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Section S1. Soil emissions parameterization 19 
We improved the model’s parametrization of Hg0 soil emissions by adopting a new formulation for the 20 
parametrization, suggested by Khan et al.1: 21 

𝐸soil = 𝑎𝐶𝑏𝑅𝑔
𝑐    (Eq. S1) 22 

where Esoil are soil emissions (ng m–2 h–1), C is the concentration of Hg in soils (µg g–1), Rg is the solar 23 
radiation flux at the ground (W m–2), and a, b, and c are coefficients. 24 
 25 
As in Selin et al.2, the solar radiation atwi ground (Rg) is determined by considering attenuation of the 26 
solar radiation flux (RS) by shading from the overhead canopy, parametrized by the leaf area index 27 
(LAI): 28 

𝑅𝑔 = 𝑅𝑆 exp (− 𝛼LAI
cos𝜃

)        (Eq. S2) 29 
where 𝛼 = 0.5, assuming extinction from a random angular distribution of leaves3 and 𝜃 is the solar 30 
zenith angle. 31 
 32 
We compiled several relevant observational constraints for the parametrization in Tables S1 and S2. 33 
Observational studies from the Amazon region suggest that deforestation has a large impact on soil 34 
emissions due to removal of canopy shading, showing factors of 1.8×, 6.7×, and >31× more emissions 35 
in forested compared to deforested land plots (Table S1). Observational studies from other regions 36 
find a similarly high sensitivity of soil emissions to the presence of forest: open fields in China 37 
showed 6–10 times higher Hg emissions than forests4 and logging in the US flipped the surface-air 38 
Hg0 flux from net deposition to net emissions (‑2.2 µg m–2 yr–1 to +5.5 µg m–2 yr–1) 5. For extratropical 39 
grassland soil emissions, we use the compiled median values from Zhu et al.6 and Agnan et al.7 40 
 41 
We conducted a parameter sweep of a, b, and c, calculating globally-gridded soil emissions using 42 
annual solar radiation data (Fig. S1). Sensitivity simulations showed that the ratio of deforested to 43 
forested soil emissions in the Amazon (median value 6.7) can tune the exponent for the radiation term 44 
(c in Eq. S1), i.e., the response of emissions to canopy shading. The exponent for the soil 45 
concentration term (b) was tuned with the ratio of deforested Amazon soil emissions (Table S1) to 46 
extratropical grassland soil emissions from the Northern Hemisphere from two review studies6,7 47 
(overall Amazon to extratropical ratio of 5.3). Lastly, after these coefficients are tuned, the prefactor a 48 
is adjusted so that predicted annual mean emissions match the observed median magnitudes of 49 
Amazon deforested soil emissions (23 µg m–2 yr–1) and extratropical grassland emissions (4.3 µg m–2 50 
yr–1).  51 
 52 
We recognize the uncertainties in the observed data used to tune this parametrization, and thus we 53 
constructed 100 alternative parametrizations that fit within observed data bounds (Table S5). These 54 
parametrizations were applied in offline uncertainty analyses to assess 95% confidence intervals in the 55 
fluxes driven by deforestation (Section S4). 56 
 57 
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Table S1. Literature review of available Hg0 soil emission flux measurements from the Amazon 59 
region, differentiated by land cover type.  60 

Reference Location Site 

Deforested Hg0 

flux 

(µg m-2 yr–1) 

Forested Hg0 flux 

(µg m-2 yr–1) 

Flux ratio 

(deforest:forest) 

Magarelli and 

Fostier8 

Negro River 

Basin, 

Brazil 

#1 27 ± 9 0.6 ± 1.5  

#2 19 –1.0 ± 0.8  

#3 9.8 ± 0.7   

Mean 18 –0.2 > 31a 

Almeida et al.9 
Rondônia, 

Brazil 
#1 79 ± 110 44 ± 18 1.8 

Carpi et al.10 Acre, Brazil 
#1 19 ± 2 2.9 ± 0.8 6.7 

#2 230b   

 Median  23 1.8 6.7 
alower limit calculated assuming the forested flux is equal to site #1, as site #2 shows negative overall flux; 61 

deforested flux assumed as mean. 62 
bthis site was 2-months post-fire and soil temperatures were still elevated; this flux is excluded from ratio 63 

calculations  64 

 65 

Table S2. Observational constraints used to tune the soil emissions parametrization.  66 

Constraint  Value Reference 
Coefficient 

constrained 

Amazon deforested soil emissions (µg m–2 yr–1) 23  Table S1 a 

Extratropical grassland soil emissions (µg m–2 yr–1) 4.3† 
Zhu et al.6; Agnan et 

al.7 
a 

Ratio of Amazon to extratropical soil emissions 5.3 (23:4.3) b 

Ratio of deforested to forested Amazon soil 

emissions 
6.7 Table S1 c 

†average of grassland median Hg0 fluxes from the two independent review studies 67 
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 68 

Figure S1. Parameter tuning (Eq. S1) to match observational constraints from Table S2.  69 

 70 

The tuning procedure is illustrated in Fig. S1, yielding best matches for a = 71, b = 2.5, and  71 
c = 0.76. We compare the gridded annual mean soil emissions from the previous soil emission 72 
parametrization (GEOS-Chem v12.8) and the current study (Eq. S1) in Fig. S2. Global annual mean 73 
soil Hg0 emissions in the new parametrizations (954 Mg yr–1) is similar to the predictions from two 74 
GEOS-Chem studies11,12 using the previous parametrization: 860 ± 440 Mg yr-1 and 910 Mg yr–1. The 75 
spatial distribution of emissions (Fig. S2) shows a decrease in vegetated regions (e.g., the Amazon and 76 
Congo rainforests) and an increase in regions with high soil Hg concentrations (e.g., eastern China). 77 
 78 

https://doi.org/10.1021/acs.est.3c07851


Post print of accepted manuscript in Environ. Sci. Tech. doi: 10.1021/acs.est.3c07851 

 S5 

 79 
Figure S2. (a) Annual mean soil emissions of Hg0 with the new parametrization. (b) Difference 80 
between new and old (GEOS-Chem v12.8) soil emissions parametrizations (new minus old). 81 
 82 

Section S2. Observational constraints on deforestation Hg fluxes 83 
There are several available sources of information that can be used to validate the deforestation 84 
emission factors (EF) calculated by GEOS-Chem (Fig. 1, SI Spreadsheet): 85 
 86 
1) Soil Hg concentration measurements of paired forest-deforested sites:  87 
Previous studies have measured the concentrations of Hg soils at deforested sites (𝐶𝑑) and nearby 88 
forest (𝐶𝑓) plots. For this analysis, we assume that the difference in these soil concentrations is due to 89 
mainly the change in atmospheric exchange, which is supported by the magnitude of modeled erosion 90 
fluxes (Section S6) and available measurements5. We use the following equation to convert the 91 
difference in these concentrations to a deforestation emission factor of Hg in Mg m-2 yr-1: 92 

Total EF = (𝐶𝑑−𝐶𝑓)× 𝜌× ℎ 
𝑡𝑑

   (S3) 93 

where 𝜌 is the density of the soil, ℎ is the depth of the soil layer, and 𝑡𝑑  is the time since deforestation. 94 
In the US (Nearctic), there have been studies in Ohio13 and Oregon14 with measurements of Hg in 95 
deforested and forested soils, which we use to calculate deforestation EFs for the Nearctic. For the 96 
Amazon, more measurements are available (24 pairs of soil plots)8–10,15–25. We compiled a literature 97 
database of studies that compared Hg concentrations in deforested Amazonian soils with nearby forest 98 
plots (Fig. S3; SI Spreadsheet). Deforested sites show a consistent decrease compared to paired 99 
forested sites (p-value < 0.001; Wilcoxon signed-rank test), with the median decrease being 25 ng g-1 100 
(10th–90th percentile: 2–58 ng g-1). To calculate a deforestation EF for the Amazon, we apply this 101 
concentration decrease in Eq. S3 and assume an average Amazon soil density of 1.25 ng g-1, a surface 102 
soil layer of 10 cm, and that deforested soils in the literature studies were measured 10 years after 103 
deforestation.  104 
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 105 
Figure S3. Measured Hg concentrations in forest (green) and deforested (orange) soils (0–20 cm 106 
depth) from the literature (n = 24)8–10,15–25. Box plots show the median values (solid lines), 107 
interquartile range (shaded), and 10th and 90th percentiles (whiskers). Gray lines connect paired sites 108 
from the same study. Listed p-value (<0.001) refers to the Wilcoxon signed-rank test of the null 109 
hypothesis that paired forest and deforested sites come from the same distribution. 110 

 111 
2) Terrestrial-atmosphere exchange models validated by Hg observations:  112 
An estimate for the deforestation EF over China is available from the Wang et al.26 modeling study. 113 
We use their area-averaged mean fluxes over forest and agricultural land cover to calculate a 114 
deforestation emission factor: 115 

Total EF = (𝐸𝑑 − 𝐷𝑑) − (𝐸𝑓 − 𝐷𝑓)  (S4) 116 
where 𝐸𝑑 and 𝐸𝑓 are the terrestrial emission fluxes (Mg m-2 yr-1) from Chinese agricultural land and 117 
forest, and 𝐷𝑑  and 𝐷𝑓 are the deposition fluxes (Mg m-2 yr-1) to Chinese agricultural land and forest. 118 
Although this EF estimate is model-based, the Wang et al.26 model was validated extensively with 119 
available terrestrial-atmosphere exchange measurements from China. 120 
 121 
3) Dynamic flux chamber measurements of forested and deforested soils:  122 
Additional studies investigating the impact of deforestation on atmospheric fluxes quantified the 123 
response of soil emissions using dynamic flux chamber measurements5,8–10,27,28. We compare these 124 
measurements to the soil-only EF modeled by GEOS-Chem. The soil emission factors measured by 125 
the studies is calculated as the difference between soil emissions (Mg m-2 yr-1) over deforested and 126 
forested soils: 127 

Soil EF = 𝐸𝑑 − 𝐸𝑓    (S5) 128 
 129 

The comparison between GEOS-Chem simulated deforestation EFs and observation-derived values is 130 
summarized in Fig. 1. Observations are only available from three regions (Amazon, China and 131 
Nearctic). We found further references investigating the impact of deforestation on Hg for the 132 
Palearctic region29,30, yet these focused on measuring Hg concentrations in aquatic media and 133 
methylation potential rather than soil concentrations or atmospheric exchange. Australian soil 134 
measurements31,32 have been made before and after vegetation burning events, but do not cover the 135 
longer term soil Hg response to deforestation.  136 
 137 
The modeled EF estimates and their uncertainties overlap with observation-derived EFs for all 3 138 
regions. If anything, the modeled best estimate used in online simulations is conservative compared to 139 
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available observations, showing generally lower EFs (Fig. 1). However, it is unclear whether the 140 
sparse observations available are representative of the overall region. The modeled EF uncertainty 141 
estimates cover 1–2 orders of magnitude, emphasizing the current uncertainties in the response of Hg 142 
fluxes to deforestation. Figure 1 also reveals the regions where no observations of the impact of 143 
deforestation on Hg cycling are currently available. Specifically, the Afrotropic and Indomalayan 144 
domains would be priorities for future measurement campaigns, given the current impact of 145 
deforestation in those regions (Fig. 2). It remains unknown whether Southeast Asian and African 146 
rainforests show similarly high levels of Hg in litterfall as the Amazon rainforest33. 147 
 148 
Section S3. Global deforestation-driven emissions estimates 149 
We use perturbation simulations in which a set area within each region is deforested to calculate each 150 
deforestation EF. In the EF approach, we assume that 1) land-air fluxes respond linearly to deforested 151 
area and 2) spatial variability in the deforestation response within regions can be ignored. We explored 152 
the validity these assumptions using the four Amazon deforestation scenario simulations conducted in 153 
this work (Fig. S4). In the Amazon simulations — the reference simulation with 2003 forest cover 154 
(HIST), governance scenario for 2050 (GOV), business-as-usual for 2050 (BAU), and savannization 155 
(SAV) — different areas (both in spatial pattern and extent) were deforested in the Amazon region. 156 
The total fluxes from the Amazon basin for Hg0 dry deposition, soil Hg0 emissions, and the overall 157 
land-air balance of Hg all respond linearly (R2  > 0.98) to the magnitude of the deforested area. 158 
Therefore, the approach of calculating deforestation EFs and scaling these with deforested areas would 159 
likely not be highly sensitive to the spatial distribution and amount of deforestation. Therefore, we 160 
conducted 7 other idealized deforestation simulations for the other land regions (Fig. S5). 161 
 162 

 163 
Figure S4. Relationship between land-air fluxes and the area deforested in GEOS-Chem simulations 164 
for the Amazon rainforest. Fluxes are averaged over the Amazon rainforest domain and listed R2 165 
values refer to linear models.  166 
  167 
Additional data related to the calculation of historical deforestation-driven emissions of Hg are 168 
presented in this section. The maps defining the regions used in this study is shown in Fig. S5. Table 169 
S3 tabulates the results from the perturbation simulations for the different regions and the resultant 170 
emission factors. Fig. S6 explores the impact of choosing different time horizons for the deforestation 171 
area on the calculated Hg emissions globally and by country. Fig. S7 shows the map of Hg 172 
deforestation-driven emissions, assuming a 45 year time horizon (deforestation area of 1970–2014 173 
from the LUH2 dataset34). 174 
 175 
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 176 
 177 
Figure S5. Definition of regions used to calculate the deforestation emission factors.  178 
 179 
 180 
Table S3. Results from the deforestation perturbation simulations in GEOS-Chem for determining the 181 
response of land-air fluxes to deforesting a specified area. Emissions factors are listed with the 95% 182 
confidence interval calculated in offline simulations assessing the uncertainties due to model 183 
parameters (Section S4).  184 

Realm  

Area 

deforested 

(km2) 

Change in 

emissions 

(Mg yr-1) 

Change in 

deposition 

(Mg yr-1) 

Change in 

net emissions  

(Mg yr-1) 

Emissions factor  

(Mg m-2 yr-1) 

[95% confidence 

interval] 

Afrotropic 3 644 969 29.1 -10.0 39.1 
1.1 × 10-5 

[2.8 × 10-6 to 1.2 × 10-4] 

Neotropic 2 422 577 13.0 -4.9 17.9 
7.4 × 10-6 

[4.8 × 10-6 to 5.7 × 10-5] 

Indomalaya 2 626 474 31.6 -28.3 59.9 
2.3 × 10-5 

[1.5 × 10-5 to 2.1 × 10-4] 

Palearctic 4 221 663 5.8 -4.3 10.1 
2.4 × 10-6 

[7.6 × 10-8 to 2.3 × 10-5] 

Nearctic 4 606 898 31.6 -17.4 48.9 
1.1 × 10-5 

[7.1 × 10-6 to 6.2 × 10-5] 

Australasia 1 088 250 1.9 -4.8 6.6 
6.1 × 10-6 

[8.3 × 10-7 to 5.4 × 10-5] 

China 1 141 180 16.6 -10.1 26.7 
2.3 × 10-5 

[1.7 × 10-5 to 2.3 × 10-4] 

Amazon 6 775 429 96.2 -394.0 490.2 
7.2 × 10-5 

[4.5 × 10-5 to 2.0 × 10-4] 

 185 
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 186 
Figure S6. (a) Global and (b) country-level deforestation emissions of Hg for the top 15 emitting 187 
countries. Results are summarized accumulating deforested area over different time horizons (15 188 
years, 30 years, 45 years, and 60 years) before 2015. Error bars refer to the 95% confidence interval 189 
based on the uncertainty in model parameters (Section S4). 190 
 191 

 192 
Figure S7. Map of net emissions of Hg from deforestation calculated over a 45 year time horizon 193 
before 2015 (1970–2014), using deforested area from the LUH2 dataset34. 194 
 195 

  196 
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Section S4. Model uncertainty analysis 197 
 198 
Table S4. Parameter uncertainty bounds applied in the uncertainty analysis.  199 

Parameter  Min Max Units Distribution Comment 

Soil emission 
parametrization 

1 100 - Uniform  

Integer representing one of 100 
reasonable parametrizations 
calculated within the range of 
observed uncertainties (Table 
S5)  

Percentile of replaced 
LAI when building 
scenarios 

10 90 - Uniform 
e.g., deforested Amazon area is 
assigned 10th percentile LAI of 
HIST savanna, instead of mean 
for default estimate  

Dry deposition Hg0 
reactivity (f0) Amazon 
rainforest 

10-2 0.5 - Loguniform 
Based on Feinberg et al.33, 
within range of available 
vegetation uptake 
measurements 

Dry deposition Hg0 
reactivity (f0) other 
rainforests 

10-5 0.2 - Loguniform 
Based on Feinberg et al.33; no 
available measurements from 
other rainforests, leading to 
wider f0 uncertainty 

Dry deposition Hg0 
reactivity (f0) elsewhere 

10-5 5 × 10-5 - Uniform 
Based on Feinberg et al.33, 
within range of available 
vegetation uptake 
measurements 

Biomass burning 
emission factor for 
Amazon 

350 615 µg m-2 Uniform Estimated range in 
literature10,35,36 

 200 

 201 

Table S5. Bounds of observed parameters used to calculate 100 reasonable soil emission 202 
parametrizations, which are then applied in the uncertainty analysis (Table S4). 203 

Parameter  Min Max Units Comment 

Ratio of deforested to forested 
Amazon soil emissions 

1.8 31 - Range from Table S1 

Ratio of Amazon to 
extratropical soil emissions 

3.5 8 - Assume 50% error from Table S2 

Extratropical grassland soil 
emissions 

3.5 11.4 µg m–2 yr–1 Grasslands and background soil range 
from literature reviews6,7 

Deforested Amazon soil 
emissions 

9.8 79 µg m–2 yr–1 Range from Table S1 

 204 

  205 
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Section S5. Scenarios for Amazon deforestation and global reforestation 206 

 207 
Figure S8. Map of the Amazon basin showing the area of forest, forest loss and rangeland and 208 
agriculture in (a) HIST; and projections for 2050 in (b) Business as Usual (BAU) and (c) Governance 209 
(GOV) scenarios (replotted from Soares-Filho et al.37 data). 210 
 211 

 212 
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 213 
Figure S9. Annual mean leaf area index (LAI) maps for the Amazon deforestation scenarios at 0.25° 214 
× 0.25° resolution. The simulations names refer to the following scenarios: reference (HIST), 215 
Business-as-usual (BAU), Governance (GOV), and Savannization (SAV). 216 
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 217 
Figure S10. Annual mean leaf area index (LAI) maps at 0.25 × 0.25° resolution for: (a) the reference 218 
(HIST) scenario (b) Reforestation scenario (RFR) (c) Difference between RFR and HIST. 219 
 220 

Section S6. Impact of Amazon deforestation on erosion 221 
Previous field studies15,38 have suggested that erosion of Hg is increased after deforestation in the 222 
Amazon, measuring enhanced runoff of Hg in deforested catchments. We estimated the change in soil 223 
displacement by water erosion (soil erosion) in the Amazon deforestation scenarios using the RUSLE-224 
based39 modeling platform Global Soil Erosion Modeling (GloSEM)40,41. As a detachment-limited soil 225 
erosion prediction model, GloSEM estimates soil erosion (expressed as a mass of soil lost per unit area 226 
and time, Mg ha−1 yr−1) due to inter-rill and rill erosion processes by multiplication of six contributing 227 
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factors. The modeling scheme follows the same principle of most RUSLE-type models or more 228 
complex catchment-scale process-based models, with a driving force (erosivity of the climate, R), a 229 
resistance term (erodibility of the soil, K) and other factors representing the farming choice, i.e., 230 
topographical conformation of the field (LS), cropping system (C), and soil conservation practices (P).  231 
 232 
Our approach for calculating soil erosion in the Amazon scenarios is similar to the GloSEM 233 
parametrization adopted by Borrelli et al.40,41 to estimate human-induced soil erosion change between 234 
2001 and 2070 at a global scale. The horizontal resolution of the native soil erosion modeling is 250 × 235 
250 m. The calculation of erosivity (R), erodiblity (K), topographical conformation of the field (LS), 236 
and soil conservation practices (P) factors are described in Borrelli et al.40,41. We acknowledge that the 237 
calculation of erosion model factors for the Amazon rainforest may be associated with higher 238 
uncertainties than other regions due to the lower density in meteorological stations42 and soil sampling 239 
sites43. For this study, we adapted the computation of the land cover and management factor (C-240 
factor), which measures the combined effect of vegetation cover and cropping system variables on the 241 
soil erosion process. We parametrize the C-factor according to two layers of information: 1) the spatial 242 
dimension of land use classes according to the deforestation scenarios from Soares-Filho et al.37 243 
(described below); 2) the vegetation condition in each land use class using the MODIS MOD44B 244 
Vegetation Continuous Fields product (VCF) (~250m spatial resolution) as a proxy to quantify (i) 245 
surface vegetation cover, (ii) tree cover, and (iii) bare soil. As we focus our analysis on comparing the 246 
forest coverage in the years 2003 and 2050, the baseline vegetation condition is given by the average 247 
VCF values over the years 2000, 2001 and 2002. The C-factor for noncropland areas (Cnc) is estimated 248 
in two steps. First, a preliminary C-factor (𝐶𝑝) not considering tree cover is calculated as:  249 

𝐶𝑝 =  𝐶𝑚𝑖𝑛 +  ((𝐶𝑚𝑎𝑥 −  𝐶𝑚𝑖𝑛) NVS) (S6) 250 
where the 𝐶𝑚𝑖𝑛 (0.01) and 𝐶𝑚𝑎𝑥 (0.15) express the potential range in C-factor values for dense to 251 
sparse grassland cover. NVS (non-vegetated surface) is spatially defined using the MODIS MOD44B 252 
VCF data normalized to a range from 0 to 1 and describes the percentage of ground covered by any 253 
vegetation type. For the NVS, the C-factor is set to 0.5. Within the next step, the final land cover and 254 
management C-factor for non-croplands (𝐶𝑛𝑐) is computed including the tree coverage (TC) defined 255 
using the MODIS MOD44B VCF normalized to range from 0 to 1: 256 

𝐶𝑛𝑐 =  𝐶𝑝 𝑚𝑖𝑛 +  ((𝐶𝑝 𝑚𝑎𝑥 −  𝐶𝑝 𝑚𝑖𝑛) TC)  (S7) 257 
where the 𝐶𝑝 𝑚𝑖𝑛 and 𝐶𝑝 𝑚𝑎𝑥 values are set to 0.0001 (100% canopy cover) and 0.009 (sparse forest 258 
vegetation).  259 
 260 
While the deforestation scenarios proposed by Soares-Filho et al.37 provide a spatial quantification of 261 
the forest losses between 2003 and 2050, the annual shares of conversion from forest to grassland or 262 
cropland are separate from the annual projection of the Land-Use Harmonization (LUH2) data34, 263 
which provides fractional land-use patterns (850-2100) at 0.25° × 0.25° resolution. The downscaling 264 
of the LUH2 fractional cropland and grassland data from 0.25° × 0.25° resolution to the 250 m × 250 265 
m resolution of the erosion model is performed through a probabilistic land use allocation scheme 266 
based on classification rules applied to auxiliary information (i.e., a crop suitability index, more detail 267 
in Borrelli et al.40). Finally, the C-factor of the cropland is defined at sub-national administrative level 268 
(Global Administrative Unit Levels) based on the Food and Agriculture Organization's (FAO) 269 
FAOSTAT database, which allowed to statistically describe typical crop rotations in each region. The 270 
C-factor of the croplands ranges from 0.131 (Northern Suriname) to 0.332 (Northeast Brazil). 271 
 272 
Following the assumption of Lugato et al.44 for eroded carbon, we assume that 30% of the eroded soil 273 
flux is not redeposited on land and enters riverine systems. The fraction of eroded Hg which enters 274 
aquatic systems is uncertain, depending on hillslopes dynamics and flow patterns that are not 275 
explicitly modeled by the RUSLE-based framework, as well as whether Hg would be selectively 276 
eroded relative to carbon. We recognize that this assumption introduces uncertainty into our 277 
calculations, and assume that the fraction of eroded soil which enters riverine systems can vary 278 
between 5–47%, the range reported by Van Oost et al.45 We calculate the eroded flux of Hg from land 279 
by multiplying the soil flux by the median Hg concentration in Amazon forested soils from a literature 280 
review (86 ng g-1; see SI Spreadsheet).  281 
 282 
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For each Amazon scenario, we tabulate the Hg erosion fluxes in Table S6. Erosion in the HIST 283 
scenario represents a flux of 64 Mg yr-1 (uncertainty range: 11–100 Mg yr-1). Erosion is enhanced in 284 
the deforestation scenarios, ranging from +14% increase in GOV to a 96% increase in the extreme 285 
SAV scenario. The absolute magnitudes of erosion flux changes are smaller than the perturbations in 286 
the land-air flux, driven by changes in Hg0 soil emissions and dry deposition (Table S6). Overall, 287 
perturbations to the erosion flux are approximately 14% of the perturbations to the land-air flux due to 288 
deforestation. A previous field study5 has also suggested that the majority of flux changes after 289 
deforestation occurs through atmospheric exchange (97%) rather than erosion to riverine systems. 290 
Therefore, the land-air changes to the fluxes play the larger role in the impact of deforestation on the 291 
mass balance of Hg in soils. Nevertheless, changes to erosion will affect downstream Hg 292 
concentrations and the methylation potential after deforestation5,29, which would be important to 293 
consider when assessing the impact of deforestation on local ecosystems.  294 
 295 
Table S6. Soil erosion fluxes for the Amazon basin calculated by the erosion model GloSEM. The 296 
simulations names refer to the following scenarios: reference (HIST), Business-as-usual (BAU), 297 
Governance (GOV), and Savannization (SAV). 298 

Scenario HIST BAU GOV SAV 

Soil loss (Mt yr-1) 2467 3276 2816 4834 

30% of soil loss (Mt yr-1)a 

[5%–47%] 

740 

[123–1159] 

983 

[164–1540] 

845 

[141–1323] 

1450 

[242–2272] 

Hg erosion (Mg yr-1) 

[uncertainty range] 

64 

[11–100] 

85 

[14–132] 

73 

[12–114] 

125 

[21–195] 

Change from HIST (Mg yr-1) 

(relative change) 

- 21 

(+33%) 

9 

(+14%) 

61 

(+96%) 

Land-air flux change from 

HIST  

(Mg yr-1) 

- 153 61 441 

a This is the flux assumed to be entering riverine systems 299 

 300 
  301 
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Section S7. Impacts on atmospheric Hg concentrations 302 

 303 
Figure S11. Annual mean differences in simulated atmospheric Hg0 concentration at the surface 304 
between scenarios — Business-as-usual (BAU), Governance (GOV), Savannization (SAV), and global 305 
reforestation (RFR) — and the HIST reference simulation. 306 
 307 
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