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ABSTRACT: Chemical pollution can threaten biodiversity at different levels,
from genetically diverse populations (genetic diversity) to different species
(species diversity) and ecosystem traits/interactions (functional diversity).
Most assessments of chemical impacts on different biodiversity levels depend
on wet lab and field experiments, including sequencing large numbers of
organisms, environmental DNA approaches, single chemical−species−
outcome toxicity tests, and trait-based methods. However, it is impossible
to assess all chemicals, species, populations, and ecosystems using these
methods. Therefore, we advocate that computational methods are necessary
to characterize, quantify, and predict chemical impacts on biodiversity. We
briefly introduce the current state of research into chemical impacts on
genetic diversity, species diversity, and functional diversity and describe new
opportunities for computational methods like data integration, machine
learning, cross-species/cross-ecosystem extrapolation, adverse outcome pathways, and Bayesian methods to support research in these
three areas. By harnessing data and methods currently at our disposal and preparing methods to take advantage of continuously
emerging data sets, computational approaches can be paired with environmental monitoring so different levels of biological
organization can serve as consecutive warning signs for chemical impacts on biodiversity. This will enable effective ecosystem
protection measures to be better developed and implemented to prevent biodiversity loss from chemical pollution.
KEYWORDS: chemical pollution, genetic diversity, species diversity, functional diversity, new approach methodologies

■ THE NEED FOR COMPUTATIONAL METHODS TO
ASSESS CHEMICAL IMPACTS ON BIODIVERSITY

Chemicals are released into the environment and pose a threat
to ecosystem health. Most chemical risk assessments are based
on testing a limited number of species, using a single
compound approach.1 However, mixtures of chemicals can
affect endpoints at all levels of biological organization.
Ecosystems can be composed of thousands of different species
and genotypes with differences in susceptibility to chemicals
that may yield different responses at the population and
community level. Assessing chemical impacts at all levels of
biological organization is essential because pollution has been
identified as one of the five major drivers of biodiversity loss.2

Yet, chemical pollution is understudied compared to other
drivers,3,4 and research tends to be isolated from large-scale
biodiversity assessments.5

A challenge in assessing the effects of chemicals on
ecosystems is the complexity of chemical exposures and their
interactions at different levels of biological organization. The
Convention on Biological Diversity (CBD) defines three
biodiversity levels: genetic diversity, species diversity, and
ecosystem diversity (Table 1).6 Here, we focus on genetic
diversity, species diversity, and functional diversity as we are

more interested in chemical impacts on biological levels of
organization than on habitat structure/ecosystem conditions.
These biological levels are interrelated, and chemical exposures
can lead to cross-level effects. At the genetic diversity level,
individuals within a species may respond differently to a
chemical exposure owing to individual genetics, while at the
species diversity level there are marked differences in species
susceptibility to chemicals. Genetic diversity can also be related
to species diversity wherein a reduction in population genetic
variability can make a species more susceptible to a given
chemical, and species diversity is related to functional diversity
as changes in the abundance of some species can alter the
interactions between species, resulting in structural changes in
ecosystems and their functional traits.7

New approach methodologies (NAMs, Table 1) are crucial
owing to the ethical and logistical (e.g., time and cost)
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Table 1. Definitions of Terms Used throughout the Paper

Term Definition

Computational methods Approaches to develop mathematical and computer-based models to understand and predict phenomena.8 In the
context of chemical impacts on biodiversity, these phenomena would be potential adverse effects from chemical
pollution.9

New approach methodologies (NAMs) Animal-alternative approaches to assess chemical hazard and risk.10 NAMs include both in vitro and in silico
(computational) methods. Here, we focus on computational methods.

Levels of biological organization Structures identified by part−whole relationships with biological components at higher levels composed of biological
components at lower levels.11 Here, we focus on the relationship between genetic diversity as the lowest level, species
diversity, and functional diversity as the highest level.

Genetic diversity Variation at the DNA level within a species (i.e., population-level genetic variability).12 While different susceptibility to
chemicals includes variability based on life stage and environmental factors, here we focus on genetic susceptibility as a
driver of population-level effects.

Species diversity Describes the number of different species occurring in a community or ecosystem and their relative abundance.
Functional diversity Describes the range and distribution of functional traits of organisms in a community or ecosystem.13 The loss in species

diversity due to different chemical and nonchemical stressors may or may not correlate with functional diversity14 and
therefore requires a separate assessment.

Ecosystem diversity Covers both community-level and habitat diversity. Includes the interactions between organisms and the abiotic
environment.6

Figure 1. Overview of the different levels of biological organization and computational methods that can aid in the assessment of chemical impacts
on these levels. Different points on DNA in the genetic diversity column depict variable genetic sequences within a population, while different
colored organisms in the species diversity column depict distinct species present in different numbers. Note that some methods shown for distinct
biological levels could also be applied to other levels (e.g., machine learning and data integration).
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constraints of in vivo experiments. Therefore, just as human
health assessment has increased the use of computational
approaches to reduce in vivo testing and fill data gaps, so too
must assessment of chemical impacts on biodiversity.
However, the ecotoxicology community has been compara-
tively slow to implement computational methods, and NAMs
have often been viewed with skepticism.15 Characterizing
chemical impacts on ecosystems has lagged behind human
health assessment as the same challenges in human health
assessment exist for ecosystems (huge numbers of chemicals/
mixtures, many possible toxicity mechanisms, and adverse
outcomes), but they have the additional challenges of
numerous species and ecological interactions. Therefore,
novel computational methods must be harnessed to assess
chemical impacts on biodiversity. The relationship between
genetic diversity, species diversity, and functional diversity is
depicted in Figure 1, along with potential computational
methods detailed in the following sections that can be used to
enhance assessment of chemical impacts on each level of
biological organization.
Current Approaches to Assess Chemical Impacts on

Genetic Diversity. Without adequate assessment of genetic
diversity, chemical impacts cannot be characterized beyond the
individual organism level, meaning potential impacts on
biodiversity are unknown. Genetic variability is crucial to
wildlife conservation, and its evaluation is needed to assess not
only individual and population resilience, but also the level of
adaptation possible for existing populations with current and
changing chemical pressure.16 However, genetic diversity
assessment has received less attention than other levels of
biodiversity17 and is often disconnected from chemical risk
assessment. For example, there are numerous research
branches related to ecological genetics, including evolutionary
genetics, population genetics, and functional genetics, with
most fields focusing on the emergence of genetic variants to
describe phylogenetic relationships or genetic diversity in the
context of ecosystem conservation against stressors without
specification.18 The field of ecotoxicogenomics has been
proposed to integrate genomics techniques into ecotoxicology
and environmental risk assessment and shows promise for
mechanistic understanding of chemical impacts on organ-
isms.19 However, incorporation of these approaches to assess
differences in susceptibility to chemical exposures within a
species is still limited.
The proportion of distinct populations maintained within

species can serve as a genetic diversity indicator (other
indicators discussed in ref 12), and genetic diversity assessment
typically depends on sequencing large numbers of organisms in
a given population.17 Sampling environmental DNA (eDNA)
uses organism DNA in environmental samples to characterize
individuals in a given ecosystem and has been used to estimate
genetic diversity in populations.20,21 While this is a noninvasive
approach to characterize actual genetic diversity in the wild, it
is still most frequently used for species diversity assessment,21

with limited connections to chemical exposures. For example,
some studies assess how chemical exposures drive genetic
diversity alterations (e.g., how chemical contamination
influences population genetics22), but assessments of genetic
susceptibility to chemical exposures inducing adverse out-
comes in sensitive individuals are lacking. Other approaches to
assess chemical impacts on genetic diversity include monitor-
ing regions with chemical contamination (e.g., as has been
done for endocrine disrupting chemicals23). However, these

methods tend to focus more on adaptation than on the
development of adverse effects, and field-based monitoring
approaches are problematic for ecosystem protection as they
depend on a species already under threat from chemicals.
Alternatively, lab-based studies have been used to characterize
genetic variants in populations and their response/tolerance to
chemical exposures.24,25 While these approaches are useful for
actual assessment of chemical impacts on genetically diverse
populations, the number of species sampled is limited, making
it difficult to know if the sampled genetic diversity for a given
population/species is of a realistic range. Further, it is
impossible to assess every population or species for their
respective genetic diversity (either in lab or in field), let alone
in combination with chemical exposures.
New Opportunities to Assess Chemical Impacts on

Genetic Diversity. In human health risk assessment, a
population health-based approach has been emphasized to
better account for chemical impacts on different individuals,26

and computational methods to assess chemical impacts on
genetically diverse humans have been increasingly developed.
One approach uses existing adverse outcome pathways
(AOPs) to identify functionally significant genetic variants
implicated in regulatory regions of genes in AOPs to
characterize genetic susceptibility to chemical exposures.27

Another approach to characterize chemical effects on
genetically diverse populations involves data integration to
form new, putative chemical−genetic variant−outcome link-
ages (not starting from AOPs) to describe the pool of genetic
variants potentially implicated in different chemically induced
adverse outcomes.28,29 However, these computational methods
have been limited to humans. We propose that these same
approaches can be extended to nonhuman animals to assess
chemical impacts on genetic diversity. For example, poly-
morphisms can be identified in key events of AOPs for
nonhuman animals to predict downstream effects of genetic
variability in response to chemical exposures. There are
numerous databases that can be harnessed to characterize
genetic variants implicated in different animal populations and
predict the effects chemicals may have on these groups. For
example, mice, rats, zebrafish, nematodes, and frogs have
comparatively extensive data on genetic variability owing to
their use as model organisms for humans (e.g., data in the
Monarch Initiative30). The potential overlap in genetic variants
between human and nonhuman organisms has been explored
to help characterize functional variants in humans based off of
variants in nonhuman model organisms,31,32 and we propose
these same approaches can be employed to characterize
genetic variants in other species as well. While some of these
species genetic variability may be more representative of lab
settings than wild organisms, there is still merit in using inbred
strains as these genetic data are often better characterized than
wild populations.33 By characterizing genetic variability across
species (e.g., as orthologous variants in nematodes, mice, and
humans have been compared31), patterns can be identified to
help describe genetic diversity for understudied species and
populations.
Current Approaches to Assess Chemical Impacts on

Species Diversity. Species diversity is one of the most
frequent measures for ecosystem protection across disciplines
like ecotoxicology, sustainability science, and ecology.34 Field-
based methods for species diversity assessment have been
developed to monitor species occurrence and abundance
directly (e.g., data integrated by the Global Biodiversity
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Information Facility, GBIF, https://www.gbif.org/), but largely
lack standardization regarding sampling methods and site
selection and have limited coordination with monitoring of
chemical stressors. Therefore, we still have poor understanding
of species diversity in different regions, and it is challenging to
infer chemical impacts. Further, because monitoring studies are
limited to whatever is seen by an observer at a given moment,
this can lead to underestimating species abundance if rare
species are not observed at their actual rate, overestimating
species abundance if rare species are noticed more than
common species, or missing species altogether if the time of
observation does not align with an obvious life stage of an
organism (e.g., aquatic larvae in a healthy insect population).34

Metrics like species richness have been used as species
diversity indicators (discussed in ref 34), and new lab- and
field-based tools have been proposed to improve species
diversity estimates from sample data and characterize impacts
from chemical stressors. For example, ecotoxicogenomics
methods and eDNA approaches are more frequently applied
for species diversity assessment than genetic diversity assess-
ment. In ecotoxicogenomics, methods using differential gene
expression of species following chemical exposures can
characterize different species sensitivity and tolerance to
chemical threats (e.g., some species may have greater
detoxification gene expression35). Additionally, indicator
species are frequently used to monitor ecosystem response to
environmental changes like chemical pollution,36 and multio-
mics approaches to monitor ecosystem health have been
increasing.37 eDNA metabarcoding can characterize multiple
species from a single sample taken from an environment,
meaning indicator species can be monitored in polluted
ecosystems using this approach.38 Species biomonitoring
approaches (e.g., in the Water Framework Directive) have
developed a suite of indicators to determine how species in a
community may be altered with environmental change,39 but
these methods are not stressor specific, making it difficult to
disentangle specific chemical effects or effects from complex
mixture interactions in the environment.
Lab-based toxicology testing methods often assess species

using one chemical−one species−one outcome assessment
approaches. These methods are useful for building mechanistic
knowledge of chemical effects on an organism, but it is
impossible to conduct detailed assessments for the number of
different species (including threatened or endangered species)
and chemicals in circulation. While in vitro approaches can
help expand one chemical−one species−one outcome assess-
ments at the suborganismal level, their utility is limited for
assessing sensitivity at the species level. However, these
methods show promise for assessing chemically induced
alterations in microbial and algal communities.40

One computational method that is applied to harness
chemical activity data and assess potential effects on species
richness is the species sensitivity distribution (SSD)
approach.41 SSDs integrate single-species effect data to infer
the concentration of a chemical or a mixture of chemicals that
affect a given percentage of species (i.e., potentially affected
fraction). However, these methods depend on understanding
the most sensitive endpoint for a species, do not directly
address species loss, and may miss indirect effects that
influence biodiversity (e.g., impacted food sources). Further,
robust SSDs can often only be derived for a small set of
chemicals because their construction is constrained by the
limited number of species tested under laboratory conditions.

Semifield experiments, such as micro- and mesocosms, have
been used to derive chemical threshold concentrations under
more realistic conditions. They offer large benefits compared
to lab-based single-species approaches or SSDs as they take
into account species interactions (often in multiple trophic
layers) and can be used to establish links between population
and community-level effects and ecosystem functional
parameters (e.g., oxygen production, organic matter decom-
position rates14). Despite the number of micro- and mesocosm
studies increasing in the last two decades, there have been few
attempts to characterize chemical pressure on biodiversity loss
in these experimental setups (but see ref 42). However, while
semifield experiments offer the possibility to assess impacts on
biodiversity and recovery after (several) contamination pulses
and species generations so that adaptation and resilience of
ecosystems to these stressors can be evaluated, these are
impossible to conduct for all contaminant mixtures and
ecosystem types. Therefore, additional computational ap-
proaches are necessary to expand our understanding of
chemical effects on (less tested) species assemblages and
ecological scenarios.
New Opportunities to Assess Chemical Impacts on

Species Diversity. To expand data on diverse species’ effects,
cross-species extrapolation techniques harness existing knowl-
edge of individual species for expansion to other species based
on genetic homology, phylogenetic relatedness, or common
biological mechanisms.43 These methods either follow the one
chemical−one species−one outcome approach, extrapolate the
effects of multiple chemicals to one species (e.g., using
quantitative structure activity relationships, QSARs), or can
extrapolate effects of a given chemical on multiple species.
Cross-species extrapolation research has been growing with
approaches developed using linear regression models,43 read-
across-based methods,44 or machine learning (ML).45,46

Through these extrapolations, data gaps can be filled so that
chemical effects on a variety of species can be better
characterized. For example, Sequence Alignment to Predict
Across Species Susceptibility (SeqAPASS) is an online tool
that uses a tiered approach to classify species similarity, starting
from primary amino acid sequences through to conserved
functional domains and likely protein conformations/inter-
actions with chemical stressors.47 Another tool, Genes-to-
Pathways Species Conservation Analysis (G2P-SCAN),
extrapolates chemical effects across species using conserved
molecular targets and pathways.48 There have also been
initiatives to sequence large numbers of species, such as the
Darwin Tree of Life project which is a collaboration between
genomics institutes and biodiversity initiatives to gather whole
genome sequences of all species in the United Kingdom.49

Additionally, toxicokinetic−toxicodynamic (TKTD) properties
are important to predict whole organism and/or tissue-specific
concentrations of chemicals in different species�which can
inform the potential for a chemical to lead to an adverse effect
following exposure�and both individual species and multi-
species models have been developed (see ref 50 for examples
in fish). Therefore, as the amount of data on different species
increases, it is essential that methods are in place to use these
data as they emerge. For example, by filling data gaps for a
variety of species, SSDs can be targeted to species assemblages
representative of a given habitat, introducing the possibility of
ecosystem-specific sensitivity and risk assessments.
As with genetic diversity assessment, AOPs can be used to

expand assessment of chemical impacts on species diversity. By
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nature, AOPs describe sequences of events without stressor
specificity. Therefore, by identifying AOPs with conserved
impacts across species, chemical threats can be extrapolated.
Additionally, based on conserved key events or biological
mechanisms, AOPs can be extrapolated across species as well.
While the number of AOPs is still relatively small to describe
the full spectrum of biological effects across all species (459
AOPs as of January 2024), there have been numerous calls for
computational methods to develop AOPs,51,52 suggesting the
number will increase in the future (there were only 274 AOPs
in January 202043).
ML-based methods can be used by integrating existing

chemical toxicity test data for different species to predict
chemical impacts both for new chemicals and new species. For
example, ML models have been developed to predict chemical
toxicity to different fish taxa using experimental in vivo fish
toxicity data with specific chemical (e.g., physicochemical
properties, molecular descriptors), species (e.g., organism
taxonomy), and experimental descriptors.45 While these
methods are still challenged by data sparsity and high
variability in input data (e.g., from diverse original testing
conditions), this is a promising method for expanding
chemical−species−outcome coverage. However, rigorous test-
ing and validation of ML models with benchmark data are
crucial for the advancement of these methods.53 Other species-
specific parameters like ecological trait data, TKTD parame-
ters, and/or dynamic energy budget parameters (e.g., the Add-
my-Pet database http://www.bio.vu.nl/thb/deb/deblab/add_
my_pet/) can also be used to improve ML-based extrap-
olations, thus reducing the need for additional animal
testing.46,54,55 Further, as other approaches improve (e.g.,
identification of common protein markers across species or
AOPs), so too can ML methods become more robust and
reliable.
While the focus of most computational approaches assessing

species’ sensitivity to chemical exposures characterize
sensitivity across species rather than changes in abundance,
one preliminary approach to estimate how chemical exposures
may alter species abundance is the mean species abundance
relationship (MSAR).56 Preliminary estimates of species
abundance can also be developed using probabilistic
approaches to model different ratios of species abundance to
assess potential biodiversity impacts. Other approaches can
harness existing data sets on species occurrence (e.g., data in
GBIF) to build ML and/or statistical methods to predict
species occurrence (or distributions of occurrence) in different
ecosystems (i.e., cross-region extrapolation). Such approaches
have been applied to study how different global climate change
scenarios will affect species distribution,57,58 but there has been
limited effort to include chemical contamination into these
projections that go beyond land-use indicators.
ML models can also be used to integrate data from

mesocosm experiments to determine ecosystem-level re-
sponses to different chemicals and to infer how chemicals
with similar or different toxic modes of action will affect
them.59 The data sets generated in micro- and mesocosm
experiments can also be used to parametrize and calibrate food
web models that allow testing different species and chemical
exposure combinations.60 The idea of developing ‘virtual
mesocosm experiments’ (i.e., based on dynamic species
biomass modeling) has been put in practice to answer
theoretical questions;61 however, the implementation for
chemical risk assessment so far remains limited. Further,

these modeling tools also present opportunities to explore
relationships between chemical (and nonchemical) stressors
and indicators of ecological quality and diversity, so that
mechanistic links can be better established.
Current Approaches to Assess Chemical Impacts on

Functional Diversity. Chemicals can reduce the performance
of species carrying specific functional traits, thus affecting the
functional diversity of ecosystems. Such loss can be translated
into broader alteration of ecosystem function and effects on
important ecosystem services such as nutrient recycling, carbon
sequestration, and many others. In developing trait-based
approaches to monitor chemical impacts on ecosystems, basic
challenges include which traits are most relevant for ecosystem
function and what metrics can be used to characterize
alterations in those traits.62,63 Indicators for functional diversity
include measures of functional redundancy (i.e., analogous
traits in different species of an ecosystem that contribute to the
same ecosystem function),64 and direct field-based measure-
ments of ecosystem functions are frequently used to character-
ize changes in ecosystem traits. For example, oxygen
concentrations can be monitored to approximate respiration
rates in rivers and streams,65 while leaf-litter breakdown rates
and microbial activity can be monitored to assess functional
integrity of streams based on how leaves are processed by
stream communities.66 These approaches can also be used as
indicators of chemical pollution. Microbial respiration and
decomposition rates have been monitored to determine the
effects of wastewater on microbial communities and organic-
matter processing,67 and leaf-litter breakdown rates have been
found to correlate with structural changes in streams
contaminated with pesticides.68 These methods show promise
for direct biomonitoring of contaminated sites over large
spatial scales; however, they cannot be used for prospective
risk assessment.
In the lab, different bioassays can be used to monitor

functional traits to inform ecosystem function. For example,
the relationship between insect herbivores and plants can be
tested through choice and no choice assays to monitor changes
in both herbivore feeding behavior and plant defenses
following ecosystem disturbance.69,70 The Gammarus feeding
assay can be used to monitor the behavioral response of
gammarids to environmental contaminants, which is crucial as
macroinvertebrate feeding is a rate-limiting step in organic
matter decomposition in streams.71 However, as with assays
for other levels of biological organization, the utility of short-
term bioassays to predict long-term effects from chemical
pollution is limited.
Databases of functional trait data for different species have

been developed for use in ecological monitoring, conservation,
and management including plants,72,73 invertebrates,74−77 and
fish.78,79 These resources can be used to computationally
model the relationship between different environmental
factors, species distributions, and species traits.74 Multivariate
analyses and ML have been used to identify functional diversity
patterns that are directly related to toxic pressure and
nonchemical stressors.80,81 For example, multimetric indices
have been developed by incorporating biological metrics based
on taxonomy and life history traits that respond to different
pressure categories (e.g., water quality and habitat degrada-
tion) to be included in biomonitoring approaches.82,83

However, the use of this information to infer functional
diversity loss or ecological function impairment by chemical
pollution remains largely unexplored.
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New Approaches to Assess Chemical Impacts on
Functional Diversity. To expand the computational utility of
data on functional traits, comprehensive databases should be
developed covering different taxa levels and geographic
regions. For example, the freshwaterecology.info database
incorporates data on over 20,000 European freshwater
organisms ranging from fish to phytoplankton with information
on species traits and ecological preferences regarding habitat
and morphology provided.84 As data on different species
distributions and functional or biological traits are clarified,
patterns can be identified to build cross-chemical and/or cross-
species extrapolation of functional traits using the same
approaches applied for extrapolation-based species diversity
level assessments (e.g., ML or read across of field-based data).
As with species diversity assessment, limited knowledge of

ecosystem composition is a challenge for characterizing the
functional traits in a given ecosystem. Therefore, the same
approaches for cross-region extrapolation of species composi-
tion should also be applied for functional diversity assessment
to build knowledge of at least the main community features
and mechanisms present in different ecosystems. Combined
biomonitoring and ML approaches can also be used to both
characterize and assess changes in the taxonomic makeup and
morphological trait composition of an ecosystem. For example,
image-based ML methods have been used to characterize
species in a given region and monitor morphological traits
(e.g., body size).85,86 By monitoring these features in pristine
and polluted environments and/or monitoring changes in
these features with increasing chemical pollution, the relation-
ship between chemicals and functional traits can be clarified
and the corresponding data can be harnessed to expand ready-
to-use databases of biological trait data and functional
descriptors for the aforementioned computational methods.
Representative ecological scenarios and/or food web models

relate species interactions between different trophic levels (e.g.,
feeding traits). By modeling the flow of effects from chemical
exposures across trophic levels, changes in the functional trait
composition of an ecosystem can be characterized. For
example, the AQUATOX model combines multiple trophic
levels of an aquatic food web and models potential organic
toxicant effects.87 While these types of models can characterize
possible changes in structure and function of an ecosystem
following chemical exposure, there are relatively few models
available owing to the difficulty in characterizing different
species interactions, particularly with spatiotemporal variability
of exposure defined. So far, such food-web models are mostly
deterministic and lack a comprehensive uncertainty assessment
(but see ref 88 for a step in this direction).
Incorporating stochastic modeling approaches could help to

predict a possible range of chemical effects in lieu of data
representing reality. For example, geographic variability in
effects from chemical exposures have been predicted for
humans by using regional demographic data with TK models89

and for earthworms by combining behavioral trait data with
TKTD models and environmental data.90 By following these
approaches using variable data input representing a range of
possible species TK traits and/or chemical exposures, potential
changes in species’ functional traits for specific geographic
regions can be predicted. A straightforward approach to
account for intraspecies variability and demographic stochas-
ticity is Individual or Agent-Based Modeling.91,92 So far, these
have mostly been used on a population level (e.g., see ref 93),
but in principle they can be combined to model food webs, and

Bayesian inference can be joined with these models to infer
parameters from data and quantify uncertainty.94

■ CONCLUSIONS AND WAYS FORWARD
Assessing potential chemical impacts on biodiversity is crucial
as more than one million of the planet’s plant and animal
species are threatened with extinction in the coming decades.2

We propose that combined environmental monitoring and
enhanced computational methods can enable genetic diversity,
species diversity, and functional diversity impacts to serve as
consecutive warning signs of chemical pollution impacts on
biodiversity. Generally, genetic diversity impacts from
chemicals can affect the most sensitive individuals but may
not always translate to changes in species diversity, whereas
changes in functional diversity represent extreme pollution
events. This is because functional redundancy within
communities and potential species turnover in response to
stress could otherwise help protect ecosystem functions against
stressor impacts.14 Therefore, new computational methods to
assess chemical impacts on these levels of biological
organization can be joined to ecosystem monitoring to help
identify and differentiate between an early warning sign (i.e.,
genetic diversity impact) and an alarming pollution event (i.e.,
functional diversity impact) in different ecosystems.
We propose that computational methods like data

integration, ML, and Bayesian methods show promise for
assessment of chemical impacts on different levels of biological
organization. Further, some methods could be used to assess
chemical impacts across levels. For example, AOPs can cover
the genetic and species diversity level, and incorporation of
population and community dynamics could allow biodiversity
projections. ML models could also be used to characterize
different levels of biological organization that are more likely to
be damaged due to chemicals with specific modes of action
(e.g., by using mesocosm data sets as input, e.g.,59) or to
predict multilevel changes (e.g., how genetic susceptibility to a
chemical stressor promulgates into a change in ecosystem
function). Further, TKTD modeling approaches can cover a
variety of biological levels as varying TK properties can serve as
a proxy for genetic diversity based on population-variability in
chemical metabolism,95 and clarifying potential differences in
TK properties is an important component of cross-species
extrapolation96 (e.g., General Unified Threshold model for
Survival (GUTS) integrates TKTD models to estimate
survival, which can predict impacts both within and across
species97). While computational methods come with their own
inherent challenges (e.g., a lack of mechanistic explainability in
ML depending on the model used), these methods can be
complemented with experimental demonstrations and/or well-
structured knowledge connections to increase confidence in
new models or improve interpretability. For computational
methods to predict chemical impacts on biodiversity to be
realized, the four main needs are:

• Methods to quantify uncertainty and establish causality.
For example, Bayesian inference is a useful approach to
incorporate limited data with limited prior knowledge
(e.g., mechanistic understanding regarding causality) to
make the best possible predictions with the information
at hand and quantify uncertainty around these
predictions.98

• Enhanced collaborations between chemists, toxicolo-
gists, geneticists, ecologists, and data scientists. For
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example, initiatives like PrecisionTox99 and the Interna-
tional Consortium to Advance Cross-Species Extrap-
olation in Regulation (ICACSER)96 both bring together
scientists from different fields and expertise with a focus
on improving regulatory acceptance of computational
methods for chemical safety.

• Coordinated data production, systematic experimental
designs, and standardized data quality checks to increase
data usability combined with standardized procedures
for model comparison to guide model selection.

• Terminology, methods, and output from different fields
must be harmonized to avoid parallel work and improve
cross-feeding of new information.

We expect that data availability will be the biggest challenge
in moving computational methods for assessment of chemical
impacts on biodiversity forward and highlight the importance
of standard data generation approaches and enhanced
assessment of understudied species and chemical groups to
combat this challenge. Even if we are missing data to make
robust computational approaches a reality, now is still the time
to conduct preliminary analyses and prepare frameworks so
that methods are already established when the relevant data
becomes available. Further, as artificial intelligence continues
to develop, numerous aspects of toxicology and ecology could
be enhanced (reviewed in refs 100 and 101, respectively). For
example, ML models can guide the prioritization of
experimental data collection and support systematic review
of information to predict chemical risks.102

■ KEY MESSAGES

(1) Computational methods can enhance assessment of
chemical impacts on genetic diversity, species diversity,
and functional diversity.

(2) Combined environmental monitoring and enhanced
computational methods can enable different levels of
biological organization to serve as consecutive warning
signs of chemical pollution impacts on biodiversity.
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Bauters, M.; Ben Saadi, C.; Blundo, C.; Cabrera, M.; Castaño, F.;
Cayola, L.; de Aledo, J. G.; Espinosa, C. I.; Fadrique, B.; Farfán-Rios,
W.; Fuentes, A.; Garnica-Díaz, C.; González, M.; González, D.;
Hensen, I.; Hurtado, A. B.; Jadán, O.; Lippok, D.; Loza, M. I.;
Maldonado, C.; Malizia, L.; Matas-Granados, L.; Myers, J. A.; Norden,
N.; Oliveras Menor, I.; Pierick, K.; Ramírez-Angulo, H.; Salgado-
Negret, B.; Schleuning, M.; Silman, M.; Solarte-Cruz, M. E.; Tello, J.
S.; Verbeeck, H.; Vilanova, E.; Weithmann, G.; Homeier, J. FunAndes
− A Functional Trait Database of Andean Plants. Sci. Data 2022, 9
(1), 511.

Environmental Science & Technology Letters pubs.acs.org/journal/estlcu Global Perspective

https://doi.org/10.1021/acs.estlett.3c00865
Environ. Sci. Technol. Lett. XXXX, XXX, XXX−XXX

I

https://doi.org/10.1016/j.tiv.2019.104692
https://doi.org/10.1016/j.tiv.2019.104692
https://doi.org/10.1016/j.tiv.2019.104692
https://doi.org/10.1016/j.tiv.2019.104692
https://doi.org/10.1016/j.envint.2022.107184
https://doi.org/10.1016/j.envint.2022.107184
https://doi.org/10.1016/j.ecoenv.2023.115250
https://doi.org/10.1016/j.ecoenv.2023.115250
https://doi.org/10.1093/toxsci/kfw119
https://doi.org/10.1093/toxsci/kfw119
https://doi.org/10.1093/toxsci/kfw119
https://doi.org/10.1093/toxsci/kfw119
https://doi.org/10.1002/etc.5600
https://doi.org/10.1002/etc.5600
https://doi.org/10.1002/etc.5600
https://doi.org/10.1073/pnas.2115642118
https://doi.org/10.1073/pnas.2115642118
https://doi.org/10.1021/acs.est.5b06158?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.5b06158?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.5b06158?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.5b06158?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s40572-016-0079-y
https://doi.org/10.1007/s40572-016-0079-y
https://doi.org/10.3389/ftox.2022.815754
https://doi.org/10.3389/ftox.2022.815754
https://doi.org/10.1038/s41597-023-02612-2
https://doi.org/10.1002/etc.3008
https://doi.org/10.1002/etc.3008
https://doi.org/10.1002/etc.3008
https://doi.org/10.1007/s10646-012-0962-8
https://doi.org/10.1007/s10646-012-0962-8
https://doi.org/10.1007/s10646-012-0962-8
https://doi.org/10.1002/etc.4850
https://doi.org/10.1002/etc.4850
https://doi.org/10.1111/gcb.12107
https://doi.org/10.1111/gcb.12107
https://doi.org/10.1038/nclimate1191
https://doi.org/10.1038/nclimate1191
https://doi.org/10.1002/etc.5620211132
https://doi.org/10.1002/etc.5620211132
https://doi.org/10.1007/s10646-023-02685-0
https://doi.org/10.1007/s10646-023-02685-0
https://doi.org/10.1007/s10646-023-02685-0
https://doi.org/10.1007/s10646-023-02685-0
https://doi.org/10.1016/j.envint.2007.09.006
https://doi.org/10.1016/j.envint.2007.09.006
https://doi.org/10.1016/j.envint.2007.09.006
https://doi.org/10.1016/j.envint.2007.09.006
https://doi.org/10.1016/j.chnaes.2014.01.001
https://doi.org/10.1016/j.chnaes.2014.01.001
https://doi.org/10.1016/j.envint.2022.107705
https://doi.org/10.1016/j.envint.2022.107705
https://doi.org/10.3389/fpls.2022.923219
https://doi.org/10.3389/fpls.2022.923219
https://doi.org/10.1029/2008JG000917
https://doi.org/10.1029/2008JG000917
https://doi.org/10.1029/2008JG000917
https://doi.org/10.1016/B978-0-12-813047-6.00005-X
https://doi.org/10.1016/B978-0-12-813047-6.00005-X?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/gcb.15302
https://doi.org/10.1111/gcb.15302
https://doi.org/10.1111/gcb.15302
https://doi.org/10.1016/j.scitotenv.2007.04.040
https://doi.org/10.1016/j.scitotenv.2007.04.040
https://doi.org/10.1016/j.scitotenv.2007.04.040
https://doi.org/10.1146/annurev-ento-011613-161945
https://doi.org/10.1146/annurev-ento-011613-161945
https://doi.org/10.1371/journal.pone.0286050
https://doi.org/10.1371/journal.pone.0286050
https://doi.org/10.1371/journal.pone.0286050
https://doi.org/10.1007/978-1-4419-5623-1_1
https://doi.org/10.1007/978-1-4419-5623-1_1
https://doi.org/10.1007/978-1-4419-5623-1_1
https://doi.org/10.1007/978-1-4419-5623-1_1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-023-06305-z
https://doi.org/10.1038/s41597-022-01626-6
https://doi.org/10.1038/s41597-022-01626-6
pubs.acs.org/journal/estlcu?ref=pdf
https://doi.org/10.1021/acs.estlett.3c00865?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(74) Salmon, S.; Ponge, J. F.; Gachet, S.; Deharveng, L.; Lefebvre,
N.; Delabrosse, F. Linking Species, Traits and Habitat Characteristics
of Collembola at European Scale. Soil Biology and Biochemistry 2014,
75, 73−85.
(75) Sarremejane, R.; Cid, N.; Stubbington, R.; Datry, T.; Alp, M.;
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