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Abstract— Constructing a robust ocean color (OC) record (e.g., 

water transparency, phytoplankton absorption) for long-term 

assessments of coastal and inland water ecosystems from past, 

present, and future missions requires high-quality spectral remote 

sensing reflectance (Rrs) products. Using the GLORIA dataset [1], 

we evaluated the quality of Rrs products from the Moderate 

Resolution Imaging Spectroradiometer (MODIS on Terra and 

Aqua), Medium Resolution Imaging Spectrometer (MERIS), and 

Visible Infrared Imaging Radiometer Suite (VIIRS) processed via 

the 2-band heritage atmospheric correction method (a 

combination of near-infrared and shortwave infrared bands) 

available in the SeaWiFS Analysis Data Analysis System 

(SeaDAS). Overall, retrieval residuals are consistent within a few 

percent among the four missions. Median residuals ranged from 

~20% in the ~550 nm band to > 60% in the ~412 nm bands. 

Spectrally averaged root mean squared differences for all the 

missions were ~ 0.0024 sr-1 with one standard deviation of ~0.001 

sr-1. The corresponding (median) biases in the visible bands varied 

from -60 to -3%, with the largest biases identified in MERIS and 

VIIRS products. Despite the lower sensitivity of band-ratio 

algorithms to residuals in specific spectral regions (e.g., OC3 

chlorophyll-a algorithm is less prone to residuals in Rrs(𝝀 >
𝟔𝟎𝟎 nm)), other algorithms or downstream products that leverage 

all the visible bands are highly compromised. We underscore the 

need to improve the quality of Rrs products, thereby enabling the 

reconstruction of baseline OC products of high caliber in global 

coastal and inland waters that are often near human activity.   

 
Index Terms— Ocean color, remote sensing reflectance, 

validation, coastal and inland waters, freshwater ecosystems, 

MODIS, MERIS, VIIRS.  

I. INTRODUCTION 

odern ocean color (OC) missions have long enabled 

assessments of the global ocean’s properties for their 

biogeochemical variability, biomass, and organic 

contents from which nutrient availability and response to 

climate variability can be inferred [2]. While intended primarily 

for ocean studies, OC imagery and products have been broadly 
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utilized in coastal estuaries and inland waters where societal 

impacts of climate variability and anthropogenic activities are 

most realized [3, 4]. As the Earth's biosphere and atmosphere 

continue to warm and extreme events bear on us more intensely 

and frequently, the value of historical OC products is (and will 

be) increasingly appreciated, as these products permit full 

comprehension of the amount and direction of trends in 

biogeochemical properties of water bodies on a global scale [5-

8]. This is particularly crucial given the response time to climate 

variability, and because extreme events may vary in different 

aquatic ecosystems.  

The concentration of chlorophyll-a (Chla), the prime proxy 

for upper water-column phytoplankton biomass, is a widely 

used OC product for assessing changes in primary productivity, 

food availability, ecological seascapes, and algal bloom 

formation [9, 10]. Chla algorithms of different constructs are 

employed depending on the water type, which is determined by 

the shape of the spectral water-leaving radiance or spectral 

remote sensing reflectance (Rrs) [11]. In blue waters (ocean, 

coastal shelves, oligotrophic lakes), the ratios of blue-green 

spectral bands are proven robust [12, 13], whereas, in 

productive inland waters, the red (665, 681 nm) and red-edge 

bands (709 nm) are conventionally applied in some forms of 

band-arithmetic calculation [14]. There is considerable 

variability in the reported residuals in Chla products (20-70%) 

depending on the algorithm, use case, uncertainties in field 

measurements, and environmental conditions at the time of 

satellite overpass [15-23]. This range of inaccuracies results 

from a cascade of residuals in the respective Rrs, which are 

inherently reduced through band-arithmetic formulas. Despite 

its broad utility, Chla is not the only quantity retrievable via OC 

observations. Spectral absorption and backscattering of 

phytoplankton, inorganic and organic particles, as well as 

dissolved matter, are used and studied in oceanic environments 

for multiple applications (e.g., computation of net primary 

production or carbon export [24, 25]. However, over coastal 
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and inland waters, these spectral properties (referred to as the 

inherent optical properties; IOPs) from OC have been examined 

across limited spatiotemporal scales [26-29] due to significant 

residuals in Rrs, the lack of in situ validation data, or 

unfamiliarity of the user community with these products. Other 

water-color proxies, such as spectral diffuse attenuation 

coefficient (Kd) [30] or Secchi disk depth [31], which may 

require full spectral content within the visible spectrum, also 

suffer from high sensitivities to residuals in Rrs. 

This study offers a retrospective analysis of Rrs products 

from the Moderate Resolution Imaging Spectroradiometer 

(MODIS), Medium Resolution Imaging Spectrometer 

(MERIS), and Visible Infrared Imaging Radiometer Suite 

(VIIRS) in coastal and inland waters using in situ radiometric 

data. For completeness, the satellite products were further 

paired and directly compared using the common matchups. Our 

chief objective is to warrant research directions for the 

improved quality of the OC archive, serving as a robust baseline 

for future multidecadal studies of coastal and inland waters.        

II. DATA AND METHODS  

High-quality in situ radiometric data from the GLObal 

Reflectance community dataset for Imaging and optical sensing 

of Aquatic environments (GLORIA) [1] were resampled with 

the relative spectral response functions of the OC missions after 

the exclusion of the flagged data records. Satellite imagers 

included MODIS onboard Terra (MODIS/T) and Aqua 

(MODIS/A), European Space Agency’s MERIS, and 

NASA/NOAA’s VIIRS on Suomi-NPP (VIIRS/SNPP). See 

Table A1 in Supplementary Material for more information on 

the instruments and output grid cell size. The images were 

harmoniously processed to Rrs using an atmospheric correction 

approach suited for highly turbid and productive environments 

[32]. More specifically, while corrections for the effects of 

Rayleigh scattering and gaseous absorption were carried out 

similarly, we utilized the heritage two-band ratio scheme with 

varying band combinations for removing aerosol contributions 

(SeaDAS v8.2). These band combinations included 869 – 2130 

nm for MODIS/T and MODIS/A, 779 – 865 nm for MERIS, 

 

and 862 – 2257 nm for VIIRS/SNPP. This strategy allowed for 

assessing the quality of Rrs(748), which carries information in 

highly turbid and eutrophic waters [33]. The rest of the input 

parameters, including sensor-specific vicarious calibration 

gains or cloud-masking thresholds, were set to default. We used 

NASA’s processing method because, historically, it is the 

standard processing scheme for producing and archiving the 

OC record. 

The matchup identification and selection were conducted 

following widely accepted OC community procedures [34-36] 

(see Table A1). Matchups, extracted from 3×3-element kernels 

[37], were considered viable only if ≥ 6 pixels had valid Rrs 

retrievals and the coefficient of variation (CV defined as the 

ratio of standard deviation and mean) in the green band (e.g., 

560 nm) was < 0.2 [38, 39]. The median operator was applied 

to compute satellite-derived Rrs for a matchup acquired within 

the +/-3 hours span of satellite overpasses, although time 

differences of +/-6 hours were also investigated for 

completeness (e.g., Fig. A7). To eliminate invalid matchups in 

extreme aquatic conditions (e.g., highly turbid or organic-rich 

waters [40]), data points with Rrs(~667) > 0.012 sr-1, Rrs(~667) 

< 0.10-4 sr-1, and Rrs(~412) < 0 sr-1 were discarded. For cross-

mission comparisons of common matchups (Fig. 5), time-

difference constraints were not applicable as the morning 

(MODIS/T and MERIS) and afternoon (MODIS/A and 

VIIRS/SNPP) missions follow one another within an hour. 

Further, we employed a cubic polynomial fit to account for the 

differences in the spectral bands [41] and increased the MERIS 

and VIIRS/SNPP matchup kernel sizes to closely match that of 

MODIS (e.g., a 10×10-element window for MERIS).   

For the statistical assessments, we used a wide range of 

conventional linear and log-based metrics (see Supplementary 

Material) to permit comparisons with previous reports while 

considering the log distribution of the matchup data [42]. These 

metrics include log-transformed metrics, such as the median 

symmetric residuals (MdSR; 𝜀), signed symmetric bias 

parameter (SSBP; 𝛽), mean symmetric residual (MSR), root 

mean squared (log) difference (RMSLD), mean absolute (log) 

Fig. 1. Geographic representation of valid GLORIA [1] 

matchup dataset for the four sensors. 

Fig. 2. Normalized frequency distributions of satellite and in 

situ Rrs(~550) for valid matchups of the four satellite 

missions.  
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residual (MAR), as well as mean bias (BIAS), root mean 

squared difference (RMSD), and the slope of linear regression 

computed in the linear space. The Pearson correlation 

coefficient (r) is also presented for the cross-mission analyses.  

III. RESULTS 

The global distribution and frequency distribution of valid 

satellite and in situ Rrs matchups (N ~ 550) are shown in Figs. 

1 and 2, respectively (see Table A2 for the effects of different 

exclusion criteria on the number of matchups). The average of 

in situ data histograms are centered around 0.01 sr-1 (in log 

scale), which is nearly twice larger than those reported in 

previous AERONET-OC-centered validation exercises [43]. 

Scatterplots depicting the quality of satellite-derived products 

in select bands (443, 555, and 667 nm) are shown in Fig. 3. The 

median residuals (𝜀) for the four instruments are 43-48%, 20-

24%, and 27-49% in the 443, ~555, and ~667 nm bands, 

respectively. Although the number of matchups differs from 99 

to 350 for all the missions, the statistics vary only slightly, 

particularly in the 443 nm band. The biases (𝛽) point to 

underestimations throughout all the visible bands (see Tables 

A3 through A6), from 7 to 61% in the blue, 7-20% in the green, 

and 17-36% in the red bands. In general, VIIRS products 

contain the highest negative biases. The slopes of the linear 

regression further indicate skewed distributions around the 1:1 

line with overestimations at low signal levels and 

underestimations at increased Rrs magnitudes (e.g., > 0.01 sr-1 

in the green bands). A broader set of metrics for six visible-

near-infrared (VNIR) bands is depicted in Fig. 4. 

Direct intercomparisons of Rrs products for each mission 

pair are shown in Fig. 5. The most significant departure from 

the 1:1 line is in the 412, 443, and ~748 nm bands for which 

MERIS and VIIRS/SNPP products exhibit lower magnitudes 

than those of MODIS. While the red bands are consistent in the 

0.001 – 0.01 sr-1 range, the corresponding agreements diminish 

for Rrs < 0.001 sr-1, a range often encountered in moderately 

turbid coastal waters. The Rrs products are consistent across the 

entire dynamic range in the ~ 555 nm bands. See Table A7 for 

detailed statistical metrics. The cross-mission analysis in terms 

of Rrs residuals [43]  (e.g., ∆Rrs = 𝑅𝑟𝑠
𝑀𝑂𝐷𝐼𝑆/𝐴

− 𝑅𝑟𝑠
𝑖𝑛 𝑠𝑖𝑡𝑢) for 

MODIS/A & VIIRS/SNPP is illustrated in Fig. 6. With an 

identical processing scheme, one would expect the residuals to 

be highly correlated. This is true for the MODIS/A and 

VIIRS/SNPP products with r ≥ 0.8, whereas for MODIS/T and 

MERIS, the correlation coefficient exceeds 0.8 only in the 

green and NIR bands (see Fig. A5). This poorer agreement is 

likely attributed to MODIS/T calibration issues [44]. 

IV. DISCUSSION 

This brief study reinforces the presence of significant 

residuals in SeaDAS-processed Rrs products from heritage OC 

missions in typically turbid and eutrophic coastal and inland 

waters. The spectral behavior of residuals conforms to the 

established knowledge from AERONET-OC matchup analyses 

[34, 40, 43, 45]. Nevertheless, we demonstrated sizeable 

residuals (e.g., median or mean differences, biases) across all 

relevant VNIR bands, with VIIRS-derived products showing 

the largest residuals, particularly in the blue and red bands (Fig. 

4). This is followed by MERIS and MODIS/T Rrs products, 

which have the second and third largest biases in all the bands, 

Fig. 3. Quality assessment of Rrs products in select bands from 

MODIS/T, MODIS/A, MERIS, and VIIRS/SNPP. Median 

residuals (𝜀), median bias (𝛽), the slope of the linear regression 

(S), and the numbers of matchups are annotated. See 

Supplementary Material for more results.    

Fig. 4. Bulk statistical descriptors for Rrs products from 

MODIS/T, MODIS/A, MERIS, and VIIRS/SNPP. See 

Supplementary Material for the definition of the metrics and 

other performance measures in other spectral bands.    

Fig. 5. Direct intercomparison of Rrs products for same-day, 

common GLORIA matchups of MERIS – MODIS/T (red 

circles) and VIIRS/SNPP – MODIS/A (blue circles). MODIS 

Terra or Aqua products are shown on the x-axes.   
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even though the median- and mean-residual metrics signify 

similar (but slightly larger) inaccuracies in MODIS/A products 

(Fig. 4). One should, however, note that we did not take into 

account failure in retrievals (e.g., Rrs(412) < 0 sr-1) encountered 

in organic/sediment-rich waters [46]. For the OC missions, 

uncertainties due to adjacency effects (AE) from land and 

clouds are of greater concern compared to other factors, such as 

skyglint [47] or the black-pixel assumption violation [48]. To 

evaluate the presence of AE, we plotted the residuals as a 

function of distance from the shoreline (see Figs. A6 and A7) 

and found moderate correlations. This moderate 

correspondence is likely due to dependencies on other 

parameters, such as solar zenith angles, viewing zenith angles, 

and aerosol optical properties [43]. Further, an optical-water-

type (OWT) analysis (see Fig. A8) revealed more significant 

residuals in eutrophic waters of types 4 and 5, defined in [42]. 

It is well recognized that Chla or other empirical or semi-

analytical schemes (e.g., the ocean-color-3 scheme (OC3) often 

uses ~488/551 nm low-residual bands) that are solely 

dependent on two or three bands may still offer fit-for-purpose 

products (e.g., mapping relative spatial variability in biomass). 

For example, OC-3 is known to overestimate Chla due to 

underestimated satellite-derived Rrs [49, 50]. Our results (𝜀 >
20%) suggest that inversion techniques or downstream 

products (e.g., Kd) that rely on the magnitude of Rrs in one or all 

the visible bands would be heavily susceptible to these large 

residuals. For instance, phytoplankton or non-algal particle 

absorption spectra will likely carry significant residuals, 

constraining their use for tracking ecosystem responses to 

climate variability or long-term assessments of how the carbon 

cycle in coastal and inland regions fluctuate [51]. Hence, it is 

imperative that these invaluable multi-decadal products that 

form the basis of long-term spatiotemporal assessments in 

coastal and inland waters be revised and enhanced. Looking 

ahead, current (e.g., Sentinel-3’s Ocean and Land Color 

Instrument) and upcoming satellite missions with improved 

spectral capability will require drastically enhanced Rrs 

products in the VNIR region to enable advancing and 

broadening the utility of OC observations beyond mere Chla 

products (e.g., phytoplankton types).  

V. CONCLUSION 

    Using a recently published in situ Rrs dataset representing 

coastal and inland waters, we quantified the bulk residuals in 

MODIS-, MERIS-, and VIIRS-derived Rrs products to 

underscore the need for refined atmospheric correction 

mechanisms, enabling the establishment of robust OC records 

in the vicinity of human settlements. With negative biases 

within 3 – 60%, this study complements previous validation 

studies and further reinforces the need to improve the quality of 

Rrs products central to the viability of downstream products 

(beyond Chla) in optically complex waters. Future endeavors 

will enhance and widen the utility of the invaluable OC archive 

in preparation for advanced missions, such as the Plankton, 

Aerosol, Cloud, ocean Ecosystem (PACE). 
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