
Journal of Environmental Management 353 (2024) 120229

Available online 3 February 2024
0301-4797/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research article 

The effect of green infrastructure on resilience performance in combined 
sewer systems under climate change 

Mayra Rodriguez a,b, Guangtao Fu a, David Butler a, Zhiguo Yuan c, Lauren Cook b,* 

a Centre for Water Systems, University of Exeter, Exeter, United Kingdom 
b Department of Urban Water Management, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland 
c City University of Hong Kong, Hong Kong, China   

A R T I C L E  I N F O   

Handling editor: Lixiao Zhang  

Keywords: 
Climate change 
Combined sewer overflow 
Global resilience analysis 
Resilience 
Top-down approach 

A B S T R A C T   

Climate change is currently reshaping precipitation patterns, intensifying extremes, and altering runoff dy-
namics. Particularly susceptible to these impacts are combined sewer systems (CSS), which convey both 
stormwater and wastewater and can lead to combined sewer overflow (CSO) discharges during heavy rainfall. 
Green infrastructure (GI) can help mitigate these discharges and enhance system resilience under historical 
conditions; however, the quantification of its effect on resilience in a future climate remains unknown in the 
literature. This study employs a modified Global Resilience Analysis (GRA) framework for continuous simulation 
to quantify the impact of climate change on CSS resilience, particularly CSOs. The study assesses the efficacy of 
GI interventions (green roofs, permeable pavements, and bioretention cells) under diverse future rainfall sce-
narios based on EURO-CORDEX regional climate models (2085–2099) and three Representative Concentration 
Pathways (2.6, 4.5, 8.5 W/m2). The findings underscore a general decline in resilience indices across the future 
rainfall scenarios considered. Notably, the total yearly CSO discharge volume increases by a range of 145 % to 
256 % in response to different rainfall scenarios. While GI proves effective in increasing resilience, it falls short of 
offsetting the impacts of climate change. Among the GI options assessed, green roofs routed to pervious areas 
exhibit the highest adaptive capacity, ranging from 9 % to 22 % at a system level, followed by permeable 
pavements with an adaptation capacity between 7 and 13 %. By linking the effects of future rainfall scenarios on 
CSO performance, this study contributes to understanding GI’s potential as a strategic tool for enhancing urban 
resilience.   

1. Introduction 

Climate change is leading to alterations in the hydrologic cycle 
(Bates et al., 2008; IPCC, 2022a), including shifts in precipitation pat-
terns, the intensity of extremes, and modifications to soil moisture and 
runoff (Bates et al., 2008). This transformation to a future, 
non-stationary climate challenges the assumptions of conventional 
urban drainage systems, which have been designed and managed with 
the expectation that the future will look like the past (Cook et al., 2017; 
Milly et al., 2008). These changes are particularly problematic for 
combined sewer systems (CSS) (Bates et al., 2008; IPCC, 2022b, 2022a), 
which carry both wastewater and stormwater in the same pipe. When 
the amount of rainfall entering the CSS exceeds capacity, a mixture of 
untreated wastewater and stormwater is discharged into surface waters 
via combined sewer overflows (CSOs) (Mailhot et al., 2015). The public 

is increasingly aware of the pollution caused by these CSO events and 
several policies, such as the Environmental Act in the United Kingdom 
(Environment Agency and Department for Environment, 2022; UK 
Government, 2021) and the European Union Water Framework Direc-
tive (European Commission, 2000), are now prioritizing their reduction 
and management. 

Infrastructure management to control CSO discharges is increasingly 
critical in the face of climate change (Browder et al., 2019). Traditional 
approaches to infrastructure management focus on avoiding failures and 
known risks (fail-safe approach); however, given the uncertainty that 
climate change brings, the possibility of failure will need to be 
embraced, whilst minimising CSO impacts and consequences (safe--
to-fail approach) (Butler et al., 2014, 2017, 2014; Hollnagel, 2014, 
2015; Hollnagel et al., 2014). Resilience, or the ability to minimise failure 
magnitude and duration under extreme conditions (Butler et al., 2014), has 
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gained traction as a concept that can facilitate the design and operation 
of CSS (Butler et al., 2014, 2017; Mugume et al., 2015). Several orga-
nisations and governments have recognised the importance of resilience 
in the face of climate change (Government, 2011; IPCC, 2022a; NIAC, 
2009; Office, 2011); however, resilience for CSS is still not assured 
(Butler et al., 2017). This is due in part to a lack of methods to quantify 
the resilience of CSS considering CSOs. A promising method that allows 
for a performance-based, quantitative assessment of resilience (i.e., 
resilience performance) is the Global Resilience Analysis (GRA) (Diao 
et al., 2016; Kamali et al., 2022; Mugume et al., 2015), which has been 
recently modified to allow resilience measurement under continuous 
simulation with an emphasis on its relation to CSOs (Rodriguez et al., 
2023). However, this method has not yet been applied to future climate 
scenarios. 

One approach to enhance the resilience of CSSs is to combine 
traditional “grey” infrastructure (e.g., conveyance pipes) with decen-
tralised, “green infrastructure” (GI) (e.g., bioretention basins, green 
roofs) that is designed to infiltrate and store water before it reaches the 
pipe (Fletcher et al., 2015; Matsler et al., 2021). GI has been shown to be 
a cost-effective solution to reduce CSO discharges (Casal-Campos et al., 
2015, 2018; Fischbach et al., 2017; Joshi et al., 2021), and to some 
extent, increases the resilience of CSS with respect to CSOs (Rodriguez 
et al., 2021, 2023). GI can also moderate the effects of climate change 
(Hochrainer-Stigler et al., 2020; Wang et al., 2023), in particular 
reducing CSOs (Abdellatif et al., 2015; Kim et al., 2022; Roseboro et al., 
2021; Webber and Kuller, 2021). Yet resilience with respect to CSOs and 
under climate change have not yet been evaluated simultaneously. 
However, due to the recent availability of downscaled regional climate 
models (e.g., EURO-CORDEX dataset) (Anaraki et al., 2021; Cook et al., 
2017, 2019; Di Sante et al., 2021), the quantification of resilience under 
climate change could be performed, and therefore improve our under-
standing of the performance of GI for CSO reduction under future 
climate with respect to resilience. 

The aim of this study is to quantify the effects of climate change on 
CSS resilience with respect to CSOs, using a modified Global Resilience 
Analysis framework recently developed by Rodriguez et al., (2023). 
Specifically, it evaluates the impact of interventions, including green 
roofs, permeable pavements, and bioretention cells, to reduce CSO dis-
charges in Fehraltorf, Switzerland, under different climate change sce-
narios. By characterizing the consequences of rainfall patterns under 
climate change and their connection to CSOs, this study contributes to 
the knowledge pool for the use of GI as an adaptive tool to increase 
urban resilience to climate change. 

2. Methods 

2.1. Overview 

In contrast to other resilience measurement methods found in the 
existing literature, the GRA stands out as a quantitative approach (Diao 
et al., 2016; Mugume et al., 2015). This method enables an assessment of 
resilience by constructing system performance curves under varying 
stress levels, quantifying the capacity of the system to sustain its per-
formance and functionality (Butler et al., 2017). This resilience 
performance-based approach has found application in diverse domains 
of water management, both for water distribution (Diao et al., 2016; 
Meng et al., 2018) and sewer systems (Mugume et al., 2015). In CSS, this 
method has been applied to quantify flood resilience (Mugume et al., 
2015; Rodriguez et al., 2021; Sweetapple et al., 2018; Wang et al., 2017) 
and general resilience (Sweetapple et al., 2022). 

In this study, we use a modified GRA, developed by Rodriguez et al. 
(2023), which links threats (e.g., rainfall under climate change) to im-
pacts (e.g., CSO discharges). The system performance (strain) is 
computed while varying the magnitude of the system’s threat (stress) 
using continuous long-term simulation. Response curves, referred to as 
stress-strain curves, are created that represent the relationship between 

performance and the threat magnitude (Rodriguez et al., 2023). These 
curves are then used to calculate a performance-based indicator of 
resilience. As described in Rodriguez et al. (2023) and shown in Fig. 1, 
the modified GRA consists of six main steps: (1) threat characterisation 
using indices, (2) system performance characterisation, (3) simulation of 
the system performance metrics based on continuous simulation, (4) 
correlation analysis of the stress and strain metrics and selection of the 
most representative index for each performance metric, (5) generation 
of the stress-strain curves and resilience indicators for each performance 
metric, and finally, (6) calculation of an aggregated system resilience 
index. In this study, we apply a novel “adaptive capacity” indicator, to 
understand how GI offsets climate change based on resilience metrics 
(see Section 2.3). Details related to the right-hand side of the figure are 
provided in Rodriguez et al. (2023), while their application to this study 
is presented in the following sections. 

2.2. Application of the modified Global Resilience Analysis 

2.2.1. Steps one and two: selection of threat and strain metrics 
In this study, the system threat, rainfall, is characterised using 

rainfall indices developed by Cook et al. (2019), which are standardised 
indicators that describe climate variability and rainfall features (Alex-
ander et al., 2019). The system strain, CSO discharge, is characterised by 
a set of performance metrics linked to the frequency and volume of 
CSOs, presented in Rodriguez et al. (2023). 

2.2.2. Step three: system performance under continuous simulation 
The effect of the system threat on the system strain is evaluated using 

continuous hydrologic simulation of an 82-ha combined sewer system 
located 15 km east of Zurich (Fehraltorf, Switzerland; Fig. 2). The use of 
continuous simulation for the assessment of the system allows for an 
improved characterisation of system performance, as synthetic-design 
storms are limited, only representing a typical summer or winter 
storm rather than the whole range of storms (Abdellatif et al., 2015). The 
Fehraltorf catchment is well-studied (Hadengue et al., 2021; Joshi et al., 
2021; Keller, 2016; Ramgraber et al., 2021; Rodriguez, 2022; Rodriguez 
et al., 2023), with a fully calibrated and validated US EPA Stormwater 
Management Model (SWMM) (Rodriguez, 2022; Rossman, 2015), which 
includes 246 subcatchments, 427 manholes, 430 conduits, five storage 
tanks, and six CSO outfalls. The CSS is connected to two neighbouring 
municipalities (Russikon and Rumlikon) and mixed wastewater is 
conveyed to a treatment plant with a max capacity of 180 Ls-1. The 
calibration of the system without GI was performed using genetic al-
gorithms, based on available sewer flow data and groundwater table 
data available in the catchment (Blumensaat et al., 2023). Unfortu-
nately, since no GI are currently present in the catchment, the simula-
tions with GI cannot be fully validated. Details of the model and its 
calibration can be found in Rodriguez (2022). 

To evaluate the effect of climate change on the Fehraltorf CSS, two 
timeframes are simulated in this study: a historical baseline 
(2005–2019) and a projected period (2085–2099) with several rainfall 
scenarios (discussed in Section 2.4). The system is evaluated with and 
without GI, using three different GI types (bioretention cells, green 
roofs, and permeable pavements), as explained in Section 2.5. The flows 
from the neighbouring municipalities both for the historical and the 
future rainfall scenarios are calculated using a machine learning model 
trained on 2-year flow and rainfall observations, as described in Rodri-
guez (2022). Rainfall indices are computed for every year in the his-
torical and future rainfall scenarios. Each CSO performance metric is 
computed separately using simulated time series data for each of the six 
CSO outfall junctions. Furthermore, CSO metrics are also determined at 
the system level by aggregating the time series data from all junctions 
and then calculating each metric in the same manner as for the indi-
vidual outfalls. 

The SWMM version 5.1 served as the primary tool for conducting all 
simulations in this study (Rossman, 2015). The simulations were 
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executed using the Python wrapper pyswmm (McDonnell et al., 2020). 
The infiltration process was simulated using the Green-Ampt model, 
which accounts for antecedent moisture conditions, which are relevant 
when studying the effects of GI (Zhang et al., 2018). Routing was 
simulated using the dynamic wave method. Groundwater infiltration 
into the drainage system was included dynamically using SWMM’s 
groundwater modules (Rossman and Huber, 2016). For dry weather 
flows (municipal sewage), hourly variations for different days of the 
week were included (Keller, 2016). Additional model parameters, such 
as subcatchment characteristics, and simulation characteristics, 

including dry weather and routing step, are summarized in Rodriguez 
(2022). In the Piz Daint Cluster, a hybrid Cray XC40/XC50 supercom-
puter was used to deploy all the simulations for this study (Swiss Na-
tional Supercomputing Centre, 2022). 

2.2.3. Step four: correlation analysis 
As described in step four of the modified GRA (Fig. 1, and Rodriguez 

et al., 2023), each CSO discharge performance metric is matched with a 
rainfall index that is most indicative of this metric. This matching is done 
by selecting the metric-index combination with the strongest 

Fig. 1. Overview of the methods of this study, including use of the modified, extended Global Resilience Analysis by Rodriguez et al. (2023) to evaluate the effect of 
green infrastructure on resilience. New in this study is the application under different climate change scenarios and calculation of the adaptive capacity of green 
infrastructure. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Spearman’s rank correlation coefficient in the historical period at a 
system level (see Table 1 for a list of most indicative rainfall indices for 
each CSO metric). A summary of the process to select the most repre-
sentative rainfall index is presented in the Supplementary Information 
(SI). 

2.2.4. Steps five and six: calculating the resilience metrics 
In step five, the threat-strain curve is then fitted using each CSO 

performance metric (y-axis) and its most indicative rainfall index (x- 
axis), based on a polynomial regression model using cross-validation in 
Scikit-Learn (Scikit-Learn Developers, 2011), following Rodriguez et al. 

(2023). A separate curve is fit to the historical rainfall and all of the 
future rainfall scenarios. The area under the stress-strain curve is then 
used to calculate the resilience indicator for each CSO performance 
metric and future rainfall scenario. A higher resilience indicator repre-
sents greater system resilience. 

Finally, in step six, the CSO resilience index is calculated for the 
system by aggregating the resilience indicators using a weighted sum-
mation (in this case, equal weights) both for the historical period and 
future rainfall scenarios. 

2.3. Quantifying the adaptive capacity 

As shown in Fig. 1, an additional adaptive capacity metric is calcu-
lated in this study to understand how much GI offsets climate change 
based on resilience metrics. Adaptive capacity is “the property of a 
system to adjust its characteristics to expand its coping range under 
future climate conditions” (Berger et al., 2014). While the CSO resilience 
index indicates the state of the system at a certain point or period of time 
(i.e., a single simulation time step or several years), the adaptive ca-
pacity is comparative and quantifies how much GI offset the effects of 
climate change with respect to a historical baseline. 

Kim et al. (2022) propose an equation to quantify the adaptive ca-
pacity of bioretention cells by focusing on stormwater depth as a per-
formance metric. In our research, we have adopted this equation by 
using the resilience indices to represent system performance and apply it 
across a range of green infrastructure types. 

Aj =
Futj − FutGI j

Futj − Prej
× 100 [1]  

Where Aj, the adaptive capacity (a percentage), represents the extent to 
which the green infrastructure implementation offsets the effects of 
climate change for the resilience indicator, j, in a future (Fut) climate 

Fig. 2. Overview of the Fehraltorf sewer system, with the combined system evaluated in this study highlighted in orange (Base map source: Esri and Garmin, 2017). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
CSO performance metrics and their most representative rainfall indices were 
used in this study.  

CSO Performance Metrics Notation Most indicative 
Rainfall Indices 

Notation 

Total yearly CSO discharge totcso Total precipitation ≥
daily 90th percentile 

toth90 

Total CSO discharge 
duration 

durcso 95th hourly 
percentile 

95ph 

Annual spill frequency freq 95th hourly 
percentile 

95ph 

Maximum daily CSO 
discharge 

maxdcso Total precipitation ≥
daily 99th percentile 

totd99 

Number of days with CSO 
discharge ≥ 50m3 (days) 

dischnd50 Total Yearly 
Precipitation 

total 

Number of days with CSO 
discharge ≥ 500m3 

dischnd500 99th hourly 
percentile 

toth99 

Number of days with CSO 
discharge ≥ 1000m3 

dischnd1000 90th daily percentile totd90 

Inverse of the mean number 
of consecutive days 
where CSO discharge 
<0.1 m3 

incddmean Number of rain days 
with precipitation 
>25 mm 

excd25  

M. Rodriguez et al.                                                                                                                                                                                                                             



Journal of Environmental Management 353 (2024) 120229

5

with respect to a present (Pre) climate. 
Aj is calculated for all the resilience indices considered in the resil-

ience assessment (step 5), as well as, the aggregated CSO resilience index 
(step 6). A higher Aj value reflects an improved adaptive ability of the 
intervention. When Aj is 100 %, the studied intervention manages to 
eliminate the impact of climate change, so that the system behaves as it 
would in the original baseline scenario. In the case that Aj is higher than 
100 %, the green infrastructure intervention improves resilience levels 
in the urban drainage system with respect to the historical baseline. If Aj 

is zero, the strategy does not affect the system’s resilience in the future 
scenario. Furthermore, if Aj is lower than zero, it means that either the 
system presents higher resilience under the future rainfall projections 
(Futj − Prej < 0), or that the GI strategies cause a negative impact on the 
resilience of the system (Futj − FutGIj < 0). 

2.4. Future rainfall scenarios 

As discussed previously, both historical (2005–2019) and predicted 
future (2085–2099) rainfall data are used in the continuous hydrologic 
simulation model. Historical rainfall for the station closest to Fehraltrof 
(Kloten, Zurich) was obtained from the Swiss Federal Office of Meteo-
rology and Climatology (MeteoSwiss, 2022). Future rainfall scenarios 
were obtained from EURO-CORDEX (Benestad et al., 2021), which 
provides a suite of Regional Climate Models (RCMs) that have been 
forced by various General Circulation Models (GCMs) from the fifth 
Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012), 
resulting in various GCM-RCM combinations (Jacob et al., 2014). 
Although GCM runs from CMIP6 have been completed (Eyring et al., 
2016; Hausfather, 2019a, 2019b), the output from the RCMs forced with 
this newest generation of GCMs is not yet publicly available. 

EURO-CORDEX output is available as rainfall time series with a 
spatial resolution of 0.11◦ (12.5km x 12.5 km) between 2006 and 2100 
at an hourly to daily resolution (EURO-CORDEX, 2021). In this study, 
the future period between 2085 and 2099 was selected as it corresponds 
to the final 15 years of the EURO-CORDEX project, which allows for 
consideration of a distant future scenario, enabling a comprehensive 
exploration of potential long-term resilience dynamics. 

To capture the scenario and model uncertainties, this study evalu-
ated a range of different climate projections, considering different 
Representation Concentration Pathways (RCP) and different GCM-RCM 
combinations. RCPs represent different greenhouse gas concentration 
trajectories, with RCP 2.6, representing a low-emission scenario, RCP 
4.5 describing a mid-emission scenario, and RCP 8.5 a ‘business-as- 
usual’ scenario representing the worst-case (IPCC, 2014). The climate 
modelling community generally recommends considering an ensemble 
of projections when evaluating impacts related to climate change due to 
the uncertainties linked to a single climate projection (Benestad et al., 
2021; Taylor et al., 2012; van Vuuren et al., 2014). 

Six different future rainfall scenarios, based on the different GCM- 
RCM-RCP combinations, are proposed in this study (see Table 2). The 

GCM-RCM combinations were selected in this study primarily because 
they were the only combinations available at an hourly time step, which 
is useful for capturing the high-speed interactions between rainfall and 
runoff (Cook et al., 2017). The first three combinations consider 
different RCP scenarios with the same GCM-RCM combination. The 
second set of GCM-RCM-RCP combinations considers different 
GCM-RCM combinations only for RCP 8.5. This selection of the 
high-emission trajectory is indicative of a "worst-case" scenario and is 
pivotal to gain a comprehensive understanding of extreme impacts, 
which holds particular significance in the analysis of resilience. This 
second set of combinations represents a good range of potential futures. 
Based on the ranking developed by Vautard et al. (2021), considering 
the bias for 24 climate indicators and evaluating a large EURO-CORDEX 
regional climate model ensemble, the RCA4 projections are found to be 
the lower part of the ranking, and the COSMOcrCLIM tend to be in the 
upper part of the ranking. 

Data from the 12.5 × 12.5 km grid that contains Kloten, Zurich 
(location of the weather station for the historical period) was extracted 
for all climate model combinations. Since the RCM spatial resolution is 
lower than what is required by hydrologic simulation models (station 
scale) (Cook et al., 2017, 2019), the future rainfall data were 
biased-corrected using Kernel Density Distribution mapping to adjust 
the RCM simulations to the station scale (Cook et al., 2019, 2020; 
Mcginnis et al., 2015). The different future rainfall scenarios were 
adjusted using the historical Kloten (Zurich) station data. 

2.5. Green infrastructure scenarios 

In addition to the historical and future simulations, the CSS is also 
simulated with and without GI. Three commonly employed GI types are 
considered in this study, bioretention cells (BC), green roofs (GR), and 
permeable pavements (PP), each with different combinations of mech-
anisms that delay stormwater from entering the sewer (e.g., infiltration, 
evapotranspiration, detention). These different mechanisms are useful 
to illustrate how different green infrastructure types will affect the 
system resilience under climate change. All the strategies are tested at a 
maximum spatial extent determined by the land use type of each sub- 
catchment (see Rodriguez, 2022). The maximum spatial extent 
approach serves as a benchmark to compare the effectiveness of GI 
across different locations within the catchment. Standard parameters 
based on literature and SWMM manuals are used for GI parametrisation 
(Rossman, 2015; Rossman and Huber, 2016; Wang et al., 2017). Runoff 
from impervious areas is routed to bioretention basins, and runoff from 
green roofs is re-routed to the sewers through the pervious areas. 
Permeable pavement only treats rainwater falling on its surface area. 
The pervious pavement is unlined, as it allows for infiltration from the 
storage layer. The selection of GI parameters represents a best-case 
scenario, aiming to identify the maximum potential impact on CSO 
discharges in terms of resilience. Alternative GI parametrisation would 
change the results obtained. Additional information on the GI SWMM 
modelling and parameterisation can be found in the SI. 

3. Results and discussion 

3.1. Future rainfall scenarios and the CSO discharges 

Results for the different CSO performance metrics for the historical 
(2005–2019) and future (2085–2099) scenarios are presented in Fig. 3. 
The mean value of the most representative rainfall index for each metric 
is also highlighted. 

Under all future rainfall scenarios, the majority of CSO performance 
metrics indicate a deterioration in the performance of the CSS and an 
intensification of CSO events. As expected, the NCC_RCA4_8.5 scenario, 
associated with the highest mean annual rainfall, results in the highest 
median values across the CSO performance metrics. This is consistent 
with the intensification of the global hydrological cycle caused by 

Table 2 
GCM-RCM-RCP combinations considered.  

Notation General Circulation 
Model (GCM) 

Regional Climate 
Model (RCM) 

Radiative 
forcing (W/ 
m2) 

NCC_RCA4_2.6 Norwegian Earth 
System Model (NCC- 
NorESM1-M) 

Rossby Centre 
Regional Climate 
Model (RCA4) 

2.6 

NCC_RCA4_4.5 NCC-NorESM1-M RCA4 4.5 
NCC_RCA4_8.5 NCC-NorESM1-M RCA4 8.5 
ICHEC_RCA4_8.5 ICHEC-EC-EARTH RCA4 8.5 
NCC_COSMO_8.5 NCC-NorESM1-M COSMO-crCLIM- 

v1-1 
8.5 

MPI_COSMO_8.5 MPI-M-MPI-ESM-LR COSMO-crCLIM- 
v1-1 

8.5  
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Fig. 3. CSO performance metrics for the baseline scenario and future rainfall scenarios. The position of the marker represents the median value across all years, the 
colour of the marker shows the mean of the most representative rainfall index for the CSO performance metric, and the size of the marker shows the ratio between the 
median yearly rainfall in the RCP scenario and the historical baseline. Refer to Table 1 for the notation of the rainfall indices and the CSO performance metrics. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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climate change (Mo Wang et al., 2019). Among the different GCM-RCM 
combinations under RCP 8.5 (NCC_RCA4, ICHEC_RCA4, NCC_COSMO, 
MPI_COSMO), NCC_RCA4 stands out as the most extreme or worst-case 
scenario. Surprisingly, results from these combinations are comparable 
to or lower than those under RCP 2.6 and 4.5 for NCC_RCA4. Never-
theless, it is crucial to recognise that these findings represent just one of 
many potential future scenarios and come with uncertainties tied to 
climate models and downscaling methods (Benestad et al., 2021). 
Evaluating various models and RCPs is essential to account for these 
uncertainties (Benestad et al., 2021; Knutti et al., 2010). 

While differences among future rainfall scenarios are evident in 
specific metrics, such as frequency, the maximum duration of storms 
remains relatively consistent across all models. The median total yearly 
CSO discharge increases significantly, ranging from 145 % to 256 % (for 
NCC_RCA4_2.6 and NCC_RCA4_8.5, respectively) compared to the 
baseline. However, certain metrics, like annual spill frequency and the 
inverse of the mean number of consecutive days without CSO, show 
minimal changes and even slight reductions in some scenarios. This is 
because median CSO duration generally decreases in most scenarios 
(ranging from − 7 % to − 13 % for NCC_COSMO_8.5 to NCC_RCA4_2.6) 
and could be linked to a decrease in future rainfall event durations and a 
shift in system response (Abdellatif et al., 2015). Consideration of not 
only median values but also variability across different future rainfall 
scenarios is crucial. When comparing RCPs under NCC_RCA4, RCP 4.5 
exhibits the highest interquartile variability, aligning with the observed 
variability in rainfall indices. 

In terms of the relationship between rainfall indices and CSO per-
formance metrics, the trends are not always clear. Within the same 
GCM-RCM combination (NCC_RCA4), higher rainfall indices generally 
correspond to higher CSO performance metrics, as expected from the 
results on the correlations under historical rainfall (Rodriguez et al., 
2023). However, exceptions are noted for CSO duration, frequency, and 
the inverse of the number of days without CSO, where lower RCPs 
sometimes exhibit higher CSO performance metrics with lower rainfall 
indices, as previously mentioned. The relationship between rainfall 
indices and CSO performance metrics varies among different GCM-RCM 
combinations, suggesting that the chosen rainfall index may not always 
accurately represent future rainfall and can vary based on the climate 
projection selected. 

Overall, the NCC_RCA4_8.5 scenario represents the worst-case 

scenario with the highest rainfall indices and the greatest increase in 
total precipitation. However, not all CSO performance metrics increase 
linearly with radiative forcing compared to the baseline. Comparing 
different GCM-RCM scenarios is essential, as each presents a plausible 
future scenario, and trends may vary from metric to metric. It is 
important to emphasise that these results concern specifically the Feh-
raltorf CSS and its unique characteristics. Extrapolating these findings to 
other catchments is not advisable, as climate change impacts can vary 
significantly depending on specific catchment characteristics. Never-
theless, the methodologies used to assess future rainfall scenarios can be 
applied to other catchments for similar evaluations. 

3.2. Baseline resilience analysis 

Utilizing area calculations from stress-strain curves (shown in the SI), 
the resilience indices are presented in Fig. 4 for the system without GI 
interventions. These indicators, shown on a polar plot, offer insights into 
CSS resilience. This standardised approach allows for quantitative 
resilience assessment and facilitates comparisons among various CSO 
metrics. Each axis on the polar plot corresponds to one of these resilience 
indices, with higher values indicating increased CSS resilience. Resil-
ience indicators for different outfalls can be found in the SI. 

Under future rainfall scenarios, most resilience indicators decrease, 
but the magnitude varies. Fig. 4a, displaying the NCC_RCA4 combina-
tion under different RCPs, reveals a clear reduction in resilience in-
dicators in the future as the radiative forcing increases. Notably, the 
resilience indicators for annual spill frequency and the inverse of the 
mean consecutive CSO-free days do not follow this trend, consistent with 
our previous discussion. In Fig. 4b, comparing different GCM-RCM 
combinations under RCP 8.5, the NCC_RCA4 model combination 
shows the lowest resilience values for most indicators considered. 

Overall, calculating resilience offers valuable information for rela-
tive comparisons and provides a quantitative measure for each CSO 
performance metric. The polar plots quickly compare different outfalls 
and the entire system. These resilience indicators establish a quantita-
tive foundation for evaluating the system. They are an effective way to 
analyse the effect of different interventions (such as GI), allowing for a 
comparison of their performance at various system points. 

In summary, the results underscore the CSS’s resilience to shifting 
rainfall patterns associated with climate change. The decline in 

Fig. 4. Computed resilience indices for the system for the different future rainfall scenarios considered. The higher the resilience index, the higher the resilience of 
the system. (a) NCC-NorESM1-M-RCA4 under different RCPs (2085–2099). (b) RCP 8.5 under different GCM-RCM combinations (2085–2099). Note that the polar 
plots are scaled to 0.8, instead of the maximum value possible for the resilience indicators (1), to allow better viewing of the results. 
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resilience indicators indicates an elevated risk of CSO events and em-
phasises the importance of implementing effective interventions to 
enhance the system’s ability to adapt to these evolving challenges. 
Furthermore, the variability in the response of resilience indicators 
highlights the need for a nuanced approach to CSSmanagement. 

3.3. Green infrastructure effect on resilience under future rainfall 
scenarios 

3.3.1. CSO resilience index 
Fig. 5 depicts the CSO resilience index, both with and without GI 

across different future rainfall scenarios, compared to the historical 
baseline (represented by the black dashed line). The CSO resilience 
indices for the system’s outfalls are presented in the SI. 

While the implementation of GI does enhance resilience, it is evident 
that even at the maximum spatial extent, GI cannot completely offset the 
impacts of climate change under any of the selected future rainfall 
scenarios. In this resilience analysis, various rainfall types and profiles 
were considered based on historical time series data. The limited 
improvement in resilience performance under the scenarios considered 
may be attributed to the fact that GI performance tends to decrease for 
high-intensity and long-duration storms (Webber et al., 2020). This 
highlights the complexity of enhancing resilience in CSS even with GI 
interventions. 

Among the considered GI strategies, green roofs consistently prove to 
be the most effective choice for this catchment across all future rainfall 
scenarios. Permeable pavements also exhibit considerable potential, 
albeit with slightly lower performance compared to green roofs. These 
findings are tied to the specific parameterisation employed for different 
GI strategies. The approach of rerouting green roof discharge to pervious 
areas prior to entering the sewer system plays a pivotal role in their 
superior performance, compared to previous studies where green roofs 
do not outperform other GI types (Joshi et al., 2021). The decision to 
route runoff from green roofs to pervious areas in our study represents a 
best-case scenario, aiming to identify the maximum range of GI impact 
on CSO discharge in terms of resilience. Therefore, accurately repre-
senting and reporting GI parameterisation, including routing, in models 
and literature is crucial to evaluating GI performance. As this is out of 
the scope of this study, future research endeavours should give careful 
attention to this aspect to enhance our understanding of the efficacy of 
GI strategies in CSS with respect to their parameterisation. 

Overall, GI improves resilience to some extent, however, this 
improvement will not allow it to offset the effects of climate change. To 

enhance resilience further, alternative strategies such as combinations of 
different GI and grey infrastructure should be explored, as suggested in 
previous studies (Casal-Campos et al., 2018, 2015; Mingming Wang 
et al., 2019). However, these considerations go beyond the scope of this 
paper, which aims to present a standardised method for measuring 
resilience under future rainfall scenarios. The CSO resilience index 
shows the aggregated results of all the resilience indices and therefore 
provides an easier way to understand the best GI strategy in terms of 
resilience improvement. Further analysis of the different resilience 
indices could provide a more nuanced approach to GI implementation, 
which is explained in the next section. 

3.3.2. The adaptive capacity of green infrastructure 
Fig. 6 shows the adaptive capacity for the different GI types across all 

CSO resilience indicators for the system and the downstream outfall for 
select rainfall scenarios (the remainder can be found in SI). A darker 
green colour represents a stronger, positive impact on the resilience 
indicator and, therefore, a positive adaptive capacity. In this study, all 
the negative adaptive capacity values are related to the baseline scenario 
resilience indicator being lower than the future resilience indicators 
(Futj − Prej < 0). This means that no adverse effects on resilience have 
been observed when applying green infrastructure, both at a system and 
outfall level. Therefore, we do not consider the negative values in the 
figure, and the negative values were transformed to zero. 

Different GI types have varying effects on resilience indicators, and 
these effects change under different future rainfall scenarios. Notably, 
bioretention cells consistently have higher adaptative capacity on the 
total discharge volume and maximum daily discharge, both at the sys-
tem and downstream outfall levels, across all future rainfall scenarios. In 
contrast, the adaptative capacity of green roofs and permeable pave-
ments shows no clear pattern. The variation in their effects is influenced 
by both location and the specific future climate scenario considered. 
Whilst all of the GI types considered adjust peak flow height and timing, 
they present disparities in the results from their working mechanisms 
and their differential responses to varying rainfall characteristics. Bio-
retention cells and green roofs provide infiltration and evapotranspira-
tion, reducing runoff entering the sewer system, whereas permeable 
pavements not only allow infiltration but also detain the water tempo-
rarily in the storage layer (Joshi et al., 2020; Rossman and Huber, 2016). 
Furthermore, as mentioned previously, the results of their comparative 
performance are tied with the parametrisation selected for this study. 

Regarding the variations under different future rainfall scenarios, it 
is important to highlight the disparity in the changes among the adap-
tive capacities. The effectiveness of GIs in managing stormwater and 
enhancing resilience can vary significantly depending on the specific 
characteristics of the rainfall patterns anticipated under future rainfall 
scenarios, which is connected to the different characteristics of the 
future rainfall scenarios discussed in Section 3.1. Consequently, select-
ing the most appropriate GI strategy becomes contingent on under-
standing the rainfall patterns of each future rainfall scenario. 

Under all future rainfall scenarios, the downstream outfall consis-
tently demonstrates higher adaptive capacity compared to the system 
level, as indicated by the mean values at the bottom of figure. As has 
been explored in Rodriguez et al. (2021, 2023), the discrepancy between 
the system and downstream outfall is due to the cumulative effect of the 
GI downstream (the accumulated runoff arriving downstream is lower, 
as the total contributing GI area is higher) and the spatial distribution of 
the GI in the catchment (determined by the land use in the catchment; 
see Section 2.5). This difference suggests that while the system level 
provides an overview of the CSS, each outfall experiences localised 
consequences due to infrastructure characteristics, land-use variations, 
and sub-catchment proportions. This divergence is particularly notice-
able in indicators like the inverse of the mean number of consecutive 
days without CSO, where no significant change is observed at the system 
level, but a substantial increase is detected at the downstream level for 
both green roofs and permeable pavements. The observed spatial effects 

Fig. 5. CSO resilience index for the different strategies proposed at a system 
level. The horizontal black line represents the CSO index for the historical 
baseline (2005–2019). 
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underscore the importance of conducting resilience analysis at various 
points within the catchment, in line with previous results presented in 
Rodriguez et al. (2023). Relying solely on generalised resilience as-
sessments at the system level might lead to overlooking substantial local 
variations. Furthermore, the fact that there are discrepancies between 
the system and outfall imply that the spatial allocation and area of GI 
contributing to each CSO outfall require special attention. 

In summary, these findings emphasise the interplay between GI 
implementation, future rainfall scenarios, and the localised character-
istics of the CSS. To enhance resilience effectively, urban planners and 
stakeholders should carefully consider the challenges and opportunities 
presented by different GI types and their spatial and performance im-
pacts within the catchment. This analysis using adaptation capacity and 
resilience metrics, shows the need for a nuanced approach in urban 
planning and decision-making when applying GI. While system-level 
resilience assessments offer valuable insights, local variations driven 
by future rainfall projections warrant special consideration. Tailoring GI 
strategies to local conditions and a broad scope of future rainfall sce-
narios can lead to more effective and targeted measures for enhancing 
CSS resilience. 

3.4. Limitations and further analysis 

The results presented in this study cannot be generalised and only 
represent the Fehraltorf CSS. However, the methods used to understand 
the resilience and adaptative capacity of different GI types under future 
rainfall scenarios can be applied in other catchments. Different spatial 
extents and distributions could enrich the analysis and bring a complete 
understanding of the adaptation capacity of GI toward climate change. 
Subsequent studies could broaden the applicability of the adapted 
Global Resilience Analysis (GRA) by incorporating future rainfall sce-
narios in diverse geographical locations. This extension would facilitate 
a comprehensive understanding of Green Infrastructure (GI) effects in 
various catchments, yielding results that are more broadly general-
isable. Additionally, augmenting the analysis with economic consider-
ations associated with GI implementation in the catchment would 
deepen insights into the practical aspects of their application. 

The Fehraltorf CSS is not changed in this analysis when analysed in 
future conditions. However, further research could include changes in 
land use (at each subcatchment or by adding new subcatchments), 
changes in urbanisation (by changing the area of the CSS), and popu-
lation changes (by changing the dry weather flows) based on societal 

Fig. 6. Adaptive capacity of GI under the future rainfall scenarios evaluated at the system level and at the downstream outfall (RUB 59). The darker the colour green, 
the better the adaptive effect. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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and political changes in time. These changes could be based on the 
storylines presented in the socio-economic pathways by O’Neill et al. 
(2017) and could be combined with the future rainfall scenarios used in 
this study. This is the approach taken and recommended in the latest 
IPCC climate impact report (IPCC, 2022a). 

The future rainfall analysis could be improved by considering addi-
tional climate projections that would allow for a better understanding of 
model uncertainty. For instance, the selection of the climate projections 
could be performed using a formal multi-model ensemble design method 
instead of manually selecting the models (Mendlik and Gobiet, 2016). 
Additionally, other bias correction techniques could be employed. 
Instead of the 15-year periods used, longer periods (e.g., 30 years or 
more) could reduce the over-interpretation of decadal climate variations 
(Kreienkamp et al., 2012). Furthermore, a comparison between statis-
tical and dynamical downscaling using the newest CMIP6 (Anaraki 
et al., 2023), could also be integrated into the framework as a previous 
step to the modified GRA. 

In this study, GI parameters were fixed and therefore the results 
obtained are intrinsically influenced by these modelling decisions. 
Future research should conduct a sensitivity analysis of the GI param-
eters to understand their influence on the results. Addressing GI 
parameterisation is essential not only for refining our understanding of 
SWMM accuracy but also for elucidating the resilience and adaptability 
of green infrastructure under changing climatic scenarios. Routing is an 
important aspect of GI parametrisation, and it is often not informed in 
studies and literature. The routing assumptions should be tested and 
considered in future research. As GI is added to catchments in the real 
world, future studies should also calibrate and validate results from GI 
simulations to reflect these conditions. 

4. Conclusions 

The effects of green infrastructure (GI) on the resilience of combined 
sewer systems were quantified using an extension of the Global Resil-
ience Analysis method. Different future rainfall scenarios were obtained 
via the EURO-CORDEX database. A period of 15 years in the future 
(2085–2099) was compared with a historical rainfall period 
(2005–2019).  

• Future rainfall scenarios show lower resilience indices (i.e., poorer 
system performance), with the Rossby Centre Regional Climate 
Model (RCA) forced by the Norwegian Earth System Model (NCC) at 
RCP8.5 being the worst-case scenario considered. The most affected 
CSO performance metric is the total CSO discharge volume, with 
increases of more than 250 % under this worst case climate model 
scenario.  

• While green infrastructure enhances resilient, it is insufficient to 
offset the changes under the future scenarios considered. Imple-
menting GI strategies, even at maximal spatial extent, falls short of 
achieving 100 % adaptive capacity across all assessed indicators. The 
highest observed capacity reaches only 48 %, underscoring the 
multifaceted challenges in enhancing urban drainage system (UDS) 
resilience.  

• Green infrastructure types affect resilience indicators differently. 
Bioretention cells consistently exhibit effects on the total discharge 
volume and maximum daily discharge, both at the system and 
downstream outfall levels. In contrast, green roofs and permeable 
pavements do not show a clear pattern in terms of which resilience 
indicators are most affected. These disparities in adaptive capacity 
among GI types arise from their unique mechanisms and their vari-
able responses to future rainfall characteristics.  

• The effects of green infrastructure are not the same in all system 
outfalls and the differences among the future rainfall scenarios 
contribute to these local variations. Spatial effects in the UDS un-
derscore the importance of conducting resilience analyses at multiple 
locations within the catchment. The results emphasise that the 

impacts on CSO performance metrics are not uniform across the 
catchment and are influenced by local conditions and future rainfall 
patterns. Consequently, relying solely on generalised resilience as-
sessments at the system level may overlook significant local varia-
tions. Climate projections play a pivotal role in determining the 
effectiveness of GI strategies, as their performance varies signifi-
cantly depending on the anticipated characteristics of rainfall events. 

This study underscores the intricate interplay between GI strategies, 
climate scenarios, and the localised characteristics of combined sewer 
systems. Urban planners, stakeholders, and decision-makers should 
carefully consider these nuances to develop targeted measures that 
enhance resilience effectively. A comprehensive approach that in-
tegrates local variations and future rainfall scenarios into management 
will be pivotal in addressing the challenges posed by climate change and 
ensuring the resilience of urban drainage systems. Future research 
should consider the addition of socioeconomic evolution pathways 
coupled with future rainfall projections, considering urbanisation, 
population growth and other changes that would improve the analysis 
and the effects of climate change. Furthermore, considering climate 
ensembles (with the addition of more general and regional circulation 
model combinations), could improve the analysis and contemplate the 
uncertainties in climate models. 
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