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Abstract
Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiver-
sity and providing essential services to societies. Despite being the largest unfrozen 
freshwater resource, in a period of depletion by extraction and pollution, groundwa-
ter environments have been repeatedly overlooked in global biodiversity conserva-
tion agendas. Disregarding the importance of groundwater as an ecosystem ignores 
its critical role in preserving surface biomes. To foster timely global conservation of 
groundwater, we propose elevating the concept of keystone species into the realm of 
ecosystems, claiming groundwater as a keystone ecosystem that influences the integ-
rity of many dependent ecosystems. Our global analysis shows that over half of land 
surface	areas	(52.6%)	has	a	medium-to-high	interaction	with	groundwater,	reaching	
up	to	74.9%	when	deserts	and	high	mountains	are	excluded.	We	postulate	that	the	
intrinsic transboundary features of groundwater are critical for shifting perspectives 
towards more holistic approaches in aquatic ecology and beyond. Furthermore, we 

https://doi.org/10.1111/gcb.17066
www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0001-6535-764X
https://orcid.org/0000-0002-4471-9055
https://orcid.org/0000-0002-4831-6958
https://orcid.org/0000-0001-7582-3966
https://orcid.org/0000-0001-9283-2821
https://orcid.org/0000-0002-8767-3894
https://orcid.org/0000-0001-9195-8115
https://orcid.org/0000-0003-1982-8724
https://orcid.org/0000-0002-9143-7480
https://orcid.org/0000-0002-8602-581X
https://orcid.org/0000-0003-2962-0863
https://orcid.org/0000-0003-2106-5543
https://orcid.org/0000-0003-4376-787X
https://orcid.org/0000-0003-4983-5650
https://orcid.org/0000-0001-8037-4464
https://orcid.org/0000-0003-0073-3688
https://orcid.org/0000-0001-6353-8797
https://orcid.org/0000-0001-8398-3556
https://orcid.org/0000-0003-4140-336X
https://orcid.org/0000-0002-9515-4832
https://orcid.org/0000-0002-8383-8778
https://orcid.org/0000-0002-6749-4338
https://orcid.org/0000-0002-0353-8389
https://orcid.org/0000-0001-8119-9960
https://orcid.org/0000-0003-4666-5924
https://orcid.org/0000-0002-7843-8438
https://orcid.org/0000-0002-8866-9053
https://orcid.org/0000-0002-3131-7049
https://orcid.org/0000-0002-6448-2710
https://orcid.org/0000-0002-4947-9353
https://orcid.org/0000-0002-1864-5144
https://orcid.org/0000-0002-8998-9323
https://orcid.org/0000-0003-3288-4405
https://orcid.org/0000-0002-4228-2750
https://orcid.org/0000-0003-4731-9804
https://orcid.org/0000-0002-0349-3803
https://orcid.org/0000-0002-0610-261X
https://orcid.org/0000-0002-8947-8996
https://orcid.org/0000-0002-4756-7034
https://orcid.org/0000-0002-1252-0711
https://orcid.org/0000-0003-1766-0761
https://orcid.org/0000-0003-0051-6480
https://orcid.org/0000-0002-1658-9927
https://orcid.org/0000-0002-3750-868X
https://orcid.org/0000-0002-0068-6693
https://orcid.org/0000-0003-1323-9937
https://orcid.org/0000-0002-6685-0089
https://orcid.org/0000-0003-4011-6457
https://orcid.org/0000-0002-3190-5094
https://orcid.org/0000-0003-4424-3568
https://orcid.org/0000-0001-5699-8584
http://creativecommons.org/licenses/by-nc/4.0/
mailto:mattia.sacco@curtin.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.17066&domain=pdf&date_stamp=2023-12-12


2 of 20  |     SACCÒ et al.

1  |  INTRODUC TION

Groundwater is the most extensive unfrozen continental reserve 
of freshwater on Earth (Ferguson et al., 2021; Gleeson et al., 2016). 
From deep karstic aquifers to shallow alluvial sediments, ground-
water is globally ubiquitous and functionally connected to surficial 
aquatic and terrestrial groundwater-dependent ecosystems (GDEs). 

Groundwater interacts with the five global surface aquatic biomes 
(Figure 1) and, together with oceans and the atmosphere, is the back-
bone of the global water cycle (Scanlon et al., 2023). While often ex-
clusively regarded as an economic resource, providing drinking water 
and	water	for	irrigation	and	industrial	uses	(United	Nations,	2022), 
groundwater is also an ecosystem. It hosts a vast diversity of mi-
crobial and metazoan species sustaining essential functions and 

propose eight key themes to develop a science-policy integrated groundwater con-
servation agenda. Given ecosystems above and below the ground intersect at many 
levels, considering groundwater as an essential component of planetary health is piv-
otal to reduce biodiversity loss and buffer against climate change.

K E Y W O R D S
biodiversity, biomes, climate change, conservation, ecology, ecosystems, groundwater-
dependent ecosystem, subterranean, water cycle

F I G U R E  1 Schematic	representation	of	interactions	and	functional	links	of	groundwater	ecosystems	(in	dark	blue)	with	the	five	unfrozen	
surface water biomes (marine and freshwater) composing the global water cycle (in light blue: (a) coastal waters, (b) oceans, (c) estuaries,  
(d) rivers and (e) lakes). See Supporting Information Section 2 for a detailed description of the ecological and hydrological connections 
between them. For conciseness, anthropogenic impacts are not illustrated; gaps between groundwater environments and the five unfrozen 
surface water biomes have been added for illustrative purposes.
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processes (Canedoli et al., 2022; Griebler & Avramov, 2015), many 
of which are endemic and highly specialized to a life in permanent 
darkness (Howarth & Moldovan, 2018). Altogether, these special-
ized organisms account for a unique share of the global taxonomic, 
phylogenetic and functional diversity (Malard et al., 2023), with re-
cent	research	estimating	that	more	than	25,000	aquatic	metazoan	
species exist in freshwater and saline groundwaters worldwide 
(Martinez et al., 2018).

The groundwater ecosystem is facing mounting anthropogenic 
pressure (Castaño-Sánchez et al., 2020; Mammola et al., 2019; 
Vaccarelli et al., 2023). Water depletion driven by urbanization, 
industry, agriculture and exacerbated by climate change, has been 
documented on both regional and global scales (Wada et al., 2010). 
According	to	estimations,	nearly	50%	of	the	world's	urban	popu-
lation	depends	on	groundwater	resources	(United	Nations,	2022), 
with	the	human	demand	currently	being	about	3.5	times	the	actual	
volume of aquifers (Gleeson et al., 2012). This situation is likely 
to further deteriorate: as the intensification of drought and flood 
events induced by climate and land use change increases, the de-
mand and dependence on groundwater for human consumption, 
agricultural irrigation and environmental water needs will also es-
calate (Condon et al., 2020; Wu, Lo, et al., 2020). Furthermore, 
salinization and contamination of groundwaters by persistent or-
ganic pollutants such as nitrate, heavy metals, oil and microplas-
tics is a major threat to diverse subterranean ecosystems and, in 
turn, to the integrity of the global water cycle (Castaño-Sánchez 
et al., 2020). Subterranean waters are often old: once meteoric 
waters enter subterranean systems, it may take months, years and 
sometimes millennia before they resurface (Jasechko et al., 2014). 
Hence, there is often a generational lag between contamination 
event and effect, and even major conservation efforts might take 
an epoch before these ecosystems recover. Ultimately, we risk 
compromising the insurance policy of life on Earth: the largest 
body of liquid freshwater.

Despite growing concerns over global groundwater depletion 
and degradation, and the feedback effect on diverse surface eco-
systems, subterranean ecosystems remain the dark exotic siblings 
of surface water bodies when it comes to conservation (Griebler 
et al., 2023). Indeed, groundwaters have so far been largely over-
looked in global conservation policies, and biodiversity and climate 
change agendas for water resources (Fišer et al., 2022; Sánchez-
Fernández et al., 2021; Vaccarelli et al., 2023; Wynne et al., 2021). 
For	example,	 as	many	as	85%	of	protected	areas	with	GDEs	have	
groundwater sheds (or catchments) that are unprotected (Huggins 
et al., 2023). Foremost, this is because of the still incomplete knowl-
edge about the spatial distribution, biodiversity, vulnerability and 
biochemical processes and services of groundwater ecosystems 
(Gerovasileiou & Bianchi, 2021; Mammola et al., 2022; Wynne 
et al., 2021). While divers can physically explore submerged caves 
and cenotes, the vast majority of subterranean water bodies are in-
accessible to humans unless by indirect means (Ficetola et al., 2019; 
Navarro-Barranco	et	al.,	2023; Saccò, Blyth, Douglas, et al., 2022). 
Indeed, access to groundwater organisms is often restricted to 

caves, wells and springs that serve as windows to the subterranean 
world (Malard et al., 2023). The real extent of groundwater ecosys-
tems is therefore roughly estimated (between 22.6 and 23.6 million 
km3	in	the	upper	2 km	of	continental	crust,	see	Ferguson	et	al.	(2021) 
and Gleeson et al. (2016)) and we have only a partial understanding 
of their three-dimensionality and verticality—that is, structural di-
versity (Fei et al., 2023). Furthermore, as the adage ‘out of sight, out of 
mind’ goes, there is generally poor awareness about the importance 
of the groundwater biodiversity and ecosystem services across pol-
icymakers, stakeholders and the general public alike (Supporting 
Information Section 1). This lack of awareness reflects the conser-
vation status of groundwaters: in many areas of the world, ground-
water ecosystem protection is confined to aquifers with economic 
value or the unplanned overlap between valuable groundwater 
ecosystems and protected areas established for surface ecosystems 
(Giakoumi et al., 2013; Sánchez-Fernández et al., 2021).

As a result, a global approach to policy that incorporates the 
value of groundwater ecosystems and their services is required ur-
gently. With this in mind, we propose the application of the keystone 
ecosystem concept to groundwater, as this approach has proven to 
be extremely valuable in nature conservation (Tews et al., 2004). 
By mapping predicted groundwater biodiversity and its overlap 
with surface biodiversity at global scale, we provide both concep-
tual and empirical evidence that this focus is scientifically sound, 
timely and beneficial for the broader context of groundwater con-
servation. Following the GDEs categorization proposed by Eamus 
and Froend (2006), we focus on the ecological and functional links 
between groundwater ecosystems (e.g. aquifers and caves where 
aquatic subterranean biota reside; GDE class I) and GDEs requiring 
the surface expression of groundwater (e.g. wetlands and rivers; 
GDE class II) or GDEs dependent on groundwater availability for 
their biodiversity, growth and productivity (e.g. forests, GDE class 
III).

With the goal of taking a step further towards inter-realm ap-
proaches, we also highlight eight directions—spanning from bio-
monitoring to transboundary policies—to advance conservation of 
groundwater and groundwater-dependent ecosystems over two 
interlinked axes of science and policy. A much stronger focus on 
groundwater conservation is needed in the face of accelerating 
global climate change and uncontrolled biodiversity loss, and we 
advocate that such a change in perspective and management strate-
gies will consistently increase the efficacy of our global conservation 
strategies.

2  |  CURRENT CONSERVATION EFFORTS 
OF GROUNDWATER ECOSYSTEMS: 
THE CHALLENGE OF PROTEC TING THE 
‘UNKNOWN’

Comprehensive protection of groundwaters, whether direct or in-
direct via conservation of GDEs, is lacking or not implemented in 
most regions (Boulton et al., 2023; Famiglietti, 2014). Globally, there 
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are only a few examples of direct conservation measures for sub-
terranean habitats or groundwater species (Boulton et al., 2023). 
Global treaties on biodiversity or conservation frequently fail to rec-
ognize groundwaters (Iannella et al., 2021) or are hindered by the 
limited taxonomic description of most groundwater biota (Boulton 
et al., 2023). The application of direct conservation measures is 
complicated by inconsistencies between conservation and natural 
resource legislation (Devitt et al., 2019) and often the boundaries 
of aquifers transcend those of jurisdictions or surface catchments 
that are the typical focus of land and water management (Huggins 
et al., 2023).

Until recently, direct protection and conservation measures for 
groundwater ecosystems have focused on protecting rare, iconic 
species or habitats (Boulton et al., 2023; Griebler et al., 2023; 
Mammola et al., 2022; Moldovan, 2019), being generally informed 
by habitat mapping (Cornu et al., 2013) and species-occurrence da-
tabases (Zagmajster et al., 2014). This focus has enabled the con-
servation of globally significant areas (Devitt et al., 2019; Iannella 
et al., 2020), but is ineffective in areas where the knowledge of 
habitats is limited and biota are unknown or undescribed (Mammola 
et al., 2019; Raghavan et al., 2021). Phylogenetic or functional di-
versity can be used to prioritize conservation sites when taxonomic 
information is lacking (Asmyhr et al., 2014); conservation bioge-
ography and species distribution modelling approaches also have 
potential as management tools (Mammola & Leroy, 2018), but are 
challenged by a lack of robust theoretical models to explain the dis-
tribution of biota at relevant spatial and temporal scales (Boulton 
et al., 2023) and the high endemism typical of groundwater fauna 
(Mammola & Leroy, 2018).

The sustainable management of groundwater resources has 
been insufficient in protecting groundwater ecosystems, partly 
because its primary focus is the availability of water for humans 
rather than the ecological needs of the organisms therein. Although 
limiting groundwater allocations indirectly benefits groundwater 
ecosystems, this anthropocentric focus often ignores the quality 
and quantity of water needed for maintaining ecosystem processes 
(Howard et al., 2023; Korbel & Hose, 2011). Groundwater vulner-
ability mapping (Machiwal et al., 2018) has promise as a means for 
assessing and managing risks to groundwaters but is generally more 
focused on a single resource protection than ecosystem protection. 
This is problematic because only through the preservation of healthy 
groundwater biota, including both microbes and metazoans, can we 
ensure the maintenance of key ecological processes and the func-
tional links with surface water ecosystems (Figure 1).

Ultimately, groundwater and connected GDEs should be man-
aged and conserved together, under a ‘one water’ framework (Linke 
et al., 2019;	McNutt,	2014). However, human needs often triumph 
over environmental water needs where knowledge is limited (Rohde 
et al., 2017), rendering this an unrealistic option for conservation. 
As a result, other approaches must be explored and implemented 
to ensure the preservation of a healthy groundwater ecosystem. 
Like climate change more broadly, current inaction (‘too little’) is not 
only generating increased contamination, habitat fragmentation and 

higher rates of biodiversity loss, but also risks compromising the ef-
ficacy of our future actions (‘too late’) because they will be imple-
mented on already deteriorated groundwater ecosystems.

3  |  SHAPING GROUNDWATER A S A 
KE YSTONE ECOSYSTEM

Assessment, monitoring and management of biodiversity frequently 
relies on the use of community representatives such as flagship, um-
brella and keystone species, whose protection benefits many other 
species in different ways (Caro, 2010; Lundberg & Arponen, 2022; 
Verissimo et al., 2011). While all these proxy species approaches 
are constantly constrained by their intrinsic metaphorical nature 
(Barua, 2011), the emphasis of the keystone species on links among 
species has been raised as an ‘appropriate target for management’, 
given the implementation of this approach can provide a good com-
promise between species-oriented and ecosystem function-ori-
ented conservation strategies (Simberloff, 1998).

Initially coined by Robert T. Paine (1933–2016), the term ‘key-
stone species’ was intended for species of high trophic status, whose 
activities exert disproportionate influence on the structure and 
function of biological communities (Paine, 1969a, 1969b). This con-
cept argues that a single top predator indirectly controls resource 
use at lower trophic levels. Upon its removal, one species would mo-
nopolize resources, exclude competitor species and cause a decline 
of biodiversity (Paine, 1966). The use of keystone or any other proxy 
species in nature conservation is frequently advocated for systems 
where the number of species being protected or monitored is un-
certain (Wiens et al., 2008), such as groundwater (Larned, 2012). 
However, while keystone species appear to be a promising approach 
for protection and monitoring of groundwater ecosystems, its im-
plementation is hindered by conceptual and applied issues (Box 1).

The extension of the keystone concept to communities or eco-
systems (Mouquet et al., 2013) is a plausible area to explore for eas-
ing some of the current roadblocks in groundwater conservation 
efforts (Suppoting Information Section 1). Since the early 1990s, 
conservation strategies across the globe have shifted their focus 
from species to habitat/ecosystem level (Lindenmayer et al., 2007). 
Complementarity between both approaches has been recognized 
as beneficial (Lindenmayer et al., 2007), but overall, the increased 
cost-effectiveness and elaboration of more effective management 
guidelines are reported for the ecosystem-level focus (Walker & 
Salt, 2012), as well as reducing funding bias (Adamo et al., 2022). The 
value of this approach is enhanced when applied to groundwater 
habitats, where biodiversity is still mostly spared from macro-organ-
ismal invasive species possibly due to the selective conditions and 
isolation	of	 these	environments	 (Nicolosi	et	al.,	2023). As a result, 
compared to other surface counterparts such as rivers and lakes, 
groundwaters can be broadly considered less biologically degraded 
(even if still mostly unprotected worldwide) ecosystems, a common 
prerogative for conservational purposes through keystone ecosys-
tem approaches (Mouquet et al., 2013).
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Concurrently, recent investigations into GDEs [class II and III 
according to Eamus & Froend, 2006] indicate that they are widely 
distributed in dry climate zones [accounting for almost a third of 
the total global surface area, Salem, 1989], and groundwater sup-
ports riparian and floodplain vegetation in tropical and temperate 
zones (Glanville et al., 2023). Globally, groundwater has strong phys-
ical/ecological relationships with surface water (e.g. intermittent 
streams), and the presence of surface water in some geographi-
cal areas is highly related (at least in some periods of the year) to 
groundwater level [e.g. groundwater-fed streams in semi-arid areas, 
Eamus & Froend, 2006]. For instance, shallow groundwater influ-
ences	22%–32%	of	 global	 land	 area,	 and	15%	of	 groundwater-fed	
surface water features and plant rooting zones (Fan et al., 2013).

Similar to the transition from species- to ecosystem-level conser-
vation agendas, the shift from local to regional and continental stud-
ies in groundwater ecology has been undoubtedly enabled by the 
increased availability of data, combined with the enhanced aware-
ness of the importance of groundwater at global scale (Huggins 
et al., 2023). As a result of all these observations, groundwater pro-
vides a uniquely valid conceptual candidate to be a keystone ecosys-
tem, defined as ecological structures ‘providing resources, shelter or 
‘goods and services’ crucial for other species’ (Tews et al., 2004).

Partially due to the lack of groundwater accessibility and the 
resultant lack of subterranean spatial analysis, data sources for en-
vironmental parameters driving groundwater biodiversity patterns 
on a global scale are currently limited to estimates of water quan-
tity (e.g. groundwater recharge and water table depth). To evaluate 
the potential of groundwater ecosystems as keystone ecosystems, 
we modelled available data to map the biodiversity of groundwater 
ecosystems in combination with groundwater interaction with the 
surface (Figure 2). This analysis is based on an indicator composed 
by four proxies: three proxies that are positively associated with 
groundwater ecosystem biodiversity, (i) groundwater recharge (e.g. 
Reinecke et al., 2021), proxy for high biodiversity because ground-
water recharge regimes are associated with the inflow of nutrients, 
replenishment of water and oxygen regeneration; (ii) existence of 
karst (e.g. Zagmajster et al., 2018), proxy for habitat availability and 
connectivity; (iii) interaction between groundwater and surface 
water (e.g. Hancock et al., 2005), another proxy for high biodiver-
sity being a key factor in enriching oligotrophic groundwater envi-
ronments with carbon loads and fresher water resources; and (iv) 
groundwater water table depth as negatively associated proxy to 
the same biodiversity factor (e.g. Fan et al., 2013) (see Supporting 
Information Section 3 for further information and limitations of 
these assumptions; de Graaf et al., 2015; Fan et al., 2013; Reinecke 
et al., 2019; Verkaik et al., 2022).

Globally,	7.1%	of	the	land	area	shows	a	high	degree	of	groundwa-
ter biodiversity (90th percentile globally) and high interconnectivity 
to	surface	water	bodies	 (90th	percentile	globally).	52.6%	of	global	
areas have medium to high interactions, independent to the mod-
elled groundwater biodiversity considered. In almost a third of the 
global	area	(29.8%)	there	is	only	low	(10th	percentile)	predicted	sub-
surface biodiversity coupled with groundwater–surface water inter-
action. Within this category, a vast portion is occupied by deserts 

BOX 1 Keystone species in groundwater 
ecosystems: An impossible task?

There are many obstacles to the implementation of the con-
cept of keystone species in groundwater ecosystems, empha-
sizing the need to adopt a ‘keystone ecosystem’ approach. The 
first, main challenge lies in the identification of appropriate 
keystone species. The term ‘keystone’ has been broadly de-
bated (Davic, 2003; Mills et al., 1993) and refined such that it 
could apply to all species from any trophic level. The ultimate 
recognition of keystone species, however, remains a two-step 
procedure that first applies operational criteria to identify 
keystone candidates, and then empirically tests how their re-
moval impacts species diversity in a community (Davic, 2003). 
Nonetheless,	the	application	of	this	procedure	to	groundwater	
is theoretically questionable and technically challenging be-
cause a clear picture of trophic structure for all GDEs is miss-
ing. For example, until recently, groundwater was considered a 
bottom-truncated ecosystem, with no primary producers and 
few specialized top predators (Gibert & Deharveng, 2002). 
Since then, some evidence for trophic specialization within 
trophic levels has been identified (Ercoli et al., 2019; Francois 
et al., 2016, 2020; Saccò, Blyth, Humphreys, Karasiewicz, 
et al., 2020; Saccò, Humphreys, et al., 2022), including the 
discovery of autotrophic systems based on chemoautotrophic 
bacteria that serve as primary producers (Sarbu et al., 1996). 
These aspects, together with existing multiple trophic lev-
els within species-rich groundwater communities (Hutchins 
et al., 2016; Premate et al., 2021; Saccò, Blyth, Humphreys, 
et al., 2019; Saccò, Blyth, Humphreys, Cooper, et al., 2020) and 
the frequent dependency on surface carbon sources in bio-
diverse shallow groundwater ecosystems (Saccò et al., 2021; 
Saccò, Campbell, et al., 2022; Simon et al., 2003), make it dif-
ficult to identify suitable keystone species in most cases.

Second, there is a remarkably high frequency of narrow range 
endemics among groundwater species (Malard et al., 2009). 
High spatial turnover in groundwater species composition at 
larger geographical scales emerges as a consequence of the 
dominance	of	species	with	small	distributional	ranges	(Bregović	
et al., 2019; Trontelj et al., 2009). Identifying keystone species 
on	a	scale	of	some	10 km	is	often	an	impossible	task.

Third, the vertical dimension of groundwater exacerbates the 
aforementioned issues. Groundwater is not a homogenous 
habitat, but an array of interconnected habitats (Culver & 
Pipan, 2014; Fišer et al., 2014). In groundwater ecosystems, life 
has evolved to use space in three dimensions. In karstic massifs 
alone, at the same geographical point, species from fissure sys-
tems in the unsaturated zone live under different environmen-
tal conditions to species from the permanently flooded zone 
(Culver & Pipan, 2019), leading to vertically stratified com-
munities. Such vertically distributed communities may be only 
weakly connected functionally, with predators in lower zones 
hardly influencing dynamics in upper zones.
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6 of 20  |     SACCÒ et al.

(e.g.	Sahara	Desert	covering	8%	of	total	global	area)	and	high	moun-
tains, regions where the water table can be very deep (e.g. certain 
areas in the Andes), the recharge rates are very low (e.g. Arabian 
Desert) and/or surface environments host low biodiversity (e.g. 
Kalahari Desert). Once those areas with modelled low biodiversity 
and low interactions are removed from the global analysis, the pro-
portion	of	areas	with	medium	to	high	interactions	jumps	to	74.9%.	
Nonetheless,	within	 these	broad	regions	categorized	as	 low	biodi-
verse, important pockets of groundwater biodiversity do exist. For 
instance, the Pilbara in Australia is considered a major subterranean 

biodiversity hotspot globally (Saccò, Blyth, Bateman, et al., 2019), 
and the seemingly inhospitable Sahara Desert hosts endemic spe-
cies of copepods in its groundwater ecosystems (Brancelj, 2015). An 
in-depth global analysis on these ‘islands under the desert’ (Cooper 
et al., 2002) would shed further light on the understanding of func-
tional groundwater–surface water interactions, and will only be pos-
sible once further data are gathered.

Having mapped where groundwater biodiversity is potentially 
high and connected to the surface, we incorporated the occurrence 
of surface ecosystems into the analysis (Figure 3a,b). We combined 

F I G U R E  2 Linkages	between	predicted	groundwater	ecosystem	biodiversity	and	groundwater-surface	water	exchange	fluxes.	Dark	
green areas in (a–c) indicate a high groundwater ecosystem biodiversity and a high interaction between groundwater and surface water. 
Light green in (a–c) indicates areas with high groundwater biodiversity but low interactions, blue indicates high interactions (in both 
directions) between surface water and groundwater but low groundwater biodiversity. Groundwater ecosystem biodiversity is approximated 
by groundwater recharge, karst and water table depth. The interactions between groundwater and surface water are based on a global 
groundwater model. The categories of biodiversity and exchange fluxes are based on quantiles of normalized data. Orange markers in (a) 
identify focus regions used to evaluate the map, and (b, c) show zoom-ins on the Po and Mekong river basins, respectively (See Supporting 
Information Section 3 for an in-depth development and discussion of this figure). Map lines delineate study areas and do not necessarily 
depict accepted national boundaries.
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    |  7 of 20SACCÒ et al.

the previous map (Figure 2) with an indicator for surface ecosystem 
biodiversity (consisting of the integration of four proxies: soil bacte-
ria, plant diversity, macrophyte occurrence and riverine fish species 
richness; Supporting information Section 3). Our goal was to esti-
mate the overlaps and interdependence between groundwater and 
surficial	ecosystems'	biodiversity	patterns.	Therefore,	we	excluded	

higher-order biodiversity indicators such as avian or mammalian 
diversity, given that these taxa are not necessarily associated with 
the interlinked groundwater-surface ecosystems at a global scale. 
Indeed, an analysis involving groups such as marine animals (Lecher 
& Mackey, 2018) or reptiles (Bateman & Merritt, 2020), and model-
ling their degree of direct or indirect dependency/functional links 

F I G U R E  3 Linkages	between	predicted	surface	ecosystem	biodiversity	and	connected	groundwater	biodiversity.	Here	we	show	how	
categories of groundwater biodiversity and interaction (Figure 2) relate to surface ecosystem biodiversity. With higher groundwater 
ecosystem	biodiversity	and	interaction	(C1 = lowest;	C9 = highest),	surface	ecosystem	biodiversity	increases	as	well	(a).	This	relationship	is	
mapped	into	nine	new	categories	of	surface	ecosystem	biodiversity	and	groundwater	ecosystem	biodiversity	and	interaction	(D1 = lowest;	
D9 = highest)	shown	on	a	global	map	(b).	Dark	blue	in	(b)	indicates	areas	of	high	ecosystem	biodiversity,	high	groundwater	ecosystem	
biodiversity, and high interactions between groundwater and surface water. Pink areas indicate only a high surface biodiversity, and 
turquoise, areas without large surface ecosystem biodiversity. Groundwater–surface water interactions and groundwater ecosystem 
biodiversity are based on Figure 2. Surface ecosystem biodiversity is based on soil bacteria, riverine fish diversity, macrophyte diversity and 
vascular plant diversity, and the biodiversity categories are based on normalized data quantiles (see Supporting Information Section 3). Map 
lines delineate study areas and do not necessarily depict accepted national boundaries.
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8 of 20  |     SACCÒ et al.

with groundwater resources could be of much interest, but it lies 
outside of the scope of current work.

Globally,	for	10.1%	of	the	land	area	there	is	an	overlap	between	
predicted high groundwater biodiversity and interactions (90th 
percentile globally), and predicted high surface biodiversity (90th 
percentile	globally).	Half	of	global	surficial	area	(50.0%)	has	high	bio-
diversity with some extent of groundwater interactions, reaching up 
to	71.7%	when	groundwater	sheds	(Huggins	et	al.,	2023) are consid-
ered (see Supporting Information Section 3). For all the three sur-
face biodiversity categories (low, medium and high), the areas with 
the lowest groundwater biodiversity and interactions (10th percen-
tiles)	were	the	most	abundant	(8.4%,	32.1%	and	23.9%	respectively).	
However, the choice of aggregation of Figure 2 (compare Figure S11) 
influences this outcome towards more areas with low biodiversity 
and interaction.

Overall, our findings suggest that global groundwater biodiver-
sity and interactions can be considered as a first-order estimator 
for surface biodiversity (Figure 3a). For example, when we focussed 
into	 the	 Po	 (North	 Italy;	 Figure 2b; Figure S13b) and Mekong 
(Southeast Asia; Figure 2c; Figure S15b) river basins, two areas 
that	 in	2022	experienced	the	worst	droughts	 in	70 years	 (Bonaldo	
et al., 2023; Kang et al., 2022), distinctive patterns emerged. The 
Po basin shows a high groundwater ecosystem biodiversity close to 
the Alps and the Mediterranean Sea with medium interconnectiv-
ity to surface waters compared to other global systems (Supporting 
Information Section 3). On the other hand, the Mekong shows a 
high groundwater ecosystem biodiversity and interconnection be-
tween groundwater and surface water. When surface biodiversity 
is incorporated in the modelling, the Po basin (Figure S13b) shows 
hotspots of groundwater ecosystem biodiversity and surface eco-
system biodiversity closer to the delta and the pre-Alp areas. In 
contrast, hotspots of interconnectivity remain as in Figure 2b. The 
Mekong shows extensive areas of high surface and subsurface eco-
system biodiversity together with a highly interconnected system 
(Figure S15).

Groundwater and surface systems are often interconnected, 
and focusing only on one, limits the effectiveness of conservation 
efforts. Only a holistic view that includes groundwater ecosystems 
will enable us to understand how excessive groundwater extraction 
will also affect surface ecosystems (Uhl et al., 2022) and how land 
cover changes, for example, deforestation, agricultural use or effect 
of river incision, will affect the groundwater quantity and quality 
and, in turn, the connected ecosystems. Without further research, 
the global role of groundwater in the carbon cycle remains unclear. 
When prioritizing areas for biodiversity conservation, integrating 
surface and groundwater biodiversity is more effective (Rohde 
et al., 2019). Combined protection of surface and subsurface areas is 
most efficient in terms of costs, available space and societal aware-
ness. Recognizing groundwater as a keystone ecosystem highlights 
the cascading effects that would be triggered if we further contami-
nate and/or deplete groundwater. While some authors have already 
discussed the hydrological transboundary role of groundwater at 
global scale (Gleeson et al., 2020), to the best of our knowledge, this 

is	the	first	ecological	quantification	of	groundwater	ecosystems'	rel-
evance for the Earth system.

4  |  SET TING THE GROUND ( WATER) 
FOR A MORE EFFEC TIVE PROTEC TION OF 
AQUATIC SUBTERR ANE AN ECOSYSTEMS

The success of groundwater conservation in the 21st century will 
be contingent on our ability to limit climate change (Amanambu 
et al., 2020),	 minimize	 contamination	 (United	 Nations,	 2022) and 
reduce overexploitation of natural resources (Foster et al., 2013). 
However, the magnitude of the challenge ahead is in stark contrast 
with ongoing conservation inaction (Mammola et al., 2019, 2022; 
Sánchez-Fernández et al., 2021). Amidst an increasingly unpredict-
able climate, widespread aridification and scattered rainfall events 
(IPCC, 2022), many rivers and lakes are transitioning from perma-
nent to intermittent (Messager et al., 2021), glaciers and snowfields 
are melting away, and thus two major freshwater sources are rap-
idly disappearing across several regions (Peterson et al., 2021). As 
a result, the reliance of surficial watersheds on aquifers is increas-
ing, with groundwater providing the only permanent (if replenished) 
freshwater resource available for many areas worldwide. Given the 
uneven distribution of global groundwater (Kretschmer et al., 2023), 
inequitable access and the limited replenishment of ancient global 
groundwater reserves, shifts in the dependence of ecosystems from 
surface to groundwater will be spatially variable (Link et al., 2023; 
López-Corona et al., 2013). Therefore, effective groundwater gov-
ernance will be a crucial aspect to mitigate the impact of droughts on 
economies, societies and diverse environments (Petersen-Perlman 
et al., 2022).

Recent research has demonstrated that groundwater eco-
systems and their biota actively assimilate terrigenous carbon 
(Hartland et al., 2011), acting as carbon sinks (Chen et al., 2023) 
analogous to freshwater wetlands. Hence, maintaining the carbon 
assimilation capacity of groundwater ecosystems is essential to 
maximize the terrestrial carbon sink and minimize climate change 
effects. Aquifers are also crucial for maintaining surface environ-
ments (Boulton et al., 2010), including their biodiversity, within 
natural and anthropogenic contexts (Becher et al., 2022; Figure 4). 
However, current lack of implementation of effective groundwater 
management strategies is hindering also the preservation of asso-
ciated GDEs. The development of biodiversity indices for ground-
water ecosystems, similarly to biodiversity variables proposed 
to monitor biodiversity at global levels (Jetz et al., 2019; Pereira 
et al., 2013) and for discrete targeted purposes (Guerra et al., 2021), 
could provide a solution to overcome this roadblock. By initially tar-
geting well-studied regions with comprehensive diversity datasets 
[e.g. the Krim region in Slovenia (Sket et al., 2004) or the Pilbara 
in Western Australia (Saccò, Blyth, Douglas, et al., 2022)] regional 
biodiversity indices can be designed, with the goal to expand the 
foci as groundwater biodiversity data from less studied systems 
become available.
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    |  9 of 20SACCÒ et al.

Overall, our analysis emphasizes the high interconnectedness 
between groundwater and surface systems, and demonstrates how 
focusing only on one compartment limits the effectiveness, scope 
and comprehensiveness of conservation efforts. To achieve more 
holistic conservation strategies, we will need to find effective strat-
egies able to overcome the surface–subterranean divide. With this 
in mind, we advocate for a two-tiered approach for the conservation 
of groundwaters, composed by science and policy, and we propose 
eight key focal areas to develop an effective global strategy.

 (i) Create standardized global datasets.	 Global	 dataset's	 record	
information on groundwater fauna is abundant, but generally 
scattered across myriad databases, publications and personal 
datasets, often not openly accessible and lacking inter-opera-
bility due to different data standards and vocabularies. Two on-
going ambitious projects, the World Register for marine Cave 
Species (WoRCS; Gerovasileiou et al., 2016) and Stygofauna 
Mundi (Martinez et al., 2018), aim to create centralized, openly 
available and comprehensive taxonomic and ecological da-
tabases of all groundwater organisms. If successful, this will 

break a major barrier hampering conservation, offering much-
needed data for accurate assessments of global groundwater 
biodiversity and providing information for evidence-based 
conservation (Mammola et al., 2022). Similar to rivers and lakes, 
integration of this information with available hydrogeological 
data will directly enhance the quality of groundwater environ-
mental assessments. At transboundary ecosystem levels, pub-
lished global data on the distribution of GDEs are not available 
to date. However, successful initiatives such as the Australian 
GDE Atlas (Doody et al., 2017) provide a promising initial step 
towards the creation of a scientifically sound global GDE map. 
Like in other disciplines, application of FAIR Data Principles 
(Wilkinson, 2016) to all global groundwater-based generated 
data should be ensured, assuring effective findability, accessi-
bility, interoperability and reuse of these digital assets.

 (ii) Test and apply novel biomonitoring approaches.	Novel	biomoni-
toring of groundwater and its typical biota is a crucial aspect 
of environmental management, as many ecosystem services 
are dependent on a healthy environment and diversity of 
species that, despite being almost invariably overlooked, are 

F I G U R E  4 Examples	of	groundwater	ecosystem	services	within	anthropic	(a,	b,	c)	and	natural	(d,	e,	f,	g)	frameworks	and	recommended	
guidelines for groundwater conservation in terms of scientific advancements (top right) and policy developments (top left). Anthropic 
environment: (a) clean groundwater plays a key role in maintaining the agrobiodiversity (Trajkova et al., 2021); (b) interchanges between 
urban wetlands and groundwater can maintain the diversity of aquatic species and the functional integrity of urban wetlands (Ameli & 
Creed, 2019); (c) water for urbanization can also supply a key resource for the maintenance of urban vegetation (Marchionni et al., 2020); 
natural environment: (d) terrestrial vegetation groundwater-dependent ecosystem (GDE; Shukla et al., 2022); (e) lotic GDE (Erostate 
et al., 2020); (f) lentic GDE (Wu, Ma, et al., 2020); (g) coastal GDE (Santos et al., 2021).
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10 of 20  |     SACCÒ et al.

irreplaceable (Griebler & Avramov, 2015). While monitoring of 
physical–chemical properties or chemical pollutants in ground-
water is a regular practice across the world, the biota are often 
overlooked if not in connection with pollutant contamination. 
Therefore, novel tools are required to monitor these eco-
systems.	 Particularly	 promising	 is	 the	 use	 of	 DNA	 extracted	
from	 environmental	 samples	 (environmental	 DNA	 or	 eDNA,	
Pawlowski et al. (2020)) to assess diversity of, and map the 
distributions of, species (Takahashi et al., 2023). First applica-
tions	of	eDNA	to	groundwater	systems	have	been	promising,	
recovering vast biodiversity hitherto mostly undocumented 
(Alther et al., 2021; Couton, Hürlemann, et al., 2023; Couton, 
Studer, et al., 2023; Saccò, Guzik, et al., 2022; van der Heyde 
et al., 2023). For selected taxa such as subterranean salaman-
ders and cavefish, bioacoustics, the study of animal sounds, 
can be used to not only detect species, but also inform on their 
welfare and behaviour (Hyacinthe et al., 2019; Mcloughlin 
et al., 2019).

 (iii) Advance science to better understand ecosystem function. 
Capturing the entire diversity of subterranean species is cur-
rently not logistically feasible. For instance, it is estimated 
that	 80%	 of	 the	 world's	 biggest	 subterranean	 biodiversity	
hotspot region, Western Australia, is undescribed (Guzik 
et al., 2011). Therefore, traditional diversity metrics may not 
provide a mechanistic understanding of disturbance effects (Li 
et al., 2021). To circumvent this, the use of trait-based (func-
tional) methods is gaining ground in recent ecological studies. 
This approach highlights how functional traits (intended, in a 
broad sense, as morphological, ecological, physiological, be-
havioural features measured at the species level, see Toussaint 
et al., 2021)	mediate	a	 species'	ability	 to	 respond	 to	changes	
in their environment (Green et al., 2022; Palacio et al., 2022). 
However, functional studies targeting groundwater ecosys-
tems are still rare (Hose et al., 2022). At a global level, an in-
depth and groundwater-specific functional characterization 
proposed by Keith et al. (2022) could be informative. Microbes 
and aquatic invertebrates are essential for subterranean eco-
system functioning, contributing to nutrient cycling, energy 
flow, water filtration and biodiversity (Malard et al., 2023; 
Saccò, Blyth, Humphreys, Middleton, et al., 2020; Saccò, Blyth, 
Venarsky, et al., 2022; Venarsky et al., 2023). Therefore, tar-
geting these components of underground aquatic ecosystems 
unveils crucial aspects of functioning and resilience.

 (iv) Involve interdisciplinary approaches. A cross-pollination of ideas 
among researchers from different scientific backgrounds—for 
example, hydrologists, hydrogeologists, climatologists, geo-
chemists, ecologists and taxonomists—and operating both 
above and below the ground would enhance the implementa-
tion of conservation interventions able to embrace the entirety 
of the surface–subterranean continuum. Some possible ways 
forward to break the artificial divide between surface- and 
subterranean-based scientists and foster cooperation could 
include: (a) limiting discipline-specific jargon in communication 

(Martínez & Mammola, 2021); (b) broadening reading habits 
outside	one's	own	niche	expertise;	(c)	seeking	active	collabora-
tion by exposing oneself to different scientific cultures (e.g. by 
attending	scientific	meeting	outside	one's	own	expertise);	and	
(d) fostering open data policies to ensure data exchange among 
researchers, groups and companies as well as data availability 
for future generations.

 (v) Implement global policies to protect transboundary waters. 
Conservation of biodiversity often requires operating across 
country boundaries (Liu et al., 2020), an endeavour often 
complicated by bureaucracy and geopolitical instability 
(Allan et al., 2019; Sousa et al., 2022).	Worldwide,	468	trans-
boundary aquifers (namely aquifers crossing multiple states, 
Stephan, 2009) have been delineated (IGRAC, 2021), several 
of which are subject to mounting human pressure (Wada & 
Heinrich, 2013). However, there is currently no specific global 
convention or law for the management of transboundary aqui-
fers. Today, transboundary aquifers are still governed by the 
1997	UN	Watercourses	Convention	which	applies	to	ground-
water systems, ‘[…] but only to the extent that an aquifer is 
connected hydrologically to a system of surface waters, parts of 
which are situated in different States’	 (United	 Nations,	 1997). 
Transboundary aquifers cooperation is still lagging as it is di-
rectly related to the capacity of the States to understand and 
value the groundwater systems and associated ecosystems 
they depend upon. Efforts should be made on valuing ground-
water as a shared resource beyond frontiers—for example, by 
reporting evidence of anthropogenic impact on transboundary 
groundwater ecosystems to showcase and boost transbound-
ary	aquifers'	cooperation	(Brancelj	et	al.,	2020).

 (vi) Improve water management and governance. It is essential to 
achieve a more balanced effort (both financial and conser-
vational) to the management of the different components of 
the hydrosphere and biosphere. The historical focus on sur-
face water in freshwater management (Foster et al., 2013), in 
part reflects knowledge deficits on the role of groundwater 
ecosystems at the time when the main freshwater policies 
were set up (EC-GWD, 2006) and the lack of ability in updat-
ing and adjusting strategies as scientific research progresses 
(Backhaus, 2023; Supporting Information Section 1).	 Now,	
30 years	 after	 the	 publication	 of	 the	 cornerstone	 book	 ‘The	
Freshwater	imperative’	(Naiman	et	al.,	1995), inter-realm moni-
toring and management are more imperative than ever (Bugnot 
et al., 2019). It is just a matter of treasure lessons learned, ex-
panding views and being ambitious (Saito et al., 2021). Most 
ecosystems will benefit from this timely (almost overdue) shift 
in perspectives.

 (vii) Develop restoration and monitoring programs. Hydrogeological 
restoration of aquifers (Kresic, 2009) and surface–groundwa-
ter interactions (Kasahara et al., 2009) have been the focus of 
extensive research over the last three decades, yet studies on 
the ecological restoration of groundwater ecosystems are still 
rare (Liu & Mou, 2016). As data on groundwater biodiversity 
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    |  11 of 20SACCÒ et al.

and resilience to contamination and climate change are gath-
ered, integration of comprehensive biotic-driven restoration 
guidelines is essential for the effective management of ground-
water pollution both in natural and anthropogenic contexts 
(Scanlon et al., 2023).

 (viii) Encourage participatory approaches. The value of a natural 
resource is only acknowledged when citizens and key stake-
holders are involved (Kobori et al., 2016). This is true for 
subterranean ecosystems, where the success of conserva-
tion campaigns often rests on the involvement of multiple 
actors—from conservation scientists, to the media, the public 
and decision-makers (Gavish-Regev et al., 2023). For example, 
Alther et al. (2021), Couton, Studer, et al. (2023) and Raghavan 
et al. (2023) employed participatory approaches to raise aware-
ness on aquatic subterranean fauna, in projects that also led 
to the discovery of new species (amphipod genus Niphargus 
and catfish Horaglanis populi) and new information on the dis-
tribution and abundance of subterranean species. Extension 
and upscaling of such an initiative to other regions, countries 
and continents can provide a highly effective tool to increase 
societal awareness and advance science. Concurrently, the in-
corporation of local indigenous knowledge into ecological sci-
ence harbours enormous potential to increase the efficacy of 
conservation and management strategies (Ban et al., 2018). For 
instance, by harnessing the power of local knowledge through 
participatory science programs, the opportunity exists to build 
up a database of active and inactive global spring locations 
(Goodall, 2008). Such community-led monitoring programs 
could also provide information about groundwater quality 
(levels of eutrophication and contamination) and provide the 
catalyst to building a groundswell of support for rehabilitating 
and restoration of inactive springs to benefit surface and sub-
surface biodiversity.

5  |  CONCLUSIONS

Water is the basis of life on Earth: by overlooking the ecological in-
tegrity of groundwater, we are threatening the long-term prospects 
of entire ecosystems and ultimately of humanity itself. Too often, 
conservation efforts consider groundwater as disjoint from the rest 
of the components of the global water cycle, despite the multiple 
functional interlinks between the subterranean, surface and atmos-
pheric realms. The application of the keystone ecosystem concept to 
groundwater would enable breaking the conceptual and mechanistic 
barriers still existing in water science and policy. We provide evi-
dence	that	almost	two	thirds	of	habitable	global	areas	(74.9%)	have	
a medium to high level of ecological interactions with groundwater. 
We also provide the first indication that groundwater biodiversity 
and interconnections can represent an ecological estimator for 
global surface biodiversity patterns. Given this foundation, conser-
vation and water resource policies are pivotal to assure the mainte-
nance of the essential ecosystem services provided by groundwater 

ecosystems worldwide. We argue that the overall benefits of this 
approach extend beyond the dark underworld, allowing the preser-
vation of diverse terrestrial and aquatic ecosystems. This is urgent 
for wise water management plans within the current climate change 
scenario, considering that many regions across the globe are already 
experiencing a water crisis.
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