
Water Research 253 (2024) 121284

Available online 6 February 2024
0043-1354/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Do baseline assumptions alter the efficacy of green stormwater 
infrastructure to reduce combined sewer overflows? 

Mayra Rodriguez a, Giovan Battista Cavadini a,b, Lauren M. Cook a,* 

a Department of Urban Water Management, Swiss Federal Institute for Aquatic Research, Dübendorf, Switzerland 
b Institute of Environmental Engineering, ETH Zürich, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Combined sewer systems 
Evapotranspiration 
Modeling assumptions 
Groundwater 
SWMM 

A B S T R A C T   

Green stormwater infrastructure (GSI) is growing in popularity to reduce combined sewer overflows (CSOs) and 
hydrologic simulation models are a tool to assess their reduction potential. Given the numerous and interacting 
water flows that contribute to CSOs, such as evapotranspiration (ET) and groundwater (GW), these models 
should ideally account for them. However, due to the complexity, simplified models are often used, and it is 
currently unknown how these assumptions affect estimates of CSOs, GSI effectiveness, and ultimately planning 
guidance. This study evaluates the effect on estimates of CSOs and GSI effectiveness when different flows and 
hydrologic processes are neglected. We modified an existing EPA SWMM model of a combined sewer system in 
Switzerland to include ET, GW, and upstream inflows. Historical rainfall data over 30 years are used to assess 
volume and duration of CSOs with and without three types of GSI (bioretention basins, permeable pavements and 
green roofs). Results demonstrate that neglect of certain flows in modelling can alter CSO volumes from -15 % to 
40 %. GSI effectiveness also varies considerably, resulting in differences in simulated percent of CSO volume 
reduced from 8 % to 35 %, depending on the GSI type and modeled flow or process. Representation of GW within 
models is particularly crucial when infiltrating GSI are present, as CSOs could increase in certain subcatchments 
due to higher GW levels from increased infiltration. When basing GSI planning decisions on modeled estimates of 
CSOs, all relevant hydrologic processes should be included to the extent possible, and uncertainty and as
sumptions should always be considered.   

1. Introduction 

Combined sewer systems are designed to collect both sewage and 
stormwater in the same pipe network and convey it to wastewater 
treatment plants (WWTPs) (Butler et al., 2018). When the amount of 
stormwater entering the pipes exceeds the system capacity, untreated 
wastewater is discharged into receiving waters (Balmforth, 1990). These 
discharges, referred to as Combined Sewer Overflows (CSOs), are one of 
the main causes of urban water pollution (Copetti et al., 2019) and many 
cities and governments worldwide are under pressure to reduce or 
eliminate them (Environment Agency and Department for Environment, 
2022; U.S.C 2020). Green stormwater infrastructure (GSI), such as bio
retention basins, rain gardens, green roofs and permeable pavement, is 
gaining popularity as a measure to reduce CSOs (Fischbach et al., 2017; 
Fu et al., 2019; Roseboro et al., 2021) because these systems retain, 
infiltrate, and evaporate stormwater before it reaches the sewer 
(Almaaitah et al., 2021), are cost-effective (Browder et al., 2019; Matsler 

et al., 2021), and provide numerous environmental and social benefits 
(Chatzimentor et al., 2020; Cook and Larsen, 2021). 

To effectively plan for reduction measures, cities must first charac
terise the volume, duration, and frequency of CSOs entering adjacent 
receiving waters and then estimate the coverage of GSI needed to ach
ieve desired reductions. Since CSOs are rarely measured due to logistic 
difficulties of in-sewer devices (Passerat et al., 2011), hydrologic 
simulation models, such as the EPA Storm Water Management Model 
(SWMM) (Rossman, 2015), MIKE (DHI 2023), and InfoWorks ICM 
(Innovyze 2014), are typically used to estimate CSOs (Niazi et al., 2017). 
These discharges are, however, notoriously difficult to simulate as there 
are numerous water flows that can affect water level within the com
bined system, including wastewater, stormwater, groundwater (GW), 
and other inflows (from upstream catchments, for instance). Evapo
transpiration may also play a role, as it can alter stormwater flows, 
particularly when GSI are present (Ebrahimian et al., 2019). To calculate 
these flows and set up the model, ample information about the combined 

* Corresponding author at: Eawag, Überlandstr. 133, 8600 Dübendorf, Switzerland. 
E-mail address: Lauren.Cook@eawag.ch (L.M. Cook).  

Contents lists available at ScienceDirect 

Water Research 

journal homepage: www.elsevier.com/locate/watres 

https://doi.org/10.1016/j.watres.2024.121284 
Received 19 June 2023; Received in revised form 6 December 2023; Accepted 5 February 2024   

mailto:Lauren.Cook@eawag.ch
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2024.121284
https://doi.org/10.1016/j.watres.2024.121284
https://doi.org/10.1016/j.watres.2024.121284
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2024.121284&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Water Research 253 (2024) 121284

2

system and surrounding catchment must be determined (e.g., number 
and size of pipes, land cover, etc.), which often requires coordination 
with local municipalities (Blumensaat et al., 2023). 

These simulation models thus range in complexity, assumptions, and 
structure, which could significantly influence the conclusions of the 
analysis, including the surface area of GSI needed to reduce CSO dis
charges and in consequence, the costs involved (Broekhuizen et al., 
2019; Casal-Campos et al., 2015). GSI effectiveness against CSOs varies 
considerably among studies and catchments (Fu et al., 2019; Jean et al., 
2022; Joshi et al., 2021; Roseboro et al., 2021; Torres et al., 2021). Some 
studies find that GSI can reduce CSO volume by more than 90 % (Jean 
et al., 2022; Joshi et al., 2021), outperforming traditional storage tanks 
(Joshi et al., 2021). However, other studies show that CSO volumes 
would be reduced by less than 20 % (Fischbach et al., 2017; Roseboro 
et al., 2021) and additional grey infrastructure would still be required to 
fully eliminate CSOs, especially given expected increases in rainfall in
tensity due to climate change (Casal-Campos et al., 2015; Roseboro 
et al., 2021). Parameter uncertainty of catchment characteristics (e.g., 
terrain, rainfall, imperviousness, sewer system design, climate, GSI 
placement) (Hung et al., 2020) and GSI characteristics (e.g., imple
mentation area, infrastructure type, soil type, etc.) (Leimgruber et al., 
2018) contribute to this variability. However, assumptions related to 
water flows and processes (such as ET and GW), as well as, equations, 
numerical methods, and boundary conditions (Deletic et al., 2012) also 
play a role. For instance, the two studies that have accounted for feed
backs between GSI and the GW table (albeit at a smaller scale) found 
that this more realistic representation improved the model accuracy of 
bioretention basin simulations (Zhang et al., 2018) (in one study by as 
much as 14.7 % (Kim et al., 2019)). Another study found that including 
shading and ET in hydrologic simulation models reduced the error of 
simulated outflows from green roofs by 18 % (Hörnschemeyer et al., 
2021). External inputs to the sewer system, such as infiltration and in
flows (I&I) or direct connections from other drainage areas, are also 
relevant for estimating sewer flows (Staufer et al., 2012; Weiß et al., 
2002). For instance, (Cook et al., 2018) found that average sewer flows 
could nearly double when I&I are considered. Ultimately, when 
contributing flows and processes are poorly represented, so are CSOs, 
and the required GSI to reduce them. 

Despite this evidence, many studies neglect GW and ET, as well as, 
other external inputs to the sewer system in their modelled represen
tation of combined sewers (e.g., Joshi et al. (2021) and, Wang et al. 
(2017)). This is understandable, as it may not be feasible or worthwhile 
to include every detail in every case study. However, to date, there are 
no studies that have evaluated the individual nor the combined effect of 
all contributing flows (e.g., GW, ET, and external inflows) on CSOs at a 
catchment scale. Inaccurate estimations of CSOs and resulting GSI 
effectiveness could lead to improper planning and underestimation of 
costs, however, increased complexity takes time and effort. More in
formation is needed to make an informed decision about how accurately 
reality should be represented when evaluating the effectiveness of GSI 
for combined sewer systems. 

The goal of this study is to evaluate how estimations of CSO dis
charges, and the effectiveness of green stormwater infrastructure to 
reduce these discharges, are affected when hydrologic simulations 
neglect real-world flow conditions. We evaluate the effects of three 
flows, groundwater (GW), evapotranspiration (ET), and boundary in
flows (BI) from an upstream catchment, on CSOs without GSI, as well as, 
with three types of GSI, including bioretention basins, permeable 
pavements and green roofs. This study will set the stage to determine 
how accurate reality must be represented in combined sewer system 
models in order to accurately assess GSI requirements. It will inform 
engineers and planners about the importance of including these 
different flows in their models, as well as, the expected range and un
certainty in estimations of CSOs and GSI effectiveness when they are 
excluded. 

2. Methods and data 

The EPA Storm Water Management Model (SWMM) is used to test 
how an accurate representation of all hydrological processes and water 
flows affects simulated estimates of CSOs and the ability of GSI to reduce 
them. SWMM is a hydrologic and hydraulic model widely used for long- 
term, continuous simulation of stormwater runoff, drainage and sewer 
systems, as well as, GSI (Rossman, 2015). 

As shown in Fig. 1, the original model, described in Joshi et al. 
(2021) (not used in this study), underwent minor updates (to the 
imperviousness and infiltration scheme; see Section 2.1) and is herein 
referred to as the base case model (BC). The BC model simplifies or 
excludes BI, ET, and GW during simulation (as in Joshi et al. (2021)) and 
is used for comparison to simulations that individually include these 
flows (BI, ET, and GW model simulations shown in Fig. 1 and described 
in Section 2.2). The combined model (CB) integrates BI, ET, and GW 
during simulation and is also compared to the BC model (see Section 
2.2). The BC and CB models are both calibrated and validated in this 
study (calibration 1 and 2, respectively, in Section 2.3). All model ver
sions are first simulated without GSI elements to represent baseline CSO 
conditions and then with three types of GSI: bioretention basins (bb), 
permeable pavements (pp), and green roofs (gr) (Section 2.4). CSOs are 
quantified at the system level (by summing the discharge from six out
falls; see Section 2.1) using the total annual volume, the duration (hours 
per year), and the frequency (days per year). A CSO event is classified as 
discharge that exceeds 0.01 m3h− 1. 

2.1. Base case (BC) simulation model 

In this study, the BC SWMM model is based on the combined sewer 
system (CSS) of a 7000-inhabitant catchment, Fehraltorf, located 15 km 
east of Zurich, Switzerland (Federal Office for Statistics, 2022; Keller, 
2016). This real-world CSS carries sewage from Fehraltorf and two 
neighbouring municipalities (Rumlikon and Russikon, as shown in 
Fig. 2) to the WWTP (max. capacity: 180 Ls− 1). Six CSO outflows (shown 
in green in Fig. 2) are active in most rainfall events and GW infiltration 
can represent between 15 % and 40 % of the dry weather flows arriving 
at the WWTP (Hadengue et al., 2021; Krejci et al., 1994). Thus, 
groundwater infiltration into the pipes is expected to be high (Keller, 
2016; Ramgraber et al., 2021). 

The original SWMM model, developed by Keller (Keller, 2016) and 
later updated by Joshi et al. (Joshi et al., 2021), includes 246 sub
catchments (95.1 hectares) that are connected to the CSS (shown in 
Fig. 2 in purple), with 427 manholes (i.e., nodes in SWMM), 430 sewer 
pipes (i.e., links in SWMM), six CSO outfalls (RUB 40a, RUB 48b, RUB 
59, RUB 128, and SK 102; shown in Fig. 2), and five storage tanks (not 
shown). In the original model, infiltration was modelled using a Hor
tonian approach (Rossman and Huber, 2016), while ET was considered 
as constant monthly rates, albeit with potential for oversimplification 
(Bai et al., 2015). Measured boundary inflows (from 2016 – 2018; 
available in the Urban Water Observatory dataset (Blumensaat et al., 
2023)) were used for calibration only. GW was included in calibration 
and simulation as constant inflows into the nodes, calculated based on a 
night-minimum flow analysis within the catchment (see Hadengue et al. 
(2021), who developed this approach). This model lacks explicit GW 
dynamic modelling, and does not account for the interaction with other 
hydrological processes in the catchment (see Joshi et al. (2021) for more 
information on this version). 

In this study, minor updates are made to the imperviousness and 
infiltration equations of the original model, henceforth referred to as the 
base case (BC) model. Subcatchment percent imperviousness is 
computed using recent data acquisitions of land cover categories pro
vided by the municipality of Fehraltorf (Blumensaat et al., 2023). The 
infiltration model is updated to the Green-Ampt model, chosen for its 
ability to account for soil moisture between rain events, and therefore 
advantageous for continuous simulation (Rossman, 2015; Zhang et al., 
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2018). 
The BC model is calibrated in a consistent manner with the original 

model, apart from ET (explained in Section 2.3; see calibration 1), where 
BI are included as measured data, GW provided as estimated inflows, 
and ET as a timeseries. The BC model is simulated over 30 years without 
BI, GW, and ET to act as a reference case for the other model versions 
(see Section 2.2). 

2.2. Model versions 

The calibrated BC model presented in Section 2.1 is used for com
parison to evaluate how more explicit consideration of ET, BI, and GW 
and their interactions affect simulated estimates of CSO discharge and 
GSI performance. Presented in the following sub-sections, these factors 
are first assessed individually by updating the BC model to more accu
rately represent ET (Section 2.2.1), BI (Section 2.2.2), and GW (Section 
2.2.3). These factors are then assessed altogether within a combined 
(CB) model (Section 2.2.3) that is recalibrated (see Section 2.3). 

2.2.1. Evapotranspiration (ET) 
In the ET model version, evapotranspiration is input into the base 

case model as a user-defined time series of daily values instead of con
stant monthly values (as in Joshi et al. (2021)). This time series, ob
tained from MeteoSwiss for the Kloten weather station, is reference ET 
during the period January 1990–2020, derived from temperature, global 
radiation, humidity and wind measurements without consideration of 
vegetation and crop characteristics (Calanca et al., 2011). An average 
crop coefficient for the catchment could be included to reduce ET values 
in line with expected vegetation characteristics of the subcatchments 

(Allen et al., 1998). However, this value is likely close to one (as re
ported in De-Ville and Stovin (2023)). Reference ET thus constitutes a 
best-case scenario in terms of evapotranspiration rates, enabling inves
tigation of the maximum potential impact of ET on CSOs and serving as a 
standard for other studies. It is worth noting that in SWMM, evaporation 
occurs from both impervious and pervious areas, as long as there is 
water on the surface of the subcatchments to evaporate. 

2.2.2. Boundary inflows (BI) 
The BI model version includes boundary inflows from the upstream 

catchments of Rumlikon and Russikon (see Fig. 2), over the 30-year 
simulation period, as opposed to Joshi et al. (2021) where they are 
ignored. These flows are estimated using a multi-layer perceptron (MLP) 
machine learning model (Scikit-Learn Developers, 2014), which was 
selected because it can learn complex nonlinear relationships between 
input variables and output variables (Maier and Dandy, 2000). Two MLP 
models were developed (one for each boundary inflow) using rainfall 
and flow measurements collected between 2016 and 2022 as part of the 
UWO project (Blumensaat et al., 2021; Figueroa et al., 2021; Keller, 
2016). The MLP models performed satisfactorily for the calibration 
period, with an r2 of 0.69 for Rumlikon, and 0.51 for Russikon. These 
values are considered acceptable for this study, as the flow trends are 
generally well-defined, yet slightly overestimated, representing a con
servative estimate of boundary inflows. Further information on the 
model development and performance can be found in SI S2. 

2.2.3. Groundwater (GW) 
Due to its relevance in the Fehraltorf system, the GW model structure 

explicitly models GW using modules available in SWMM, instead of the 

Fig. 1. Summary of the components of this study: model versions and their calibration and validation, simulated in SWMM, both with and without GSI scenarios, 
then compared by quantifying CSO volume, duration, and frequency from each simulation. 
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calculated flows evenly distributed across the nodes (Hadengue et al., 
2021). SWMM can simulate subsurface flows, including the release of 
GW from a subcatchment, percolation out of a GSI storage unit, and 
inflow and infiltration (Rossman and Huber, 2016; Zhang and Chui, 
2020). However, some GW dynamics are simplified, including the 
feedback with GSI elements and spatial lumping of GW flows (further 
explained in SI S3). Despite these shortcomings, the addition of GW 
modules in the SWMM model is a step forward to evaluate the in
teractions between GW, GSI and the CSS. The parametrisation of the 
SWMM GW modules is determined by automatic calibration in the 
combined model, as described in Section 2.3. The GW model is simu
lated without BI and ET. 

2.2.4. Combined (CB) 
The combined model is calibrated (see Section 2.3, calibration 2) 

after GW modules are included. The CB model is simulated with statis
tically generated BI (Section 2.2.2), ET as a timeseries (Section 2.2.1), 
and with fully calibrated GW modules in SWMM, allowing for in
teractions between the GSI, sewer system, and the GW. 

2.2.5. Simulation and comparison of all model versions 
After calibration, all model versions are simulated in pyswmm 

(McDonnell et al., 2020) using 30-years of 10-minute rainfall data be
tween January 1, 1990 and January 1, 2020 from a weather station in 
Kloten (15-km west of Fehraltorf) (MeteoSwiss, 2017). The parameters 
(e.g., land use) of the model were maintained constant throughout 
30-year period. While we acknowledge that this assumption simplifies 
the real-world dynamics, it allows for a better comparison of the 
modelled flows under investigation. 

To determine if the differences between the model versions are 

statistically significant, a dependent t-test for paired samples is per
formed on the model outputs (CSO volume, duration and frequency), 
using the Scipy python package (The SciPy Community 2023). The re
sults are not considered significantly different if the p-value exceeds the 
confidence interval of 0.01, commonly used in the literature (Freedman 
et al., 2007). A further description of the t-test is available in SI S7. 

2.3. Model calibration and validation 

Due to a lack of field data for certain parameters, the BC model and 
the CB model are both automatically calibrated using a multi-objective 
evolutionary algorithm, NSGA-II (Deb et al., 2002). Four surface pa
rameters are calibrated in the BC model (named calibration 1), while 
twelve parameters are calibrated in the GW model version, including 
soil porosity and seepage rate into deep groundwater (named calibration 
2); see SI S4 for a list of parameters and ranges. Flow and groundwater 
data from the Urban Water Observatory is used for the calibration and 
validation (Blumensaat et al., 2023). Further information on the sensors 
(shown in Fig. 2) and measurement data can be found in SI S1. 

2.3.1. Automatic calibrations using evolutionary algorithms 
The multi-objective evolutionary algorithm used for calibration, 

NSGA-II (Deb et al., 2002), was implemented in Python with the pack
age Pymoo (Blank and Deb, 2020). The optimisation problem in Pymoo 
is formulated as follows, 

Minimize : f1( x→), f2( x→),…, fn( x→) (1)  

x→ ∈

[

x→min, x→max

]

(2) 

Fig. 2. Overview of the Fehraltorf sewer system (Section 2.1) and the sensors used for model calibration (Section 2.3). Information on the sensors and the data used is 
presented in the supplementary information (SI S1). Note: water from the sewer catchment is conveyed towards the wastewater treatment plant (WWTP), while the 
Luppmen creek flows from South-East to North-West. 
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where x→ is the vector of the parameters to be optimised and x→min and 
x→max are the lower and upper bounds of x→, respectively f1( x→), f2( x→),… 
, fn( x→) are the objective functions of x→, which determine the goodness- 
of-fit of the model. In this study, x→ corresponds to the subarea module 
parameters for calibration 1 and the GW module parameters for cali
bration 2 (see SI S4). 

For calibration 1, two objective functions are minimized using data 
from two flow measurements in the main collector in the Fehraltorf 
system (Luppmenstrasse and WWTP, marked in Fig. 2 as F08 and F00, 
respectively), using a modified version of the Nash Sutcliffe Efficiency 
(NSE) coefficient. 

Due to the characteristics of the problem definition in Pymoo, opti
misation needs to be reformulated as a minimisation problem. Thus, the 
objective functions are defined as 1-NNSE (see SI S3), where the NNSE is 
the normalised NSE (Eq. (3)). Since the lower limit of the NSE is -∞, the 
NNSE is used to eliminate plausible issues during calibration. 

NNSE =
1

2 − NSE
(3) 

The NNSE allows to re-scale the range between zero and one (NSE of 
one corresponds to an NNSE of one; NSE of zero to an NNSE of 0.5; and 
NSE of -∞ to an NNSE of zero). The same objective functions are used for 
calibration 2, with the addition of two objectives related to GW: the root 
mean square error (RMSE) between two GW-level measurements 
(shown in Fig. 2) and their respective simulations. Using multiple 
objective functions allows for spatially differentiated evidence of the 
model’s ability to reflect the dynamics of a real-world sewer network. 

The calibration was performed using the one-year period from 1st 
May 2018 to 30th April 2019. For calibrations 1 and 2, boundary inflows 
from the two neighbouring municipalities were supplied to the model as 
time series inputs (limited to the available observed data from UWO) 
and ET was supplied as a time series provided by MeteoSwiss with daily 
resolution (see Section 2.2.1 for more information). For calibration 1 (BC 
model), GW was included as estimated inflows into the nodes (see 
Hadengue et al. (2021)), while for calibration 2 (CB model), the SWMM 
groundwater module was enabled and also calibrated. 

For the validation, the calibrated models were simulated during the 
one-year period from 1st May 2019 to 30th April 2020. In the validation 
process, the RMSE and the NSE were calculated for the different cali
bration locations. A description of the optimisation characteristics used, 
as well as, the selection of the final BC and CB parameters obtained from 
the last generation of the evolutionary optimisation can be found in SI 
S4. 

2.4. Green stormwater infrastructure scenarios 

This study considers three GSI elements, bioretention basins (bb), 
permeable pavements (pp), and green roofs (gr), which are implemented 
on different land cover types (e.g., rooftops, parking lots, grass), thus 
maximising their potential for implementation in urban areas (Joshi 
et al., 2021; Li et al., 2019; Wang et al., 2019). 

Each GSI element is implemented to the same spatial extent, 10.8 % 
of the catchment or 103,082 m2, which is equivalent to the maximum 
spatial extent for the green roofs (representing the area of all available 
flat roofs). The bb replace existing pervious areas in each subcatchment, 
while pp are installed in impervious areas that are not buildings or main 
roads (e.g., streets, pedestrian paths, and car parks) and gr on flat roofs. 
Pervious areas, impervious areas and flat roofs in each subcatchment are 
determined according to the existing land use types in Fehraltorf (ob
tained from the municipality; see SI S5 for further information). 

Runoff from impervious areas is routed to bb, while the other GSI 
only treat rainwater falling on their surface area, mimicking common 
GSI designs (Philadelphia Water Department 2023). Each GSI type is 
added individually to the catchment, resulting in three GSI scenarios. 
Although the total GSI area is equal in all scenarios (allowing for equal 

performance comparison among the scenarios), the resulting spatial 
distribution for each GSI element differs depending on the land use type 
in each subcatchment. The width of each GSI unit is calculated as the 
square root of the subcatchment area, to have a standard assumption for 
each subcatchment and avoid discrepancies in performance. 

GSI parameters for SWMM were obtained from the literature (Joshi 
et al., 2021; Rossman and Huber, 2016; Wang et al., 2019) with relevant 
parameters summarised in Table 1 and the remainder shown in SI S5. 
The parameters are assumed to remain constant throughout the 30-year 
evaluation period. 

3. Results and discussion 

3.1. Model calibration and validation 

The model calibration and validation results for the BC and CB 
models are summarised in Fig. 3, which compares the empirical cumu
lative distribution curves of the observed and simulated flows for two 
points in the main collector (Luppmenstrasse and WWTP, F00 and F08 
respectively in Fig. 2). The tables in each graph show the NSE co
efficients for each model version at that measured location. 

The simulated flows at the WWTP match the observations well, 
which is confirmed by the high NSE values (over 0.5, which is a level 
considered acceptable in hydrological modelling practices (Moriasi 
et al., 2007)). The largest differences between the simulated and 
observed flow at the WWTP are for flows above 180 L s− 1, which is the 
theoretical maximum flow admitted to the WWTP for treatment. This 
limit is respected in the model, even though there are flow observations 
higher than 180 L s− 1 in the sewer. 

At Luppmenstrasse, the models tend to underestimate the flows 
(Fig. 3a). The CB leads to NSE values over the acceptable threshold 
(>0.5), but this is not the case for the BC. Unfortunately, any 
improvement in the representation of the Luppementrasse flows in the 
model leads to poorer performance at the WWTP node (see SI S6). This 
trade-off in model performance, which has been previously reported, 
could be due to several reasons, such as throttles suppressing the effect 
of rainfall-runoff downstream, limitations in measuring in the main 
collector only, and uncertainty in the collected data (Wani et al., 2022). 

Table 1 
Summary of relevant SWMM parameters of GSI elements for surface, soil, stor
age, and underdrain layers. The numbers in the parentheses illustrate the source 
of the parameter values, where (1) is Joshi et al. (Joshi et al., 2021), (2) is 
Rossman and Huber (Rossman and Huber, 2016) and (3) is Wang et al. (Wang 
et al., 2019). Revised values introduced by the authors based on literature and 
the SWMM manual are shown with an asterisk (*). The parameters of the layers 
that are not required by the specific GSI type in the model are shown as N/A (Not 
Applicable). The complete list of GSI parameters is summarised in Table S6 in SI 
S5.  

Layer Parameter [unit] Bioretention 
basin 

Permeable 
pavement 

Green 
roof 

Surface/ 
Pavement 

Berm height [mm]/ 
Thickness pavement 
[mm] 

150* 150 (3) 50* 

Roughness 
(Manning’s n) [-] 

0.2 (1) 0.012 (1) 0.2 (1) 

Permeability [mm 
h− 1] 

N/A 500 (3) N/A 

Soil Thickness [mm] 600 (3) N/A 150 (3) 
Porosity [-] 0.5 (3) N/A 0.45 

(2) 
Conductivity [mm 
h− 1] 

250 (3) N/A 120* 

Storage/ 
Drainage 
Mat 

Thickness [mm] 150 (2) 300 (3) 75 (3) 
Seepage factor [mm 
h− 1] 

7 (3) 7 (3) N/A 

Underdrain Flow coefficient 
[mm h− 1] 

0.5* 0.5 (3) N/A  
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Following a commonly adopted approach in the literature, this 
calibration uses flow and groundwater measurements. This is due to the 
limited availability of CSO volume and duration data. Our assumption is 
that by improving flow prediction performance, as indicated by the 
performance metrics, the model is able to reliably predict CSO dis
charges. This approach is widely used in the literature (James, 2005; 
Joshi et al., 2021). It may be possible to further improve the calibration 
by collecting CSO data with sensors, as well as, selecting other optimi
sation algorithms and spatially changing the subcatchment and GW 
parameters. However, further calibration of the model may only result 
in marginal improvements. For instance, the addition of the GW model 
led to issues in calibration, as several iterations were needed to obtain 
stable flows of GW in the system (related to seepage and conductivity 
parameters). Yet the addition of GW led to minimal change in model 
performance, as can be seen in Fig. 3 (combined model performs nearly 
the same as BC). Thus, for the authors, the advantage of including GW 
modelling does not lie in improved overall model performance, but in 

the ability to account for the dynamic interaction between GW and the 
sewers. However, this advantage may be less useful in SWMM due to the 
limitations in the SWMM GW module (e.g., the lumped nature of the 
modelled aquifers) (Zhang et al., 2018). 

3.2. Comparison of the different model structures 

Fig. 4 presents a comparison of how an accurate representation of 
different hydrological processes and water flows affects simulated esti
mates of annual CSO volume, duration, and frequency at the system 
level (without GSI). The figure also highlights whether inclusion of these 
processes can significantly affect results (shown as letters on top of the 
boxplot, where the same letter indicates that the results do not statisti
cally significantly differ; see also Fig. S7 in SI S7). As expected, the 
inclusion of boundary flows increases the simulated CSO volume (by up 
to 40 %), since more water is entering the sewer system. CSO duration 
and frequency also increase due to the higher catchment residence time 

Fig. 3. Cumulative distribution curves of the observed and simulated flows considering both calibration and validation periods at (a) Luppmenstrasse (F08) and (b) 
the wastewater treatment plant (WWTP) (F00). Refer to Fig. 2 for their location in the catchment. The tables show the Nash-Sutcliffe Efficiency coefficient (NSE) 
values obtained for the calibration and validation period. In (b), the grey region highlights values higher than 180 L/s (maximum flow admitted in the WWTP). 

Fig. 4. Annual CSO volume (left), duration (middle), and frequency (right) for the base-case (BC), evapotranspiration (ET), boundary inflows (BI), groundwater 
(GW) and combined (CB) model versions without GSI. The boxplots represent the variability of the 30 years of simulations, where the box covers the central 50 % of 
the distribution. The whiskers span from the minimum and maximum values within the 99 % range. The red line represents the median of the annual values, while 
black circles are the outliers. The boxplots with the same letter on top do not differ significantly from each other, according to the results of the dependent t-test. 
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(the flows in the sewer pipes include not only wastewater but also 
stormwater from neighbouring municipalities, prolonging individual 
CSO events). When BI are included, results are always statistically 
significantly different from the BC. 

Including ET as a time series in the simulations decreases CSO vol
ume significantly; a median reduction of 15 % with respect to the base 
case model. ET is also the only model structure that reduces the duration 
and frequency of CSO events since surface ET reduces runoff and infil
tration in the soil and thus consequently lowers the runoff volume that 
enters the sewer system. Small CSO emissions are avoided at the 
beginning or end of storm events with respect to the BC. 

The inclusion of GW modelling has a negligible influence on annual 
CSO duration and frequency, but does significantly decrease CSO vol
ume. The CSO volume reductions obtained with the inclusion of GW are, 
however, not significantly different from those of ET, indicating that the 
influence of ET and GW within the model is similar. The minimal (not 

significantly different) effect of GW on CSO duration is due to the 
different timescales of water flowing into the pipes from the GW module. 
During a storm event, water is “stored” in the GW module. Some of this 
water is deeply percolated, while the rest infiltrates into the sewer pipes 
after the storm event (defined by the rates of the groundwater and 
aquifer modules in SWMM, see SI S3). The deep percolation and the time 
lag between the start of the rainfall and the rise in the GW table reduce 
the peak CSO discharge and as a result, CSO volume decreases by 10 %, 
on average. At the catchment scale, more water flows from the sewer to 
the GW aquifer than water out of the aquifer into the pipe. Thus, the GW 
table is primarily below the pipes in most subcatchments; however, 
relevant spatial variations exist (see Section 3.4 for spatial analysis). 

When ET, BI and GW processes are collectively evaluated (in the CB 
model), results are always significantly different from individual inclu
sion of these processes, indicating that individual model versions cannot 
predict the impact of combined hydrological processes on CSO 

Fig. 5. The effectiveness of GSI to reduce CSOs for the various model versions that include different flows and processes (base-case (BC), evapotranspiration (ET), 
boundary inflows (BI), groundwater (GW) and all combined (CB)). (a) Median annual CSO duration, where the dashed vertical line represents median annual CSO 
duration for the BC without GSI. The boxplots represent the variability of the 30 years of simulations, where the box covers the central 50 % of the distribution, the 
whiskers span from the minimum and maximum values within the 99 % range, and the black circles are the outliers. (b) Median annual CSO volume. (c) Median 
percent reduction in annual CSO volume when GSI are included. The last row represents the largest difference in CSO percent reduction between the model versions. 
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discharge. When all processes are combined, CSO volumes increase 
significantly compared to the BC, by 24 % on average. This rise is pri
marily due to the inclusion of BI, since ET and GW both individually 
reduce flows. When all flows are evaluated together, CSO duration and 
frequency are significantly different from the base case, although values 
are only slightly higher than when ET is considered alone. The small 
difference between including ET and all flows shows the relevance of ET 
for CSO duration, which also directly affects GW processes (as less water 
is available for the GW module). 

Although the magnitude of underestimation will vary from catch
ment to catchment, these results show that the efforts to include BI, ET, 
and GW are relevant to estimate CSO discharges, and each process has a 
different magnitude effect on CSO volume and duration. This relevance 
is also reflected in the model validation, as the CB model also improves 
the predictive ability of the WWTP flows, suggesting that the inclusion 
of BI, ET, and GW provides more accurate simulations of CSO discharge. 
Interestingly, CSO volume and duration do not react in the same way to 
model structure changes - a decrease in volume does not automatically 
lead to a decrease in duration. Therefore, both volume and duration 
should be assessed in CSO studies. The frequency, on the other hand, 
commonly used in CSO analyses, follows the same behaviour as the 
duration and therefore only the duration will be further discussed in this 
manuscript. 

3.3. The effect of model structure on simulated GSI effectiveness 

As shown in Fig. 5, when the different model versions are used to 
simulate the ability of GSI to reduce CSOs, bb lead to the largest CSO 
reductions, followed by pp and then gr. These patterns, consistent with 
values previously reported in the literature (Jean et al., 2022; Joshi 
et al., 2021; Roseboro et al., 2021), remain true irrespectively of the flow 
(s) that are included in the model. The superior performance of bb can be 
attributed to their parameters (e.g., dimensions, routing) and location 
within the system. Runoff from impervious surfaces is routed to bb, 
while the other GSI only treat rain falling on the surface, which con
tributes to the largest reductions in duration (Fig. 5a) and volume 
(Fig. 5b-c) of bb. The results with pp show a comparatively moderate 
decrease in duration and volume with respect to the baseline without 
GSI. Most remarkably, gr tend to increase the CSO duration compared to 
no GSI (Fig. 5a), yet decrease the volume (Fig. 5b-c) which may be 
attributed to the water flowing out of the roofs taking a longer time to 
reach the sewer, and thus translating into a higher CSO event duration, 
yet lower volume. 

While the relative rank in performance of the GSI elements does not 
change between model versions, this relative performance is less 
important for planning than the magnitude of change for a particular 
GSI element – i.e., their effectiveness to reduce CSOs. When different 
flow(s) are accurately represented in models, the magnitude of CSO 
reduction varies considerably. These differences are starkest for bb. 
When GW is evaluated alone, the model estimates that when 11 % of 
catchment area is covered with bb, these GSI could reduce CSOs by 92 % 
(nearly all), while when all flows are included (in the CB model), this 
reduction is lowered to only 57 % (nearly half) (Fig. 5c). For pp, effec
tiveness varies from 44 % to 74 %, and for gr, from 10 % to 17 %, 
depending on the model version. Unsurprisingly, the addition of BI re
duces the performance of GSI, as there is more water in the system, while 
adding ET improves GI effectiveness, with a reduction in both CSO 
duration and volume compared to the BC. The inclusion of ET particu
larly increases effectiveness for pp and gr, since these scenarios expand 
the amount of pervious area and thus the potential for ET to occur (more 
surface water available on the subcatchments to evaporate). When all 
flows are combined (in the CB model), CSO duration in the pp and gr 
scenarios are comparable to their durations in ET module, meaning that 
ET is a significant component in reducing CSO duration in GSI scenarios. 

These results highlight that the difference in expected effectiveness 
of GSI will vary considerably depending on the modelling assumptions. 

If a consultant or engineer is tasked with determining how much and 
what type of GSI would be needed to eliminate CSOs, this answer will 
change depending on the care taken to include different hydrological 
processes in the model of the combined sewer system. In fact, by 
ignoring the upstream inflows to the catchment and not accurately 
representing ET (as in previous studies, such as Joshi et al. (2021) and, 
Roseboro et al. (2021), one could overestimate that with both bb and gr, 
CSOs would be eliminated. However, when all hydrologic flows are 
considered (GW combined with ET and BI), which is closest to reality, bb 
plus gr would reduce less than 75 % of CSOs when both cover 11 % of the 
catchment area. As GSI continues to grow in popularity as a 
cost-effective tool to reduce CSOs, more assessments like these will be 
carried out, and decision makers need to be aware of the sensitivity of 
the simulations to the underlying modelling choices. 

3.4. The effect of groundwater on GSI in SWMM 

The GW model plays a particularly striking role in the simulated CSO 
volume reductions obtained with bb and pp. As more infiltration and 
accumulation of stormwater in the soil is possible in the GW module, the 
simulation results show a considerable reduction in runoff and annual 
CSO volume. However, the GW module does not reduce simulated CSO 
duration, which is comparable to those encountered in the BI structure. 

This reaffirms the hypothesis that the GW module accumulates water 
in the soil during wet periods (see Section 3.2). During storm events, the 
pressure in the pipes can lead to an increased exfiltration from the sewer 
into the soil (Fenz et al., 2005). The water in the soil can later infiltrate 
again into the sewer system after the storm event, when the water level 
in the pipes is lower than the GW table, possibly causing longer CSO 
events. This can be caused by the different timescale between the 
stormwater routed in the sewer and the GW flows, where the lag time, 
which is the delay time between the incidence of water at the surface 
and its effect on the GW table, could be greater than one day (Bhaskar 
et al., 2018). This is evident in the bb scenario, where the GW model 
version shows higher CSO duration values than the BI model. In this 
case, the higher infiltration from the bb leads to a delayed accumulation 
of water in the GW modules, which prolongs simulated CSO durations. 

When all flows are combined (in the CB model), CSO durations are 
within the expected range, between the ET (shortest duration) and BI 
(longest duration) model versions; however, simulated CSO volumes are 
higher than in the BI scenario, which is unexpected since the inclusion of 
GW and ET both reduce simulated CSOs compared to the base case GSI 
performance (as discussed in Section 3.2). GSI in combined model 
perform differently with respect to the individual model versions alone, 
indicating that the different processes influence each other within the 
model, leading to results that are different from the sum of the indi
vidual model versions. This finding can be explained by the interaction 
between the accumulation of water in the soil in the GW modules (due to 
the increased allowance for infiltration) and the higher water level in the 
pipes where the boundary inflows flow (discussed in the following 
section). 

These discrepancies are particularly evident in the bb scenario. When 
bb are added to the catchment in the CB model, the CSO volumes are 
higher than in all the individual model structures. This is unexpected, as 
GW and ET alone both reduce CSOs. As shown in Fig. 6a, which presents 
the CSO volumes at each outfall for bb, this phenomenon can be linked to 
irregular behaviour at a single outfall, RUB128. 

Shown in dark blue in Fig. 6a, RUB128 outfall, which is downstream 
of the inflow from Russikon, is responsible for about 85 % of the sys
tem’s CSO volume in the CB model, while two other outfalls (RUB59 and 
RUB80; light blues in Fig. 6a) make up the remaining 10–15 %. 
Explained in the following section, this variability among CSO outfalls is 
due to the characteristics of the subcatchments (e.g., land use, area, 
width) that drain to them. For instance, subcatchments with higher 
imperviousness (e.g., the subcatchments draining to RUB128) will have 
higher runoff volumes. 
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3.5. The bioretention basin scenario: a spatial analysis 

The higher simulated CSO volumes at RUB128 in the CB model are 
explained by the spatial disparity in the groundwater flows entering and 

exiting the sewer pipes. Fig. 7a presents the subcatchments (in blue/ 
green) where groundwater flows into the sewer over the 30-year period, 
compared to the subcatchments (in yellow) where more water flows out 
of the pipe and into the GW aquifer. The highlighted subcatchments 

Fig. 6. (a) Annual median CSO volume at the different outfalls for the different model versions. (b) Annual CSO volumes at the most active outfalls and the system for 
all 30 years. The boxplots represent the variability of the 30 years of simulations, where the box covers the central 50 % of the distribution. The whiskers span from 
the minimum and maximum values within the 99 % range, and the black circles are the outliers. 

Fig. 7. Spatial analysis of the bioretention basin (bb) implementation. (a) Total groundwater (GW) outflows into the sewer for the combined model structure. (b) 
Total GW outflows into the sewer for the groundwater only structure. (c) Bioretention basin area distribution represented as the percentage of the subcatchment area. 
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(with infiltration into the pipes) are mostly located upstream of the 
RUB128 outfall, along the flow path of the main collector that routes 
boundary flows from Russikon. The increased CSO discharges in the CB 
model are a consequence of the interaction between high BI, the lumped 
nature of GW processes in SWMM, and the spatial distribution of the bb, 
which are highly concentrated in the upstream area contributing to 
RUB128 (Fig. 7c). 

As mentioned in Section 3.3, the addition of bb delays the peak flow 
of water into the pipes and allows more water to accumulate in the soil 
in the GW modules. The boundary inflows cause CSO discharges at the 
beginning of a rainfall event, while the delayed flows from bb and the 
GW module lead to additional CSO discharges after the rainfall event. 
During storm events, due to high volumes in the sewer pipes, water 
exfiltrates from the sewer into the soil, since the water head in the sewer 
is higher than the GW table. This accumulated water in the GW modules 
is later released back into the sewer when the pipe is not overcharged 
and the GW table is higher than water head in the main collector (see SI 
S8 for the head difference between the GW table and node in the 
different scenarios). This is also the case for water that has been infil
trated from the bb in the GW module, as described in Section 3.3. The 
spatial distribution of bb, their concentration in specific catchment 
areas, and their relationship with groundwater flows significantly in
fluences CSO volumes, emphasising the need for a nuanced under
standing of spatial dynamics when designing and implementing GSI. 

Accentuating this, runoff water is delayed into the main line sewer 
from the bb in the catchments adjacent to the main line. Due to GW 
flowing into the pipe, the threshold for CSOs is still maintained in the 
sewer, leading to more CSO volume. This phenomenon is also observed 
in the GW-only scenario (Fig. 7b), although less accentuated as there is 
less water in the system due to the absence of the boundary inflows. In 
the GW-only model, the threshold for CSOs to happen is often not 
reached since the boundary inflows are not present in the pipe. This 
underscores the importance of considering not only the presence of GSI, 
but also their spatial distribution concerning the topology of the sewer 
system. 

Overall, an accurate representation of the different hydrologic pro
cesses and flows in simulation models is crucial to determining the po
tential of GSI in reducing CSO duration and volume. Thus, care must be 
given when analysing the performance of GSI in comparison to a base
line model, as the hydrological processes included in the baseline will 
lead to changes in simulated effectiveness of each GSI element. At the 
same time, when different flows and hydrologic processes are combined 
during modelling, these processes can influence each other, and lead to 
unexpected results in GSI performance. There is ultimately a threshold 
of water in the sewer that will trigger CSOs and the more flows that are 
considered in the model, the more often this threshold will be reached. 
Different GSI elements contribute in different ways to reaching this 
threshold. This highlights the need to carefully consider the impact of 
modelled flows and GSI elements when designing and implementing GSI 
solutions for CSO mitigation. 

4. Conclusions and future work 

This study showed that modelling assumptions regarding hydrolog
ical processes and flows (including groundwater, evapotranspiration, 
and external inflows) significantly influence catchment level estimates 
of combined sewer overflows (CSOs) and the effectiveness of green 
stormwater infrastructure (GSI) to reduce them. In Fehraltorf, 
Switzerland, failure to include inflows from neighbouring communities 
in the estimation of baseline CSO conditions led to an underestimation of 
CSO volume by 40 %, while neglect of evapotranspiration and ground
water ended in an overestimation of CSO volume by 15 % and 10 %, 
respectively, on average. Neglecting these flows in baseline modelling 
also led to inaccurate expectations of GSI performance, despite the fact 
that GSI effectiveness was based on a “comparative” analysis between 
baseline conditions without GSI and scenarios with GSI. The expected 

CSO reduction due to GSI implementation varied by 35 % for bio
retention basins (bb), 30 % for permeable pavement (pp), and 8 % for 
green roofs (gr), when comparing different versions of the model. 

Some modelling decision require special attention, including the use 
of groundwater models in SWMM when green stormwater infrastructure 
are present. For bioretention basins, where more water is infiltrated into 
the groundwater, there is potential to increase CSOs at particular out
flows, which is ultimately due to the characteristics of the subcatch
ments that feed each outfall and the interactions between the 
hydrological and hydraulic processes considered. Effort-to- 
improvement ratio should also be considered, as minor model modifi
cations (e.g., imperviousness updates) and inclusion of boundary in
flows offer high reward with minimal effort, while groundwater 
modules and genetic algorithm calibration demand significant effort 
with limited performance gains. 

Overall, within combined sewer systems, the complex, interaction 
between different hydrologic processes and flows can lead to a range of 
possible CSO discharge volumes and frequencies, especially when green 
stormwater infrastructure are present. When hydrologic simulation 
models are used to estimate CSOs and effectiveness of GSI to reduce 
them, these complex interactions should be included to the extent 
possible, in particular when these estimates are used to make costly 
investment decisions. At the very least, baseline assumptions and asso
ciated uncertainties should be clearly stated and accounted for in all 
communications to inform planning and design. 

As CSO measurements and GSI implementation increase in the 
future, the results presented here should be validated using real-world 
data. The models used to evaluate the effect of groundwater and GSI 
on combined sewer overflows could also be improved, as SWMM could 
be coupled with a more detailed GW model, such as MODFLOW. To 
better represent the complexity of urban drainage systems in these 
models, a variety of run-off routing and combinations of GSI types 
should also be considered in future studies. Future research will need 
also to consider how a future climate will affect CSOs and these in
teractions, as more water will likely flow into the system due to increases 
in extreme events, which can exacerbate the issues encountered with 
groundwater and GSI in modelling. The effect of the interactions of 
various hydrologic processes on CSOs should also be considered in terms 
of costs in order to highlight the monetary consequences of under or 
overestimating combined sewer overflow discharge. 

Although this study did not consider the water quality aspects of 
combined sewer overflows and the green stormwater infrastructure, this 
paper is the first to identify how different hydrologic processes affect 
combined sewer overflows and their interaction with green stormwater 
infrastructure in a full-scale catchment. Accurately simulating the flows 
in a combined sewer system is the first step towards a better under
standing the impacts of pollutants on receiving waters. In conclusion, 
the study cautions against the notion that baseline modelling assump
tions do not matter in comparative analyses with GSI, as results show 
that these assumptions can considerably influence comparative GSI 
effectiveness. 
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