157-D.

Dupas, R., Minaudo, C., Gruau, G., Ruiz, L., Gascuel-Odoux, C., 2018. Multidecadal trajectory of riverine nitrogen 
and phosphorus dynamics in rural catchments. Water Resour. Res. 54(8), 5327-5340. 
https://doi.org/10.1029/2018WR022905.

Erdélyi, D., Hatvani, I.G., Jeon, H., Jones, M., Tyler, J. and Kern, Z., 2023. Predicting spatial distribution of stable 
isotopes in precipitation by classical geostatistical-and machine learning methods. Journal of Hydrology, 
p.129129.

Erostate, M., Huneau, F., Garel, E., Lehmann, M.F., Kuhn, T., Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., 
Santoni, S., Robert, S. and Provitolo, D., 2018. Delayed nitrate dispersion within a coastal aquifer provides 
constraints on land-use evolution and nitrate contamination in the past. Sci. Total Environ. 644, 928-940. 
https://doi.org/10.1016/j.scitotenv.2018.06.375.

European Parliament; Council of European Union Council. Directive 91/676/EEC of 12 December 1991 
concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. Eur. 
Union 1991, L 375, 1–8.

Ewen, J., Parkin, G., O'Connell, P.E., 2000. SHETRAN: distributed river basin flow and transport modeling system. 
J. Hydrol. Eng. 5(3), 250-258. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(250).

Fan, A.M., Steinberg, V.E., 1996. Health implications of nitrate and nitrite in drinking water: an update on 
methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol. 23(1), 
35-43. https://doi.org/10.1006/rtph.1996.0006.

Fang, Z., Bogena, H., Kollet, S., Koch, J., Vereecken, H., 2015. Spatio-temporal validation of long-term 3D 
hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence 
analysis. J. Hydrol. 529, 1754-1767. https://doi.org/10.1016/j.jhydrol.2015.08.011

Fenech, C., Rock, L., Nolan, K., Tobin, J. and Morrissey, A., 2012. The potential for a suite of isotope and chemical 
markers to differentiate sources of nitrate contamination: a review. Water Research, 46(7), pp.2023-2041.

Fillola, E., Santos-Rodriguez, R., Manning, A., O'Doherty, S. and Rigby, M., 2022. A machine learning emulator 
for Lagrangian particle dispersion model footprints: a case study using NAME. EGUsphere, pp.1-19.

Fogg, G.E., Rolston, D.E., Decker, D.L., Louie, D.T., Grismer, M.E., 1998. Spatial variation in nitrogen isotope 
values beneath nitrate contamination sources. Ground Water 36(3), 418-426. https://doi.org/10.1111/j.1745-
6584.1998.tb02812.x.

Frind, E.O., Duynisveld, W.H.M., Strebel, O. and Boettcher, J., 1990. Modeling of multicomponent transport with 
microbial transformation in groundwater: the Fuhrberg case. Water Resources Research, 26(8), pp.1707-1719.

https://doi.org/10.1029/2018WR022905
https://doi.org/10.1016/j.jhydrol.2015.08.011
https://doi.org/10.1111/j.1745-6584.1998.tb02812.x
https://doi.org/10.1111/j.1745-6584.1998.tb02812.x


20

Frey, S.K., Miller, K., Khader, O., Taylor, A., Morrison, D., Xu, X., Berg, S.J., Hwang, H.T., Sudicky, E.A. and Lapen, 
D.R., 2021. Evaluating landscape influences on hydrologic behavior with a fully-integrated groundwater–surface 
water model. Journal of Hydrology, 602, p.126758.

Fu, B., Merritt, W.S., Croke, B.F., Weber, T.R. and Jakeman, A.J., 2019. A review of catchment-scale water quality 
and erosion models and a synthesis of future prospects. Environmental modelling & software, 114, pp.75-97.

García, A.M., Alexander, R.B., Arnold, J.G., Norfleet, L., White, M.J., Robertson, D.M., Schwarz, G., 2016. Regional 
effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin. Environ. 
Sci. Technol. 50(13), 6991-7000. https://doi.org/10.1021/acs.est.5b03543.

Gassmann, M., 2021. Modelling the fate of pesticide transformation products from plot to catchment scale—
state of knowledge and future challenges. Frontiers in Environmental Science, 9, p.717738.

Gauthier, M.J., Camporese, M., Rivard, C., Paniconi, C., Larocque, M., 2009. A modeling study of heterogeneity 
and surface water-groundwater interactions in the Thomas Brook catchment, Annapolis Valley (Nova Scotia, 
Canada). Hydrol Earth Syst Sci. 13(9), 1583-1596. https://doi.org/10.5194/hess-13-1583-2009, 2009.

Gong, X., Bian, J., Wang, Y., Jia, Z., Wan, H., 2019. Evaluating and predicting the effects of land use changes on 
water quality using SWAT and CA–Markov models. Water Resour. Manag. 33(14), 4923-4938. 
https://doi.org/10.1007/s11269-019-02427-0.

Gonzales-Inca, C.A., Calle, M., Croghan, D., Haghighi, A.T., Marttila, H., Silander, J., Alho, P. 2022. Geospatial 
artificial intelligence (GeoAI) in the integrated hydrological and fluvial systems modeling: Review of current 
applications and trend. Water 14(14), 2211, https://doi.org/10.3390/w14142211

Granger, J., Sigman, D.M., Rohde, M.M., Maldonado, M.T. and Tortell, P.D., 2010. N and O isotope effects during 
nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochimica et Cosmochimica 
Acta, 74(3), pp.1030-1040.

Gümrah, F., Öz, B., Güler, B. and Evin, S., 2000. The application of artificial neural networks for the prediction of 
water quality of polluted aquifer. Water, Air, and Soil Pollution, 119, pp.275-294.

Hall, S.J., Weintraub, S.R., Bowling, D.R., 2016. Scale-dependent linkages between nitrate isotopes and 
denitrification in surface soils: implications for isotope measurements and models. Oecologia 181, pp. 1221-
1231. https://doi.org/10.1007/s00442-016-3626-1.

Hansen, S., Jensen, H.E., Nielsen, N.E., Svendsen, H., 1991. Simulation of nitrogen dynamics and biomass 
production in winter wheat using the Danish simulation model DAISY. Fertil. Res. 27, 245-259. 
https://doi.org/10.1007/BF01051131.

Hao, J., Liu, J. and Zhang, Y., 2011. Prediction of groundwater quality based on nonlinear PLSR model. Journal of 
Northwest A & F University-Natural Science Edition, 39(7), pp.212-216.

Harbaugh, A.W., McDonald, M.G., 1996. Programmer's documentation for MODFLOW-96, an update to the US 
Geological Survey modular finite-difference ground-water flow model (No. 96-486). US Geological Survey; 
Branch of Information Services [distributor].

Harman, C. J., 2015. Time-variable transit time distributions and transport: Theory and application to storage-
dependent transport of chloride in a watershed. Water Resour. Res. 51(1), 1-30 
https://doi.org/10.1002/2014WR015707

He, S., Li, P., Su, F., Wang, D. and Ren, X., 2022. Identification and apportionment of shallow groundwater nitrate 
pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new 
Bayesian stable isotope mixing model (MixSIAR). Environmental pollution, 298, p.118852.

https://doi.org/10.1021/acs.est.5b03543
https://doi.org/10.3390/w14142211
https://doi.org/10.1002/2014WR015707


21

He, Z., Unger-Shayesteh, K., Vorogushyn, S., Weise, S.M., Kalashnikova, O., Gafurov, A., Duethmann, D., 
Barandun, M. and Merz, B., 2019. Constraining hydrological model parameters using water isotopic 
compositions in a glacierized basin, Central Asia. Journal of hydrology, 571, pp.332-348.

Heaton, T.H., 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. 
Geol. 59, 87-102. https://doi.org/10.1016/0168-9622(86)90059-X.

Hocking, M. and Kelly, B.F., 2016. Groundwater recharge and time lag measurement through Vertosols using 
impulse response functions. Journal of Hydrology, 535, pp.22-35.

Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., Howden, N. J. K., Ruiz, L., van der Velde, Y., Wade, 
A. J., 2016. Transit times-the link between hydrology and water quality at the catchment scale. Wiley 
Interdisciplinary Reviews: Water 3(5), 629-657. https://doi.org/10.1002/wat2.1155.

Hrachowitz, M., Savenije, H., Bogaard, T.A., Tetzlaff, D., Soulsby, C., 2013. What can flux tracking teach us about 
water age distribution patterns and their temporal dynamics? Hydrol. Earth Syst. Sci. 17(2), 533-564. 
https://doi.org/10.5194/hess-17-533-2013.

Hrachowitz, M., Stockinger, M., Coenders-Gerrits, M., van der Ent, R., Bogena, H., Lücke, A., Stumpp, C., 2021. 
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time 
distributions and increases young water fractions in a headwater catchment. Hydrol. Earth Syst. Sci. 25 (9), 4887–
4915. https://doi.org/10.5194/hess-25-4887-2021.

Huang, S., Wang, F., Elliott, E. M., Zhu, F., Zhu, W., Koba, K., Yu, Z., Hobbie, E. A., Michalski, F., Kang, R., Wang, 
A., Zhu, J., Fu, S., Fang, Y., 2020. Multiyear Measurements on Δ17O of Stream Nitrate Indicate High Nitrate 
Production in a Temperate Forest. Environ. Sci. Technol. 54(7), 4231–4239, 
https://doi.org/10.1021/acs.est.9b07839

Husic, A., Fox, J., Mahoney, T., Gerlitz, M., Pollock, E., Backus, J., 2020. Optimal transport for assessing nitrate 
source-pathway connectivity. Water Resour. Res. 56(10), p.e2020WR027446. 
https://doi.org/10.1029/2020WR027446.

INTERNATIONAL ATOMIC ENERGY AGENCY, 2022. Artificial Intelligence for Accelerating Nuclear Applications, 
Science and Technology, Non-serial Publications, IAEA, Vienna.

Jafari, T., Kiem, A.S., Javadi, S., Nakamura, T. and Nishida, K., 2021. Using insights from water isotopes to improve 
simulation of surface water-groundwater interactions. Science of The Total Environment, 798, p.149253.

Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and 
cybernetics, 23(3), pp.665-685.

Jansson, P.E., Karlberg, L., 2004. Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere Systems. 
COUPModel Manual. Land and Water Resources Engineering, Royal Institute of Technology, Stockholm, 445p.

Jasechko, S., Kirchner, J.W., Welker, J.M. and McDonnell, J.J., 2016. Substantial proportion of global streamflow 
less than three months old. Nat. Geosci. 9(2), 126-129. https://doi.org/10.1038/ngeo2636

Ji, X., Shu, L., Li, J., Zhao, C., Chen, W., Chen, Z., Shang, X., Dahlgren, R. A., Yang, Y., Zhang, M., 2022. Tracing 
nitrate sources and transformations using △17O, δ15N, and δ18O-NO3− in a coastal plain river network of 
eastern China, J. Hydrol. 610, 127829. https://doi.org/10.1016/j.jhydrol.2022.127829

Ji, X., Xie, R., Hao, Y. and Lu, J., 2017. Quantitative identification of nitrate pollution sources and uncertainty 
analysis based on dual isotope approach in an agricultural watershed. Environmental Pollution, 229, pp.586-594.

Johnsson, H., Bergstrom, L., Jansson, P.E., Paustian, K., 1987. Simulated nitrogen dynamics and losses in a layered 
agricultural soil. Agric. Ecosyst. Environ. 18(4), 333-356. https://doi.org/10.1016/0167-8809(87)90099-5.

https://doi.org/10.1016/0168-9622(86)90059-X
https://doi.org/10.5194/hess-25-4887-2021
https://doi.org/10.1038/ngeo2636
https://doi.org/10.1016/j.jhydrol.2022.127829
https://doi.org/10.1016/0167-8809(87)90099-5


22

Juncher Jørgensen, C., Jacobsen, O.S., Elberling, B. and Aamand, J., 2009. Microbial oxidation of pyrite coupled 
to nitrate reduction in anoxic groundwater sediment. Environmental science & technology, 43(13), pp.4851-
4857.

Kaiser, J., 2008. Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon 
dioxide and a critical appraisal of historic ‘absolute’ carbon and oxygen isotope ratios. Geochim. Cosmochim. 
Acta. 72(5), 1312–1334. https://doi.org/10.1016/j.gca.2007.12.011

Kamyab-Talesh, F., Mousavi, S.F., Khaledian, M., Yousefi-Falakdehi, O. and Norouzi-Masir, M., 2019. Prediction 
of water quality index by support vector machine: a case study in the Sefidrud Basin, Northern Iran. Water 
Resources, 46, pp.112-116.

Kang, S. and Lin, H., 2007. Wavelet analysis of hydrological and water quality signals in an agricultural watershed. 
Journal of Hydrology, 338(1-2), pp.1-14.

Kendall, C., 1998. Tracing nitrogen sources and cycling in catchments, in: Isotope tracers in catchment hydrology 
pp. 519-576. Elsevier.

Kendall, C., Elliott, E.M., Wankel, S.D., 2007. Stable isotopes in ecology and environmental science. Tracing 
Anthropogenic Inputs of Nitrogen to Ecosystems, pp.375-449.

Kharbush, J.J., Robinson, R.S. and Carter, S.J., 2023. Patterns in sources and forms of nitrogen in a large eutrophic 
lake during a cyanobacterial harmful algal bloom. Limnology and Oceanography.

Kim, T., Yang, T., Gao, S., Zhang, L., Ding, Z., Wen, X., Gourley, J.J. and Hong, Y., 2021. Can artificial intelligence 
and data-driven machine learning models match or even replace process-driven hydrologic models for 
streamflow simulation?: A case study of four watersheds with different hydro-climatic regions across the 
CONUS. Journal of Hydrology, 598, p.126423.

Kim, S., Han, C., Moon, J., Han, Y., Hur, S.D. and Lee, J., 2022. An optimal strategy for determining triple oxygen 
isotope ratios in natural water using a commercial cavity ring-down spectrometer. Geosciences Journal, 26(5), 
pp.637-647.

Kirchner, J.W., 2016. Aggregation in environmental systems-Part 1: Seasonal tracer cycles quantify young water 
fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol. Earth Syst. Sci. 20(1), 279-
297. https://doi.org/10.5194/hess-20-279-2016.

Kirchner, J.W., Feng, X., Neal, C., 2000. Fractal stream chemistry and its implications for contaminant transport 
in catchments. Nature 403(6769), 524-527. https://doi.org/10.1038/35000537.

Klaus, J., Zehe, E., 2011. A novel explicit approach to model bromide and pesticide transport in connected soil 
structures. Hydrol. Earth Syst. Sci. 15(7), 2127-2144. https://doi.org/10.5194/hess-15-2127-2011.

Klaus, J., McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: Review and evaluation. Journal of 
hydrology, 505, pp.47-64.

Korom, S.F., Schuh, W.M., Tesfay, T. and Spencer, E.J., 2012. Aquifer denitrification and in situ mesocosms: 
modeling electron donor contributions and measuring rates. Journal of Hydrology, 432, pp.112-126.

Kroes, J.G., Van Dam, J.C., 2003. Reference Manual SWAP; version 3.0. 3 (No. 773). Alterra.

Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., Dadson, S.J., 2021. Benchmarking data-driven 
rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four 
lumped conceptual models. Hydrol. Earth Syst. Sci. 25(10), 5517-5534. https://doi.org/10.5194/hess-25-5517-
2021.

https://doi.org/10.1016/j.gca.2007.12.011
https://doi.org/10.5194/hess-20-279-2016
https://doi.org/10.5194/hess-15-2127-2011
https://doi.org/10.5194/hess-25-5517-2021
https://doi.org/10.5194/hess-25-5517-2021


23

Lei, C., Wagner, P.D., Fohrer, N., 2022. Influences of land use changes on the dynamics of water quantity and 
quality in the German lowland catchment of the Stör. Hydrol. Earth Syst. Sci. 26(9), 2561-2582. 
https://doi.org/10.5194/hess-26-2561-2022.

Lewicka-Szczebak, D., Well, R., Koester, J.R., Fuß, R., Senbayram, M., Dittert, K. and Flessa, H., 2014. Experimental 
determinations of isotopic fractionation factors associated with N2O production and reduction during 
denitrification in soils. Geochimica et Cosmochimica Acta, 134, pp.55-73.

Li, C., Li, S.L., Yue, F.J., Liu, J., Zhong, J., Yan, Z.F., Zhang, R.C., Wang, Z.J., Xu, S., 2019a. Identification of sources 
and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. Sci. Total 
Environ. 646, 801-810. https://doi.org/10.1016/j.scitotenv.2018.07.345.

Li, Z., Xiao, J., Evaristo, J., Li, Z., 2019b. Spatiotemporal variations in the hydrochemical characteristics and 
controlling factors of streamflow and groundwater in the Wei River of China. Environ. Pollut. 254. 
https://doi.org/10.1016/j.envpol.2019.113006.

Lim, T. and Wang, K., 2022. Comparison of machine learning algorithms for emulation of a gridded hydrological 
model given spatially explicit inputs. Computers & Geosciences, 159, p.105025.

Lindström, G., Johansson, B., Persson, M., Gardelin, M., Bergström, S., 1997. Development and test of the 
distributed HBV-96 hydrological model. J. Hydrol. 20, 272–288. https://doi.org/10.1016/S0022-1694(97)00041-
3.

Liu, T., Wang, F., Michalski, G., Xia, X., Liu, S., 2013. Using 15N, 17O, and 18O To Determine Nitrate Sources in 
the Yellow River, China. Environ. Sci. Technol. 47 (23), 13412–13421. https://doi.org/10.1021/es403357m

Lunn, R.J., Adams, R., Mackay, R., Dunn, S.M., 1996. Development and application of a nitrogen modelling system 
for large catchments. J. Hydrol. 174(3-4), 285-304. https://doi.org/10.1016/0022-1694(95)02758-0.

Lutz, S., Ebeling, P., Musolff, A., Nguyen, T.V., Sarrazin, F., Van Meter, K., Basu, N., Fleckenstein, J., Attinger, S. 
and Kumar, R., 2022. Pulling the rabbit out of the hat: Unravelling hidden nitrogen legacies in catchment-scale 
water quality models. Hydrol. Process. 36(10). https://doi.org/10.1002/hyp.14682.

Maier, H.R. and Dandy, G.C., 1996. The use of artificial neural networks for the prediction of water quality 
parameters. Water resources research, 32(4), pp.1013-1022.

Maier, H.R. and Dandy, G.C., 1999. Empirical comparison of various methods for training feed-Forward neural 
networks for salinity forecasting. Water Resources Research, 35(8), pp.2591-2596.

Manna, F., Murray, S., Abbey, D., Martin, P., Cherry, J. and Parker, B., 2019. Spatial and temporal variability of 
groundwater recharge in a sandstone aquifer in a semiarid region. Hydrology and Earth System Sciences, 23(4), 
pp.2187-2205.

Mariotti, A., 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. 
Nature 303(5919), 685-687. https://doi.org/10.1038/303685a0.

Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A. and Tardieux, P., 1981. Experimental 
determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and 
nitrification processes. Plant and soil, 62, pp.413-430.

Mariotti, A., Landreau, A., Simon, B., 1988. 15N isotope biogeochemistry and natural denitrification process in 
groundwater: application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta. 52(7), 1869-1878. 
https://doi.org/10.1016/0016-7037(88)90010-5.

Marttila, H., Karjalainen, S.M., Kuoppala, M., Nieminen, M.L., Ronkanen, A.K., Kløve, B. and Hellsten, S., 2018. 
Elevated nutrient concentrations in headwaters affected by drained peatland. Science of the total environment, 
643, pp.1304-1313.

https://doi.org/10.1016/j.scitotenv.2018.07.345
https://doi.org/10.1016/j.envpol.2019.113006
https://doi.org/10.1021/es403357m
https://doi.org/10.1016/0022-1694(95)02758-0
https://doi.org/10.1002/hyp.14682
https://doi.org/10.1016/0016-7037(88)90010-5


24

Matiatos, I., 2016. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes 
and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci. Total Environ. 541, 802-
814. https://doi.org/10.1016/j.scitotenv.2015.09.134.

Matiatos, I., Araguás-Araguás, L., Wassenaar, L.I., Monteiro, L.R., Harjung, A., Douence, C., Kralik, M., 2022. 
Nitrate isotopes reveal N-cycled waters in a spring-fed agricultural catchment. Isot. Environ. Health Stud. 1-21. 
https://doi.org/10.1080/10256016.2022.2157412.

Matiatos, I., Varouchakis, E.A., Papadopoulou, M.P., 2019. Performance evaluation of multiple groundwater flow 
and nitrate mass transport numerical models. Environ. Model. Assess. 24, 659-675. 
https://doi.org/10.1007/s10666-019-9653-7.

Matiatos, I., Wassenaar, L.I., Monteiro, L.R., Venkiteswaran, J.J., Gooddy, D.C., Boeckx, P., Sacchi, E., Yue, F.J., 
Michalski, G., Alonso-Hernández, C., Biasi, C., 2021. Global patterns of nitrate isotope composition in rivers and 
adjacent aquifers reveal reactive nitrogen cascading. Commun. Earth Environ. 2(1), 1-10. 
https://doi.org/10.1038/s43247-021-00121-x.

Matiatos, I., Lazogiannis, K., Papadopoulos, A., Skoulikidis, N. Th., Boeckx, P., Dimitriou, E., 2023. Stable isotopes 
reveal organic nitrogen pollution and cycling from point and non-point sources in a heavily cultivated 
(agricultural) Mediterranean river basin. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2023.166455 

Maurer, T., 1997. CATFLOW: A physically based and distributed hydrological model for continuous simulation of 
catchment water dynamics. Institut für Hydrologie und Wasserwirtschaft der Universität Karlsruhe.

Maxwell, R.M., Kollet, S.J., Smith, S.G., Woodward, C.S., Falgout, R.D., Ferguson, I.M., Baldwin, C., Bosl, W.J., 
Hornung, R., Ashby, S., 2014. ParFlow User’s Manual. International Ground Water Modeling Center Report 
GWMI 2010-01, 132p.

Mayer, B., Boyer, E.W., Goodale, C., Jaworski, N.A., Van Breemen, N., Howarth, R.W., Seitzinger, S., Billen, G., 
Lajtha, K., Nadelhoffer, K., Van Dam, D., 2002. Sources of nitrate in rivers draining sixteen watersheds in the 
northeastern US: Isotopic constraints. Biogeochemistry 57(1), 171-197. 
https://doi.org/10.1023/A:1015744002496.

McCarthy, J., 1956. Measures of the value of information. Proceedings of the National Academy of Sciences, 
42(9), pp.654-655.

McCulloch, W.S. and Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of 
mathematical biophysics, 5, pp.115-133.

Mcdonald, M.G. and Harbaugh, A.W., 1988. MODFLOW, A modular three-dimensional finite difference ground-
water flow model. US Geological Survey, open-file report, 83, p.875.

McDonnell, J.J., Beven, K., 2014. Debates—The future of hydrological sciences: A (common) path forward? A call 
to action aimed at understanding velocities, celerities and residence time distributions of the headwater 
hydrograph. Water Resour. Res. 50(6), 5342-5350. https://doi.org/10.1002/2013WR015141.

Mennekes, D., Rinderer, M., Seeger, S. and Orlowski, N., 2021. Ecohydrological travel times derived from in situ 
stable water isotope measurements in trees during a semi-controlled pot experiment. Hydrology and Earth 
System Sciences, 25(8), pp.4513-4530.

Michalski, G., Scott, Z., Kabiling, M., Thiemens, M. H., 2003. First measurements and modeling of Δ17O in 
atmospheric nitrate. Geophys. Res. Lett. 30, 1870. https://doi.org/10.1029/2003GL017015

Moeck, C., Brunner, P. and Hunkeler, D., 2016. The influence of model structure on groundwater recharge rates 
in climate-change impact studies. Hydrogeology journal, 24, pp.1171-1184.

https://doi.org/10.1038/s43247-021-00121-x
https://doi.org/10.1016/j.scitotenv.2023.166455
https://doi.org/10.1023/A:1015744002496
https://doi.org/10.1029/2003GL017015


25

Moeck, C., Hunkeler, D., Brunner, P., 2015. Tutorials as a flexible alternative to GUIs: An example for advanced 
model calibration using Pilot Points. Environ Model Softw. 66, 78-86. 
https://doi.org/10.1016/j.envsoft.2014.12.018.

Moeck, C., Molson, J., Schirmer, M., 2020. Pathline density distributions in a null-space Monte Carlo approach 
to assess groundwater pathways. Groundwater 58(2), 189-207. https://doi.org/10.1111/gwat.12900.

Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck, C.A., Casalicchio, G., Grosse-Wentrup, 
M., Bischl, B., 2020. Pitfalls to avoid when interpreting machine learning models. 
http://eprints.cs.univie.ac.at/6427/.

Montavon, G., Samek, W., Müller, K.R., 2018. Methods for interpreting and understanding deep neural 
networks. Digit. Signal Process. 73, 1-15. https://doi.org/10.1016/j.dsp.2017.10.011.

Mosaffa, H., Sadeghi, M., Mallakpour, I., Jahromi, M.N., Pourghasemi, H.R., 2022. Application of machine 
learning algorithms in hydrology, in: Computers in Earth and Environmental Sciences (pp. 585-591). Elsevier.

Moursi, H., Youssef, M.A. and Chescheir, G.M., 2022. Development and application of DRAINMOD model for 
simulating crop yield and water conservation benefits of drainage water recycling. Agricultural Water 
Management, 266, p.107592.

Muñoz-Carpena, R., Carmona-Cabrero, A., Yu, Z., Fox, G. and Batelaan, O., 2023. Convergence of mechanistic 
modeling and artificial intelligence in hydrologic science and engineering. PLOS Water, 2(8), p.e0000059.

Nearing, G.S., Kratzert, F., Sampson, A.K., Pelissier, C.S., Klotz, D., Frame, J.M., Prieto, C. and Gupta, H.V., 2021. 
What role does hydrological science play in the age of machine learning?. Water Resources Research, 57(3), 
p.e2020WR028091.

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil and Water Assessment Tool (SWAT) Theoretical 
Documentation Version 2009. Texas Water Resources Institute Technical Report 406. Texas A&M University 
System College Station Texas 77843-2118. Available online: https://swat.tamu.edu/media/99192/swat2009-
theory.pdf.

Nelson, D.B., Basler, D. and Kahmen, A., 2021. Precipitation isotope time series predictions from machine 
learning applied in Europe. Proceedings of the National Academy of Sciences, 118(26), p.e2024107118.

Nestler, A., Berglund, M., Accoe, F., Duta, S., Xue, D., Boeckx, P. and Taylor, P., 2011. Isotopes for improved 
management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental 
Science and Pollution Research, 18, pp.519-533.

Nguyen, H.H., Recknagel, F., Meyer, W., Frizenschaf, J., Ying, H. and Gibbs, M.S., 2019. Comparison of the 
alternative models SOURCE and SWAT for predicting catchment streamflow, sediment and nutrient loads under 
the effect of land use changes. Science of the Total Environment, 662, pp.254-265.

Nguyen, T.V., Dietrich, J., Dang, T.D., Tran, D.A., Van Doan, B., Sarrazin, F.J., Abbaspour, K. and Srinivasan, R., 
2022. An interactive graphical interface tool for parameter calibration, sensitivity analysis, uncertainty analysis, 
and visualization for the Soil and Water Assessment Tool. Environ. Model. Softw. 156, 105497. 
https://doi.org/10.1016/j.envsoft.2022.105497.

Nikolenko, O., Jurado, A., Borges, A.V., Knӧller, K. and Brouyѐre, S., 2018. Isotopic composition of nitrogen 
species in groundwater under agricultural areas: a review. Science of the Total Environment, 621, pp.1415-1432.

Nourani, V., Baghanam, A.H., Adamowski, J. and Kisi, O., 2014. Applications of hybrid wavelet–artificial 
intelligence models in hydrology: a review. Journal of Hydrology, 514, pp.358-377.

O'Donnell, B. and Hotchkiss, E.R., 2019. Coupling concentration-and process-discharge relationships integrates 
water chemistry and metabolism in streams. Water Resources Research, 55(12), pp.10179-10190.

https://doi.org/10.1016/j.envsoft.2014.12.018
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://doi.org/10.1016/j.envsoft.2022.105497


26

Orlowski, N., Kraft, P., Pferdmenges, J. and Breuer, L., 2016. Exploring water cycle dynamics by sampling multiple 
stable water isotope pools in a developed landscape in Germany. Hydrology and Earth System Sciences, 20(9), 
pp.3873-3894.

Orth, R., Staudinger, M., Seneviratne, S.I., Seibert, J. and Zappa, M., 2015. Does model performance improve 
with complexity? A case study with three hydrological models. Journal of Hydrology, 523, pp.147-159.

Osenbrück, K., Fiedler, S., Knöller, K., Weise, S.M., Sültenfuß, J., Oster, H. and Strauch, G., 2006. Timescales and 
development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany. 
Water Resources Research, 42(12).

Panagopoulos, Y., Makropoulos, C., Baltas, E., Mimikou, M., 2011. SWAT parameterization for the identification 
of critical diffuse pollution source areas under data limitations. Ecol. Modell. 222(19), 3500-3512. 
https://doi.org/10.1016/j.ecolmodel.2011.08.008.

Panday, S., Huyakorn, P.S., 2004. A fully coupled physically-based spatially-distributed model for evaluating 
surface/subsurface flow. Adv. Water Resour. 27(4), 361-382. https://doi.org/10.1016/j.advwatres.2004.02.016.

Parkhurst, D.L., Kipp, K.L., Charlton, S.R., 2010. PHAST Version 2—A program for simulating groundwater flow, 
solute transport, and multicomponent geochemical reactions. US Geological Survey Techniques and Methods, 
6, p.A35.

Parnell, A.C., Inger, R., Bearhop, S. and Jackson, A.L., 2010. Source partitioning using stable isotopes: coping with 
too much variation. PloS one, 5(3), p.e9672.

Paudel, R., Min, J.H. and Jawitz, J.W., 2010. Management scenario evaluation for a large treatment wetland using 
a spatio-temporal phosphorus transport and cycling model. Ecological Engineering, 36(12), pp.1627-1638.

Peel, M., Delottier, H., Kipfer, R., Hunkeler, D. and Brunner, P., 2023. Exploring the reliability of 222Rn as a tracer 
of groundwater age in alluvial aquifers: Insights from the explicit simulation of variable 222Rn production. Water 
Research, 235, p.119880.

Peña-Arancibia, J.L., Bruijnzeel, L.A., Mulligan, M., Van Dijk, A.I., 2019. Forests as ‘sponges’ and ‘pumps’: 
Assessing the impact of deforestation on dry-season flows across the tropics. J. Hydrol. 574, 946-963. 
https://doi.org/10.1016/j.jhydrol.2019.04.064.

Petersen, R.J., Prinds, C., Iversen, B.V., Engesgaard, P., Jessen, S. and Kjaergaard, C., 2020a. Riparian lowlands in 
clay till landscapes: Part I—Heterogeneity of flow paths and water balances. Water Resources Research, 56(4), 
p.e2019WR025808.

Petersen, R.J., Prinds, C., Jessen, S., Iversen, B.V. and Kjaergaard, C., 2020b. Riparian lowlands in clay till 
landscapes part II: Nitrogen reduction and release along variable flow paths. Water Resources Research, 56(4), 
p.e2019WR025810.

Phillips, D.L. and Gregg, J.W., 2001. Uncertainty in source partitioning using stable isotopes. Oecologia, pp.171-
179.

Phillips, D.L. and Gregg, J.W., 2003. Source partitioning using stable isotopes: coping with too many sources. 
Oecologia, 136, pp.261-269.

Phillips, D.L. and Koch, P.L., 2002. Incorporating concentration dependence in stable isotope mixing models. 
Oecologia, 130, pp.114-125.

Picetti, R., Deeney, M., Pastorino, S., Miller, M.R., Shah, A., Leon, D.A., Dangour, A.D. and Green, R., 2022. Nitrate 
and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. 
Environmental Research, 210, p.112988.

https://doi.org/10.1016/j.jhydrol.2019.04.064


27

Postma, D., Boesen, C., Kristiansen, H. and Larsen, F., 1991. Nitrate reduction in an unconfined sandy aquifer: 
water chemistry, reduction processes, and geochemical modeling. Water resources research, 27(8), pp.2027-
2045.

Postma, D., 1990. Kinetics of nitrate reduction by detrital Fe (II)-silicates. Geochimica et Cosmochimica Acta, 
54(3), pp.903-908.

Quinn, P., 2004. Scale appropriate modelling: representing cause-and-effect relationships in nitrate pollution at 
the catchment scale for the purpose of catchment scale planning. J. Hydrol. 291(3-4), 197-217. 
https://doi.org/10.1016/j.jhydrol.2003.12.040.

Ramón, J., Correa, A., Timbe, E., Mosquera, G.M., Mora, E., Crespo, P., 2021. Do mixing models with different 
input requirement yield similar streamflow source contributions? Case study: A tropical montane catchment. 
Hydrol. Process. 35(6), e14209. https://doi.org/10.1002/hyp.14209.

Razavi, T., Coulibaly, P., 2013. Streamflow prediction in ungauged basins: review of regionalization methods. J. 
Hydrol. Eng. 18(8), 958-975.

Re, V., Kammoun, S., Sacchi, E., Trabelsi, R., Zouari, K., Matiatos, I., Allais, E. and Daniele, S., 2021. A critical 
assessment of widely used techniques for nitrate source apportionment in arid and semi-arid regions. Sci. Total 
Environ. 775, 145688. https://doi.org/10.1016/j.scitotenv.2021.145688.

Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of wetlands: science and applications. CRC press.

Refsgaard, J.C., Storm, B., 1996. Construction, calibration and validation of hydrological models. Distributed 
hydrological modelling, pp.41-54.

Refsgaard, J.C., Thorsen, M., Jensen, J.B., Kleeschulte, S., Hansen, S., 1999. Large scale modelling of groundwater 
contamination from nitrate leaching. J. Hydrol. 221(3-4), 117-140. https://doi.org/10.1016/S0022-
1694(99)00081-5.

Reiche, E.W., 1994. Modelling water and nitrogen dynamics on catchment scale. Ecol. Modell. 75, 371-384. 
https://doi.org/10.1016/0304-3800(94)90033-7.

Reichert, P., 1994. AQUASIM-A tool for simulation and data analysis of aquatic systems. Water Sci. Technol. 
30(2), 21-30. https://doi.org/10.2166/wst.1994.0025.

Rijtema, P.E., Kroes, J.G., 1991. Some results of nitrogen simulations with the model ANIMO. Fertil. Res. 27, 189-
198. https://doi.org/10.1007/BF01051127.

Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., van der Velde, Y., Bertuzzo, E., Botter, G., 
2015. Storage selection functions: A coherent framework for quantifying how catchments store and release 
water and solutes. Water Resour. Res. 51(6), 4840–4847. 
https://doi.org/https://doi.org/10.1002/2015WR017273

Rohe, L., Anderson, T.H., Braker, G., Flessa, H., Giesemann, A., Lewicka-Szczebak, D., Wrage-Mönnig, N. and Well, 
R., 2014. Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification–a pure culture 
study. Rapid Communications in Mass Spectrometry, 28(17), pp.1893-1903.

Romanelli, A., Soto, D.X., Matiatos, I., Martínez, D.E., Esquius, S., 2020. A biological and nitrate isotopic 
assessment framework to understand eutrophication in aquatic ecosystems. Sci. Total Environ. 715, 136909. 
https://doi.org/10.1016/j.scitotenv.2020.136909.

Rosenbom, A.E., Binning, P.J., Aamand, J., Dechesne, A., Smets, B.F. and Johnsen, A.R., 2014. Does microbial 
centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil?. 
Science of the total environment, 472, pp.90-98.

https://doi.org/https://doi.org/10.1002/2015WR017273
https://doi.org/10.1016/j.scitotenv.2020.136909


28

Rosenbom, A.E., Olsen, P., Plauborg, F., Grant, R., Juhler, R.K., Brüsch, W. and Kjær, J., 2015. Pesticide leaching 
through sandy and loamy fields–Long-term lessons learnt from the Danish Pesticide Leaching Assessment 
Programme. Environmental Pollution, 201, pp.75-90.

Rosman, K.J.R., Taylor, P.D.P., 1998. Isotopic compositions of the elements 1997 (Technical Report). Pure Appl. 
Chem. 70(1), 217-235. https://doi.org/10.1351/pac199870010217.

Rozemeijer, J., van der Velde, Y., de Rooij, G., van Geer, F., Broers, H.P. and Bierkens, M., 2010. January. Field 
scale measurements of flow route discharge contributions to a stream in a lowland catchment, in: First 
International Conference on Frontiers in Shallow Subsurface Technology (pp. cp-150). EAGE Publications BV.

Saari M, Rossi P, Postila H, Marttila H. 2020. Predicting iron transport in boreal agriculture-dominated 
catchments under a changing climate. Sci. Total Environ. 714, 136743. 
https://doi.org/10.1016/j.scitotenv.2020.136743.

Sahoo, A. and Ghose, D.K., 2022. Imputation of missing precipitation data using KNN, SOM, RF, and FNN. Soft 
Computing, 26(12), pp.5919-5936.

Sahraei, A., Houska, T. and Breuer, L., 2021. Deep learning for isotope hydrology: The application of long short-
term memory to estimate high temporal resolution of the stable isotope concentrations in stream and 
groundwater. Frontiers in Water, 3, p.740044.

Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., Pradhan, B., 2018. A novel 
machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total 
Environ. 644, 954-962. https://doi.org/10.1016/j.scitotenv.2018.07.054.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.R. eds., 2019. Explainable AI: interpreting, 
explaining and visualizing deep learning (Vol. 11700). Springer Nature.

Scannapieco, D., Naddeo, V., Zarra, T. and Belgiorno, V., 2012. River water quality assessment: A comparison of 
binary-and fuzzy logic-based approaches. Ecological engineering, 47, pp.132-140.

Schilling, O.S., Cook, P.G., Brunner, P., 2019. Beyond classical observations in hydrogeology: The advantages of 
including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in 
groundwater model calibration. Rev. Geophys. 57(1), 146-182. https://doi.org/10.1029/2018RG000619.

Schilling, O.S., Partington, D.J., Doherty, J., Kipfer, R., Hunkeler, D. and Brunner, P., 2022. Buried Paleo-Channel 
Detection With a Groundwater Model, Tracer-Based Observations, and Spatially Varying, Preferred Anisotropy 
Pilot Point Calibration. Geophysical Research Letters, 49(14), p.e2022GL098944.

Schmieder, J., Seeger, S., Weiler, M. and Strasser, U., 2019. ‘Teflon Basin’or Not? A High-Elevation Catchment 
Transit Time Modeling Approach. Hydrology, 6(4), p.92.

Schullehner, J., Hansen, B., Thygesen, M., Pedersen, C. B., Sigsgaard, T., 2018. Nitrate in drinking water and 
colorectal cancer risk: A nationwide population-based cohort study. Int. J. Cancer 143, 73–79. 
https://doi.org/10.1002/ijc.31306.

Sebilo, M., Billen, G., Grably, M., Mariotti, A., 2003. Isotopic composition of nitrate-nitrogen as a marker of 
riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63(1), 35-51. 
https://doi.org/10.1023/A:1023362923881.

Sebilo, M., Billen, G., Mayer, B., Billiou, D., Grably, M., Garnier, J., Mariotti, A., 2006. Assessing nitrification and 
denitrification in the Seine River and estuary using chemical and isotopic techniques. Ecosystems 9(4), 564-577. 
https://doi.org/10.1007/s10021-006-0151-9.

Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G. and Mariotti, A., 2013. Long-term fate of nitrate fertilizer in 
agricultural soils. Proceedings of the National Academy of Sciences, 110(45), pp.18185-18189.

https://doi.org/10.1016/j.scitotenv.2020.136743
https://doi.org/10.1029/2018RG000619
https://doi.org/10.1007/s10021-006-0151-9


29

Segura, C., James, A.L., Lazzati, D. and Roulet, N.T., 2012. Scaling relationships for event water contributions and 
transit times in small-forested catchments in Eastern Quebec. Water Resources Research, 48(7).

Seidenfaden, I.K., Sonnenborg, T.O., Børgesen, C.D., Trolle, D., Olesen, J.E. and Refsgaard, J.C., 2022. Impacts of 
land use, climate change and hydrological model structure on nitrate fluxes: Magnitudes and uncertainties. 
Science of The Total Environment, 830, p.154671.

Semaoune, P., Sebilo, M., Templier, J., Derenne, S., 2012. Is there any isotopic fractionation of nitrate associated 
with diffusion and advection? Environ. Chem. 9(2), 158-162. https://doi.org/10.1071/EN11143.

Shaffer, M.J., Halvorson, A.D., Pierce, F.J., 1991. Nitrate leaching and economic analysis package (NLEAP): model 
description and application. Managing nitrogen for groundwater quality and farm profitability, pp.285-322.

Šimůnek, J., Brunetti, G., Jacques, D., Šejna, M. and van Genuchten, M.T., 2023. Recent Developments and 
Applications of the HYDRUS Software Packages. Preliminary Program, p.46.

Šimůnek, J.I.R.K.A., Van Genuchten, M.T., Šejna, M., 2006. The HYDRUS software package for simulating two-
and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical 
manual, version, 1, p.241.

Singh, K.P., Gupta, S., 2012. Artificial intelligence based modeling for predicting the disinfection by-products in 
water. Chemom. Intell. Lab. Syst. 114, 122-131. https://doi.org/10.1016/j.chemolab.2012.03.014.

Skaggs, R. W., 1978. A water management model for shallow water table soils. Technical Report No. 134. Raleigh, 
N.C.:North Carolina State University, Water Resources Research Institute.

Smith, A., Welch, C., Stadnyk, T., 2016. Assessment of a lumped coupled flow-isotope model in data scarce Boreal 
catchments. Hydrol. Process. 30(21), 3871-3884. https://doi.org/10.1002/hyp.10835.

Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, 
S., Jenkinson, D.S., Jensen, L.S., 1997. A comparison of the performance of nine soil organic matter models using 
datasets from seven long-term experiments. Geoderma 81(1-2), 153-225. https://doi.org/10.1016/S0016-
7061(97)00087-6.

Snider, D.M., Schiff, S.L. and Spoelstra, J., 2009. 15N/14N and 18O/16O stable isotope ratios of nitrous oxide 
produced during denitrification in temperate forest soils. Geochimica et Cosmochimica Acta, 73(4), pp.877-888.

Son, N.T., Le Huong, H., Loc, N.D., Phuong, T.T., 2022. Application of SWAT model to assess land use change and 
climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam. Environ. Dev. 
Sustain. 24(3), 3091-3109. https://doi.org/10.1007/s10668-021-01295-2.

Sophocleous, M.A., Koelliker, J.K., Govindaraju, R.S., Birdie, T., Ramireddygari, S.R., Perkins, S.P., 1999. 
Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek basin in 
south-central Kansas. J. Hydrol. 214, 179–196. https://doi.org/10.1016/S0022-1694(98)00289-3.

Sordo-Ward, Á., Granados, I., Martín-Carrasco, F., Garrote, L., 2016. Impact of hydrological uncertainty on water 
management decisions. Water Resour. Manag. 30, 5535-5551. https://doi.org/10.1007/s11269-016-1505-5.

Sreekanth, J. and Datta, B., 2011. Wavelet and cross-wavelet analysis of groundwater quality signals of saltwater 
intruded coastal aquifers. In World Environmental and Water Resources Congress 2011: Bearing Knowledge for 
Sustainability (pp. 846-853).

Srivastava, P.K., Han, D., Ramirez, M.R. and Islam, T., 2013. Machine learning techniques for downscaling SMOS 
satellite soil moisture using MODIS land surface temperature for hydrological application. Water resources 
management, 27, pp.3127-3144.



30

Stadnyk, T.A., Delavau, C., Kouwen, N. and Edwards, T.W.D., 2013. Towards hydrological model calibration and 
validation: Simulation of stable water isotopes using the isoWATFLOOD model. Hydrol. Process. 27(25), 3791-
3810. https://doi.org/10.1002/hyp.9695.

Stamenković, L.J., Mrazovac Kurilić, S. and Presburger Ulniković, V., 2020. Prediction of nitrate concentration in 
Danube River water by using artificial neural networks. Water Supply, 20(6), pp.2119-2132.

Steiness, M., Jessen, S., van’t Veen, S.G., Kofod, T., Højberg, A.L., Engesgaard, P., 2021. Nitrogen-Loads to 
Streams: Importance of Bypass Flow and Nitrate Removal Processes. J. Geophys. Res. Biogeosci. 126(5), 
e2020JG006111. https://doi.org/10.1029/2020JG006111.

Stock, B.C., Jackson, A.L., Ward, E.J., Parnell, A.C., Phillips, D.L. and Semmens, B.X., 2018. Analyzing mixing 
systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, p.e5096.

Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, B., Cornelissen, T., Vereecken, H. 2016. Tracer sampling 
frequency influences estimates of young water fraction and streamwater transit time distribution. J. Hydrol. 541, 
952–964. https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.08.007

Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, B., Weiler, M., & Vereecken, H., 2014. Seasonal soil 
moisture patterns: Controlling transit time distributions in a forested headwater catchment. Water Resour. Res. 
50(6), 5270-5289. https://doi.org/10.1002/2013WR014815.

Stockinger, M.P., Bogena, H.R., Lücke, A., Stumpp, C. and Vereecken, H., 2019. Time variability and uncertainty 
in the fraction of young water in a small headwater catchment. Hydrology and earth system sciences, 23(10), 
pp.4333-4347.

Stoffer, R., Van Leeuwen, C.M., Podareanu, D., Codreanu, V., Veerman, M.A., Janssens, M., Hartogensis, O.K. and 
Van Heerwaarden, C.C., 2021. Development of a large-eddy simulation subgrid model based on artificial neural 
networks: a case study of turbulent channel flow. Geoscientific Model Development, 14(6), pp.3769-3788.

Styczen, M., Storm, B., 1993a. Modeling of n-movements on catchment scale – a tool for analysis and decision-
making. 1. Model description. Fertil. Res. 36, 1–6.  https://doi.org/10.1007/BF00749942.

Styczen, M., Storm, B., 1993b. Modeling of n-movements on catchment scale – a tool for analysis and decision-
making. 2. A case-study. Fertil. Res.  36, 7–17. https://doi.org/10.1007/BF00749943.

Suárez, S.P., Peiffer, S. and Gebauer, G., 2019. Origin and fate of nitrate runoff in an agricultural catchment: 
Haean, South Korea–Comparison of two extremely different monsoon seasons. Science of The Total 
Environment, 648, pp.66-79.

Taillardat, P., Ziegler, A.D., Friess, D.A., Widory, D., David, F., Ohte, N., Nakamura, T., Evaristo, J., Thanh-Nho, N., 
Van Vinh, T., Marchand, C., 2019. Assessing nutrient dynamics in mangrove porewater and adjacent tidal creek 
using nitrate dual-stable isotopes: A new approach to challenge the Outwelling Hypothesis? Mar. Chem. 214. 
https://doi.org/10.1016/j.marchem.2019.103662.

Tanner, C.C., Kadlec, R.H., 2013. Influence of hydrological regime on wetland attenuation of diffuse agricultural 
nitrate losses. Ecol. Eng. 56, 79-88. https://doi.org/10.1016/j.ecoleng.2012.08.043.

Terzer-Wassmuth, S., Wassenaar, L.I., Araguás-Araguás, L.J. and Stumpp, C., 2023. Balancing precision and 
throughput of δ17O and Δ’17O analysis of natural waters by Cavity Ringdown Spectroscopy. MethodsX, 10, 
p.102150.

Tetzlaff, D., Piovano, T., Ala-Aho, P., Smith, A., Carey, S.K., Marsh, P., Wookey, P.A., Street, L.E. and Soulsby, C., 
2018. Using stable isotopes to estimate travel times in a data-sparse Arctic catchment: Challenges and possible 
solutions. Hydrological Processes, 32(12), pp.1936-1952.

https://doi.org/10.1002/hyp.9695
https://doi.org/https:/doi.org/10.1016/j.jhydrol.2016.08.007
https://doi.org/10.1007/BF00749943
https://doi.org/10.1016/j.ecoleng.2012.08.043


31

Therrien, R., McLaren, R.G., Sudicky, E.A., Panday, S.M., 2006. HydroGeoSphere, Groundwater Simul. Group, 
Univ. of Waterloo, Waterloo, Ont., Canada.

Tiyasha, T., Tung, T.M., Bhagat, S.K., Tan, M.L., Jawad, A.H., Mohtar, W.H.M.W. and Yaseen, Z.M., 2021. 
Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: 
Development of hybrid tree-based artificial intelligence models. Marine pollution bulletin, 170, p.112639.

Torrentó, C., Cama, J., Urmeneta, J., Otero, N. and Soler, A., 2010. Denitrification of groundwater with pyrite and 
Thiobacillus denitrificans. Chemical Geology, 278(1-2), pp.80-91.

Torres-Martínez, J.A., Mora, A., Mahlknecht, J., Daesslé, L.W., Cervantes-Avilés, P.A., Ledesma-Ruiz, R., 2021. 
Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural 
area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model. Environ. Pollut. 269, 
115445. https://doi.org/10.1016/j.envpol.2020.115445.

Townsend-Small, A., McCarthy, M.J., Brandes, J.A., Yang, L., Zhang, L., Gardner, W.S., 2007. Stable isotopic 
composition of nitrate in Lake Taihu, China, and major inflow rivers. In Eutrophication of Shallow Lakes with 
Special Reference to Lake Taihu, China (pp. 135-140). Springer, Dordrecht.

Trudell, M.R., Gillham, R.W. and Cherry, J.A., 1986. An in-situ study of the occurrence and rate of denitrification 
in a shallow unconfined sand aquifer. Journal of Hydrology, 83(3-4), pp.251-268.

Tutmez, B., Hatipoglu, Z. and Kaymak, U., 2006. Modelling electrical conductivity of groundwater using an 
adaptive neuro-fuzzy inference system. Computers & geosciences, 32(4), pp.421-433.

Van Meter, K.J., Basu, N.B., Veenstra, J.J. and Burras, C.L., 2016. The nitrogen legacy: emerging evidence of 
nitrogen accumulation in anthropogenic landscapes. Environmental Research Letters, 11(3), p.035014.

Vanclooster, M., Mallants, D., Vanderborght, J., Diels, J., Van Orshoven, J., Feyen, J., 1995. Monitoring solute 
transport in a multi-layered sandy lysimeter using time domain reflectometry. Soil Sci Soc Am J. 59(2), 337-344. 
https://doi.org/10.2136/sssaj1995.03615995005900020010x.

Vapnik, V., 1998. The support vector method of function estimation. Nonlinear modeling: Advanced black-box 
techniques, pp.55-85.

Vero, S.E., Basu, N.B., Van Meter, K., Richards, K.G., Mellander, P.E., Healy, M.G. and Fenton, O., 2018. The 
environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeology 
Journal, 26(1), pp.7-22.

Vero, S.E., Ibrahim, T.G., Creamer, R.E., Grant, J., Healy, M.G., Henry, T., Kramers, G., Richards, K.G. and Fenton, 
O., 2014. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag 
estimates. Journal of Contaminant Hydrology, 170, pp.53-67.

von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., Kirchner, J. W., 2018. Sensitivity of young water fractions to 
hydro-climatic forcing and landscape properties across 22 Swiss catchments. Hydrol Earth Syst Sci. 22(7), 3841-
3861. https://doi.org/10.5194/hess-22-3841-2018.

Voss, M., Deutsch, B., Elmgren, R., Humborg, C., Kuuppo, P., Pastuszak, M., Rolff, C. and Schulte, U., 2006. Source 
identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences, 3(4), pp.663-
676.

Vystavna, Y., Harjung, A., Monteiro, L.R., Matiatos, I. and Wassenaar, L.I., 2021. Stable isotopes in global lakes 
integrate catchment and climatic controls on evaporation. Nat. Commun. 12(1), 7224. 
https://doi.org/10.1038/s41467-021-27569-x.

Wagenet, R.J., Hutson, J.L., 1989. LEACHM, a process-based model of water and solute movement, 
transformations, plant uptake and chemical reactions in the unsaturated zone. Continuum, 2.

https://doi.org/10.1016/j.envpol.2020.115445
https://doi.org/10.5194/hess-22-3841-2018
https://doi.org/10.5194/hess-22-3841-2018


32

Wang, L., Butcher, A.S., Stuart, M.E., Gooddy, D.C., Bloomfield, J.P., 2013. The nitrate time bomb: a numerical 
way to investigate nitrate storage and lag time in the unsaturated zone. Environ. Geochem. Health 35, 667-681. 
https://doi.org/10.1007/s10653-013-9550-y.

Wang, X., Wu, X., Chen, M., Cheng, H., Chen, N., Yang, W. and Cai, Y., 2021a. Isotopic constraint on the sources 
and biogeochemical cycling of nitrate in the jiulong river estuary. Journal of Geophysical Research: 
Biogeosciences, 126(3), p.e2020JG005850.

Wang, R., Kim, J.H. and Li, M.H., 2021b. Predicting stream water quality under different urban development 
pattern scenarios with an interpretable machine learning approach. Sci. Total Environ. 761, 144057. 
https://doi.org/10.1016/j.scitotenv.2020.144057 

Wang, X., Fu, L. and He, C., 2011. Applying support vector regression to water quality modelling by remote 
sensing data. International journal of remote sensing, 32(23), pp.8615-8627.

Ward, M.H., Jones, R.R., Brender, J.D., De Kok, T.M., Weyer, P.J., Nolan, B.T., Villanueva, C.M. and Van Breda, 
S.G., 2018. Drinking water nitrate and human health: an updated review. International journal of environmental 
research and public health, 15(7), p.1557.

Wassenaar, L.I., 1995. Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes 
of15N and18O in NO3−. Appl. Geochemistry 10(4), 391-405. https://doi.org/10.1016/0883-2927(95)00013-A.

Weiler, M., McGlynn, B.L., McGuire, K.J. and McDonnell, J.J., 2003. How does rainfall become runoff? A 
combined tracer and runoff transfer function approach. Water Resour. Res. 39(11). 
https://doi.org/10.1029/2003WR002331.

Whitehead, P.G., Wilson, E.J., Butterfield, D., 1998. A semidistributed Integrated Nitrogen model for multiple 
source assessment in Catchments (INCA). Part I – model structure and process equations. Sci. Total Environ.  210, 
547–558. https://doi.org/10.1016/S0048-9697(98)00037-0.

Wolf, J., Beusen, A.H.W., Groenendijk, P., Kroon, T., Rotter, R., van Zeijts, H., 2003. The integrated modeling 
system STONE for calculating nutrient emissions from agriculture in the Netherlands. Environ. Model. Softw. 18, 
597–617. https://doi.org/10.1016/S1364-8152(03)00036-7.

World Health Organization-WHO, 2004. Guidelines for drinking-water quality (Vol. 1). World Health 
Organization.

Wu, Y., Ju, H., Jiang, H., Zhang, G., Qi, P. and Li, Z., 2023. Identifying nitrate sources and transformations in an 
agricultural watershed in Northeast China: Insights from multiple isotopes. Journal of Environmental 
Management, 340, p.118023.

Xia, Z., Surma, J. and Winnick, M.J., 2023. The response and sensitivity of deuterium and 17O excess parameters 
in precipitation to hydroclimate processes. Earth-Science Reviews, p.104432.

Xu, S., Kang, P. and Sun, Y.A., 2016. A stable isotope approach and its application for identifying nitrate source 
and transformation process in water. Environmental Science and Pollution Research, 23, pp.1133-1148.

Xu, T., Liang, F., 2021. Machine learning for hydrologic sciences: An introductory overview. Wiley 
Interdisciplinary Reviews: Water, 8(5), p.e1533.

Xue, D., De Baets, B., Van Cleemput, O., Hennessy, C., Berglund, M. and Boeckx, P., 2012. Use of a Bayesian 
isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water. 
Environmental Pollution, 161, pp.43-49.

Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M. and Boeckx, P., 
2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in 
surface-and groundwater. Water research, 43(5), pp.1159-1170.

https://doi.org/10.1016/j.scitotenv.2020.144057
https://doi.org/10.1029/2003WR002331


33

Xue, D., De Baets, B., Botte, J., Vermeulen, J., Van Cleemput, O. and Boeckx, P., 2010. Comparison of the silver 
nitrate and bacterial denitrification methods for the determination of nitrogen and oxygen isotope ratios of 
nitrate in surface water. Rapid Communications in Mass Spectrometry, 24(6), pp.833-840.

Yang, J., Heidbüchel, I., Musolff, A., Xie, Y., Lu, C., & Fleckenstein, J. H., 2021. Using nitrate as a tracer to constrain 
age selection preferences in catchments with strong seasonality. Journal of Hydrology, 603, 126889. 
https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126889.

Yang, J., Wang, Q., Heidbüchel, I., Lu, C., Xie, Y., Musolff, A., Fleckenstein, J.H., 2022. Effect of topographic slope 
on the export of nitrate in humid catchments: a 3D model study. Hydrol Earth Syst Sci. 26(19), 5051-5068. 
https://doi.org/10.5194/hess-26-5051-2022.

Yaseen, Z.M., Ehteram, M., Sharafati, A., Shahid, S., Al-Ansari, N. and El-Shafie, A., 2018. The integration of 
nature-inspired algorithms with least square support vector regression models: application to modeling river 
dissolved oxygen concentration. Water, 10(9), p.1124.

Yuan, B.O., Guo, M., Zhou, X., Li, M. and Xie, S., 2023. Defining the sources and the fate of nitrate by using dual 
isotopes and a Bayesian isotope mixing model: Water–nitrate management in cascade dams of Lancang river. 
Science of The Total Environment, p.163995.

Yue, F.J., Li, S.L., Liu, C.Q., Zhao, Z.Q. and Ding, H., 2017. Tracing nitrate sources with dual isotopes and long term 
monitoring of nitrogen species in the Yellow River, China. Scientific reports, 7(1), p.8537.

Zaherpour, J., Gosling, S.N., Mount, N., Schmied, H.M., Veldkamp, T.I., Dankers, R., Eisner, S., Gerten, D., 
Gudmundsson, L., Haddeland, I. and Hanasaki, N., 2018. Worldwide evaluation of mean and extreme runoff from 
six global-scale hydrological models that account for human impacts. Environ. Res. Lett. 13, 065015, 
https://doi.org/10.1088/1748-9326/aac547.

Zang, Y., Hou, X., Li, Z., Li, P., Sun, Y., Yu, B. and Li, M., 2022. Quantify the effects of groundwater level recovery 
on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater 
coupled system. Water Res., 226, 119213. https://doi.org/10.1016/j.watres.2022.119213.

Zhang, H., Wang, B., Li Liu, D., Zhang, M., Leslie, L.M., Yu, Q., 2020a. Using an improved SWAT model to simulate 
hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol.  585, 
124822. https://doi.org/10.1016/j.jhydrol.2020.124822.

Zhang, J., Petersen, S.D., Radivojevic, T., Ramirez, A., Pérez-Manríquez, A., Abeliuk, E., Sánchez, B.J., Costello, Z., 
Chen, Y., Fero, M.J. and Martin, H.G., 2020b. Combining mechanistic and machine learning models for predictive 
engineering and optimization of tryptophan metabolism. Nature communications, 11(1), p.4880.

Zhang, Y., Xia, J., Chen, J., Zhang, M., 2011. Water quantity and quality optimization modeling of dams operation 
based on SWAT in Wenyu River Catchment, China. Environ. Monit. Assess. 173, 409-430. 
https://doi.org/10.1007/s10661-010-1396-5.

Zhang, Y.C., Prommer, H., Broers, H.P., Slomp, C.P., Greskowiak, J., Van Der Grift, B. and Van Cappellen, P., 2013. 
Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic 
aquifer. Environmental science & technology, 47(18), pp.10415-10422.

Zhao, Y., Taylor, J.S. and Chellam, S., 2005. Predicting RO/NF water quality by modified solution diffusion model 
and artificial neural networks. Journal of membrane science, 263(1-2), pp.38-46.

Zheng, C., Wang, P.P., 1999. MT3DMS: a modular three-dimensional multispecies transport model for simulation 
of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and 
user’s guide SERDP-99-1. US Army Corps of Engineers, Washington, DC.

https://doi.org/10.5194/hess-26-5051-2022
https://doi.org/10.1088/1748-9326/aac547
https://doi.org/10.1007/s10661-010-1396-5


34

Zhou, S., Borjigin, S., Riya, S., Terada, A., Hosomi, M., 2014. The relationship between anammox and 
denitrification in the sediment of an inland river. Sci. Total Environ.  490, 1029-1036. 
https://doi.org/10.1016/j.scitotenv.2014.05.096.

Zhou, T., Šimůnek, J. and Braud, I., 2021. Adapting HYDRUS-1D to simulate the transport of soil water isotopes 
with evaporation fractionation. Environmental Modelling & Software, 143, p.105118.

Figure captions

Fig. 1. Conceptual overview of nitrate dynamics in a water catchment, with potentially large spatial and temporal 
variations. The white arrows indicate different pathways for pollution to enter into surface waters, including 
emissions (1) from beneath the surface; (2) from forested areas, agricultural and urban sources; and (3) through 
atmospheric deposition (note that this is an illustrative selection, not an exhaustive list of possible nitrate 
sources). Further in-stream biogeochemical transformations (e.g., nitrification) and variations in the water flow 
itself (red arrows) affect the nitrate levels along the stream. Nitrate isotopes (δ15N, δ17O, δ18O) are sensitive 
to the different pollution sources and cycling histories and can, possibly combined with water isotopes, provide 
additional constraints for models.

Figure 2. Expected ranges of values of δ15N and δ18O of nitrate from various N sources. The arrows show 
indicative trajectories resulting from the denitrification of nitrate (modified from Kendall et al., 2007).

Figure 3. Examples of water quality models with applications for nutrients transport. SW: Surface water, S: Soil, 
GW: Groundwater, UZ: Unsaturated zone, SZ: Saturated zone.

Figure 4. Model limitations and perspectives of combining stable isotopes with modeling techniques.
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Highlights

 Catchment-scale water quality models and nitrate isotope techniques are revised.

 Challenges and limitations in modeling of nitrate transport are discussed.

 Ways and ideas to combine water quality models and nitrate isotopes are presented.

 Incorporation of AI models in water quality studies is suggested.
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