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Abstract

Facing climate change and biodiversity loss, it is critical that ecology advances

so that processes, such as species interactions and dynamics, can be correctly

estimated and skillfully forecasted. As different processes occur on different

time scales, the sampling frequency used to record them should intuitively

match these scales. Yet, the effect of data sampling frequency on ecological

forecasting accuracy is understudied. Using a simple simulated dataset as a

baseline and a more complex high-frequency plankton dataset, we tested how

different sampling frequencies impacted abundance forecasts of different

plankton classes and the estimation of their interactions. We then investigated

whether plankton growth rates and body sizes could be used to select the most

appropriate sampling frequency. The simple simulated dataset showed that

the optimal sampling frequency scaled positively with growth rate. This find-

ing was not repeated in the analyses of the plankton time series, however.

There, we found that a reduction in sampling frequency worsened forecasts

and led us to both over- and underestimate plankton interactions. This sug-

gests that forecasting can be used to determine the ideal sampling frequency

in scientific and monitoring programs. A better study design will improve the-

oretical understanding of ecology and advance policy measures dealing with

current global challenges.
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INTRODUCTION

Ecological processes, such as species abundances and
interactions, are temporal scale-dependent and can range
from short-term responses to perturbations (e.g., Medeiros
et al., 2023) to long-term adaptations to changed

environmental conditions (Crozier & Hutchings, 2014). A
central aim of ecology is not only to infer such processes
from population dynamics, but also to forecast them to
advance and test ecological theory and to inform
decision-making (Lewis et al., 2023), for example in con-
servation ecology (Tulloch et al., 2020). It is thus
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intuitively important to record population sizes with
sampling frequencies that match the temporal scale of the
focal processes. Despite this, little is known about how
sampling frequencies affect ecological forecast skill, or
how to select appropriate sampling frequencies.

In general, sampling infrequently can yield time
series that are too sparse to adequately infer the processes
of interest (Estes et al., 2018). Infrequent sampling can
cause under- or overestimations (e.g., Queiroz & Ferreira,
2009), imprecise estimates (e.g., Taylor & Howes, 1994),
and non-detection of focal dynamics (Lehtiniemi et al.,
2022). Ultimately, this can lead to the non-detection of
relations between variables or to spurious associations
(Cabella et al., 2019), hindering also the reproducibility
of results (Estes et al., 2018).

Regarding forecasting, in various scientific fields
(e.g., climatology, hydrology, and landslide risk manage-
ment), it has been found that forecasts benefit from high
frequency data (e.g., Arhab & Huang, 2023; Bozzano
et al., 2018; Leyton & Fritsch, 2004; Liu & Han, 2013).
However, in ecology the few studies that investigated
how forecasting is affected by sampling frequency found
that sampling more often could both improve and worsen
forecasts (Derot et al., 2020; Wauchope et al., 2019).
Moreover, to our knowledge, neither these studies nor
the ones from other scientific fields account for the fact
that higher sampling frequencies result in bigger sample
sizes (i.e., number of time points), which needs to be con-
trolled for as it can act as a confounding variable by also
yielding better forecasts.

While sampling sufficiently often remains a chal-
lenge in some systems, in others automated data collec-
tion approaches that create high-frequency data have
become available (e.g., Besson et al., 2022; Kays et al.,
2015). Nevertheless, also in cases like these it is of
interest to select appropriate sampling frequencies
that avoid unnecessary samplings and associated costs.
Yet, sampling frequencies are commonly chosen based
on experience and logistics, but remain otherwise
often unjustified and potentially unoptimized (Ma
et al., 2022).

Generally speaking, the sampling frequency should be
high enough that all system-relevant signals are recorded
(Isles & Pomati, 2021), but not higher. We hypothesize
that a candidate sampling frequency for this is the lowest
frequency that still yields the highest forecast skill, as this
might suggest that all relevant signals have been captured
by the data. However, the high-frequency data necessary
to test this are often not available and thus alternative
criteria to decide the sampling frequency are needed. For
instance, in abundances time series the sampling fre-
quency could potentially be selected based on the per
capita growth rate (henceforth referred to as growth rate)

and body size of the focal species. Indeed, species with
lower intrinsic growth rates (i.e., longer generation times)
are generally larger in size (Bonner, 2015; Gillooly, 2000),
and their abundances tend to be forecasted better
(Anderson & Gillooly, 2020; Petchey et al., 2015).

In studies where multiple species are present, how-
ever, the different growth rates complicate the process of
finding the optimal sampling frequency. Further, a
higher species richness implies more species interactions
(Borrett & Patten, 2003), and abundance forecasts
depend on how connected the focal species is, with
forecasts being better for species that have many but
on average weak interactions (Daugaard et al., 2022).
Consequentially, the question becomes whether growth
rates can guide the selection of sampling frequencies also
in multispecies studies. Moreover, species growth rates
and the sampling frequency might impact not only the
achieved forecast skills, but also the estimation of species
interactions, which is a central aim of community ecol-
ogy but crucially also strongly data-dependent (Marquez
et al., 2022). It follows that if both forecasts and interac-
tion estimates are affected by the sampling frequency,
relations between them might be undetectable if the sam-
pling design is inadequate.

Here, we aimed at clarifying the influence of sam-
pling design choices on the outcome of quantitative ana-
lyses, which ultimately can help the design of
experiments and field observations. In a first step, we car-
ried out a simple simulation of abundance time series to
test the possibility of selecting the sampling frequency
based on species growth rates and to clarify the relation
between sampling frequency and abundance forecast
skill. We then extended the analysis by using field data
and explored whether the results found in silico hold in
natural systems and estimated the impacts of sampling
frequency, number of time points, growth rates, and body
sizes first on abundance forecasting and in a second part
also on the estimation of species interactions. Lastly, we
combined the species interaction estimates and abun-
dance forecast skills found in the previous step. We inves-
tigated whether the relation between these two quantities
found in a controlled laboratory setting (i.e., in Daugaard
et al., 2022) is also found in an observational dataset with
greater system complexity and whether the sampling
design affected this detection.

Alongside the simulations, we used a high-frequency
lake phyto- and zooplankton dataset. Plankton popula-
tion dynamics represent an ideal framework for our
study. They show variable and fast-paced time series,
driven by their short generation times and their interac-
tions with their system components (e.g., climate and
nutrients, Merz et al., 2023; Philippart et al., 2000).
Plankton is of great importance in marine and freshwater
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ecosystems because it is at the base of aquatic food webs
regulating biomass transfer and element cycles, and their
dynamics affect many ecosystem services (Falkowski,
2012). There is therefore a strong interest in forecasting
plankton dynamics, including algal blooms (e.g., Rousso
et al., 2020; Woelmer et al., 2022).

Using the field data, we separately (1) subsampled the
time series using different frequencies while keeping
the number of time points constant and (2) reduced the
number of time points while keeping the sampling fre-
quency constant. We then estimated the interactions
between plankton classes and forecasted their abun-
dances. We hypothesized that growth rates could aid the
selection of adequate sampling frequencies in the simula-
tions, but that the greater complexity of field data might
prevent this. We also anticipated that fewer or sparser
samplings would generally result in worse abundance
forecasts and potentially in under- or overestimations of
field plankton interactions. Lastly, we also expected that
the non-optimization of frequency and number of sam-
plings would result in insufficient statistical power to
detect expected associations between variables, such as
the one between forecast skill and species interactions.

MATERIALS AND METHODS

In this study, we first investigated the effects of sampling
design choices on forecasts and, second, their effects on
species interaction estimates. In the first part, we ana-
lyzed both simulated and field data, and we used the lat-
ter also in the second part. As such, we describe the
collection, processing, and subsampling of the field data
at the beginning of this section before we describe the
forecasting methods and analyses.

Forecast error as a function of sampling
design and functional traits

Field data collection and processing

We recorded plankton abundance time series in the
eutrophic Lake Greifen (northern Switzerland) with an
automated plankton monitoring system that uses a
darkfield microscope based on the Scripps Plankton
Camera system (Orenstein et al., 2020). The camera takes
images at two magnifications (5.0× aimed at phytoplank-
ton and ciliates and 0.5× for zooplankton species) every
hour for 10 min with a frame rate of 1 frame/s. The
instrument has previously been calibrated, and its perfor-
mance compared with traditional microscopy methods
has been validated (Merz et al., 2021).

For this study, we used images from April 2019 until
December 2021 (994 days). We processed these images as
described by Merz et al. (2021) to extract regions of inter-
est (ROIs, i.e., the imaged individuals). It has been shown
that ROIs per second is a valid proxy of plankton densi-
ties and that ROI area is a robust estimate of their body
size (Merz et al., 2021). We classified the ROIs with previ-
ously trained convolutional neural networks into zoo-
plankton and phytoplankton classes (Kyathanahally,
2022; Kyathanahally et al., 2021). For the zooplankton,
we had the classes Calanoid Copepods, Cyclopoid
Copepods, Ciliates, Daphnids, Nauplii, and Rotifers. As is
commonly done, we grouped the phytoplankton species
into six bins of equal width on the log10-scale based on
their cell size (i.e., ROI area). Size-based phytoplankton
bins can be studied as a function of environmental condi-
tions (Marañ�on, 2015; Yvon-Durocher et al., 2010). We
calculated daily abundances by summing the hourly
abundances (ROIs per second) per size-bin and per zoo-
plankton class (Appendix S1: Figure S3). We further used
lake properties available from Merkli et al. (2022), specifi-
cally the daily epilimnetic temperature, the mixed layer
depth, and irradiance and the weekly concentrations of
ammonium, nitrate, and phosphate. See Appendix S1:
Section S1.2 for details regarding the data collection and
processing.

Processing of recorded time series
The field data included 1.61% missing data for the phyto-
plankton and 3.72% for the zooplankton groups. We
imputed the missing data by using cubic hermite splines
to create complete times series with equidistant spaced
data points. From the weekly nutrient chemistry data, we
imputed daily values using loess (span = 0.15). We added
noise to all imputed values to avoid statistical artifacts
caused by the imputation (Appendix S1: Section S1.2.3).
Following commonplace practices (e.g., Benincà et al.,
2008), we further processed the time series by carrying
out a fourth-root power transformation of the data to
dampen population spikes and by detrending and stan-
dardizing the time series. We detrended the data by
regressing the time series against time and henceforth
using the standardized residuals as the new time series
(Appendix S1: Figure S4).

Estimation of maximum net growth rates
Using the untransformed data, we estimated the
daily per capita growth rates of the plankton classes as
rT ¼ log NT,t=NT,t− τð Þ=τ, with N being the abundance, T
the target, t the time, and τ the time step (here τ¼ 1 day).
To avoid overestimations of growth rates caused by noise,
we selected the 90th percentile of the positive values of
rT as the maximum net growth rate of each target.
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Subsampled time series: Reducing sampling frequency
and number of time points
To have time series of different resolutions, we
subsampled the daily data using different frequencies as
visualized in Figure 1. A constraint was that at the lowest
sampling frequency, the recorded time series still
contained sufficient time points. We set the lowest sam-
pling frequency to 1/12 (i.e., one sampling every 12 days,
resulting in 82 time points) so that we could forecast the
same time ahead across all sampling frequencies, the
other sampling frequencies were 1/6, 1/3, and 1/1 (i.e.,
daily sampling). We further constrained all the
subsampled time series to also contain 82 time points. To
achieve this while also ensuring that we used all time
points exactly once per sampling frequency, we created
12 datasets at each sampling frequency (Figure 1). For
daily sampling, the 12 datasets were sequential, while
for the sampling frequency of once every 12 days their
start dates each differed by one day. Accordingly, and as
necessary, at the two intermediate sampling frequencies,
the datasets were both sequential and shifted by one day.

In summary, with this subsampling method, we var-
ied the sampling frequency while controlling the number
of data points in the time series. This necessarily resulted
in varying absolute time series lengths. For instance, the
daily sampled time series are 82 days long, while those
with samples every 12 days are 973 days long. This cre-
ated the possibility that the less frequently sampled times
series contained stronger longer-term dynamics (see
Discussion). In a robustness analysis, we controlled for
this by keeping the time covered by the time series con-
stant regardless of the sampling frequency (see
Appendix S1: Section S2.4.2).

We created time series datasets containing different
amounts of time points by keeping the following propor-
tions of the daily data: 9/12, 6/12, 3/12, 2/12, and 1/12
(Figure 1). To use every recorded time point exactly once
regardless of the proportion of data retained, we created
several datasets at each of the desired lengths (see
Figure 1). The exceptions to this are the two datasets that
kept 9/12 of the time points as they partially overlapped
(Figure 1).

Forecasting of species abundances

We forecasted the abundances of taxa from simulated
and field data using empirical dynamic modeling (EDM,
Ye et al., 2015) using the R package “rEDM” (Park et al.,
2021). In EDM, the state of a variable (e.g., the abun-
dance of a taxon) is predicted based on how the variable
behaved when it was in a similar state at other times.
The similarity of states can be determined using multiple

(time-lagged) variables (Takens, 1981), and the number
of variables used for this is the embedding dimension E
(Appendix S1: Section S1.3).

Forecasting of simulated dynamics
We carried out a simulation study to investigate the rela-
tion between sampling frequency, number of time points,
growth rate, and forecast error. The aim was to have a
simple baseline model (i.e., with minimal assumptions
and complexity) to inform our research hypotheses under
controlled settings and which we then tested in the more
complex setting of the field data. We simulated
single-species time series by using the R package “odin”
(FitzJohn, 2022) and the delayed logistic equation (Ruan,
2006): dN=dt¼ rN 1−Nt− τ=Kð Þ. In this equation, the
instantaneous rate of change dN=dt of the abundance N
of a taxon depends on the abundance at time point t
minus τ (the time delay), the growth rate r, and the car-
rying capacity K . Stable population cycles emerge when
rτ> π=2. We varied the number of time points, sampling
frequency (between 2 and 1/8 samplings/day), measure-
ment noise, and growth rate (between 0.3 and 1.2, with
constant rτ). We repeated the simulations 100 times for
each combination of parameter values.

We used simplex EDM (a single time series tech-
nique) with optimized E for the forecasts (Sugihara &
May, 1990). We split the simulated time series into train-
ing and evaluation data. We used the former to train the
eight days-ahead forecast models (matching the lowest
sampling frequency). We then forecasted the abundances
in the evaluation data with the models. To assess the
forecasts, we calculated the root mean square error
(RMSE, i.e., the forecast error). Here, and throughout the
study, we standardized the RMSE values. The expected
value of the standardized RMSE for forecasts based on
the average abundance (i.e., the baseline model) is one,
which means that forecasts that achieve RMSE values
below one perform better than the baseline model
(i.e., there is greater forecast skill). See Appendix S1:
Sections S1.1 and S1.3.1 for more information.

Forecasting of field abundances
We forecasted the abundances of the phyto- and zoo-
plankton classes (henceforth referred to as targets). As
predictors, we used the targets, the mean epilimnion
temperature, the mean mixed layer depth and irradi-
ance, and the concentrations of ammonium, phosphate,
and nitrate. We used the EDM technique multiview
embedding (Ye & Sugihara, 2016). This approach can
deal with high-dimensional systems by fitting all possi-
ble low-dimensional (i.e., small E) forecast models of
which the best ones are then used in an ensemble
forecast.
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For all the datasets, we made 12-days-ahead forecasts
(matching the lowest sampling frequency) varying the
number of steps forecasted ahead based on sampling
frequency (Appendix S1: Table S1). With the reduced
sampling frequency datasets, we forecasted target abun-
dances using leave-one-out cross-validation (CV). Thus,
we refitted the forecasts separately for each time point
(i.e. we used the direct forecasting strategy which corre-
sponds to data assimilation at the highest frequency, see
Dietze, 2017; Sahoo et al., 2020). To reduce computa-
tional load, for the complete daily dataset and all other
datasets, we used k-fold CV, by dividing the time series
into training data and evaluation data (21 time points,
Appendix S1: Table S1). We evaluated forecasts based on
the standardized RMSE as a measure of forecast error.
We summarized across the k-fold CV and across datasets
of the same sampling frequency and of the same number
of time points by calculating the median RMSE
(Appendix S1: Section S1.3.2).

Forecast error regressions

We used the calculated forecast errors as the response
variable in separate regressions for each of the explana-
tory variables: (1) sampling frequency; (2) number of
time points; (3) target maximum net growth rates; and
(4) target body size. For regressions (1) and (2), we
included an interaction term with a variable indicating
whether the targets were zoo- or phytoplankton, and we
included random intercepts and slopes for each target.
For regressions (3) and (4), we used the complete data
and log10-transformed the explanatory variables to meet
the model assumptions.

Interaction estimates as a function of
sampling design and functional traits

Estimation of number and strength of
interactions

We determined which field targets were causally linked
with a test of causation (convergent cross mapping
[CCM], Sugihara et al., 2012). We followed the recom-
mendations of Deyle et al. (2016) and extended the meth-
odology with a stringent convergence test that compares
CCM skill between two variables using 20% and 50% of
the data. This is done with 100 random subsets of the
data. If the CCM skill is larger when 50% of the data are
used in at least 95% of subsets, then we considered the
test to be passed. This convergence test has previously
been used by Merz et al. (2023). In this way, we

determined the number of interactions of the targets. We
did this in every dataset separately.

To estimate the interaction strengths between caus-
ally linked state variables, we used Smap EDM (Deyle
et al., 2016). This method calculates the interaction time
series between interacting variables. Similar to the fore-
casting, this is done by utilizing the information of how
the system reacted when it was in a comparable state
at other time points. In addition, the nonlinearity param-
eter θ assigns bigger weights to more similar system
states. Here we used an extension of this method called
regularized Smap EDM (Cenci et al., 2019), which can
handle process noise by introducing a penalization func-
tion (i.e., elastic net regularization) and its parameter λ.
We determined target-specific values for θ and λ with a
grid search. More details regarding CCM and Smap are
given in Appendix S1: Section S1.4.

To calculate the mean interaction strength of a target,
we averaged the absolute values of estimated interaction
time series over both time and interacting state variables.
To have a single estimate of number and mean strength
of interactions per target at each sampling frequency and
proportion of time points retained, we averaged over the
respective datasets.

Interaction estimates regressions

As for the forecast error, we used the number and the
average strength of interactions of the targets as response
variables in separate regressions with the explanatory vari-
ables: (1) sampling frequency; (2) number of time points;
(3) target maximum net growth rate; and (4) target body
size. The used covariates, interactions, random effects, and
covariate transformations were identical to when the
response variable was the forecast error. Models (3) and
(4) were quasi-Poisson regressions for the number of inter-
actions. This was not the case in models (1) and (2) because
the number of interactions was not a count but an average
calculated over the reduced datasets.

Effect of sampling design on the detection
of correlations between variables

In a final step, we combined the abundance forecasts and
the interaction estimates. A recent result shows that fore-
casts are better for targets with many but on average
weak interactions (Daugaard et al., 2022). We tested
whether we found this relation also in the field data and
whether the sampling frequency and the number of time
points influenced the detection. Accordingly, for each
sampling frequency and proportion of time points
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retained, we fitted two regressions with the forecast error
as the response variable, separately for the two explana-
tory variables number of interactions and mean interac-
tion strength.

RESULTS

Forecast error as a function of sampling
design and functional traits

In the simulations, the shape of the relation between sam-
pling frequency and forecast error depended on the growth
rate of the target (Figure 2a). The optimal sampling fre-
quency (i.e., the one resulting in the lowest RMSE)
increased with target growth rate (Figure 2b). Neither the
measurement error nor the number of time points
changed this pattern (Appendix S1: Figure S5).

We found no relation between the maximum net
growth rates of the field targets and the optimal sampling
frequency, as we achieved the best forecasts with the daily
sampling for all but one target (1/12 samplings/day were
best for ciliate forecasts; Figure 2b). Across targets, forecast
errors decreased linearly by 0:026 and 0:016 for every
increase of 0:1 samplings/day (F1,10 ¼ 42:91, p<0:0001;
Figure 2c; Appendix S1: Table S2), respectively, for the
phyto- and zooplankton targets with no difference
between the two groups (F1,10 ¼ 2:15, p¼ 0:1734). These
results were independent of the chosen forecast method
as they did not qualitatively change when we used
Random Forest to forecast the abundances instead of
EDM (Appendix S1: Section S2.4.1). Further, we also
found the same relations when we kept the time window
covered by the time series constant regardless of the sam-
pling frequency (Appendix S1: Section S2.4.2). Lastly, we
found consistent results (i.e., a negative trend between
sampling frequency and forecast error) when we fore-
casted 24 days ahead instead of 12 days (Appendix S1:
Section S2.4.3).

We found weak evidence in the complete data that
the forecast error increased by 0:337 for every 10-fold
increase in target maximum net growth rate (t10 ¼ 2:22,
p¼ 0:0509, Figure 2d; Appendix S1: Table S2). Targets
with larger body sizes showed bigger maximum net
growth rates (log10–log10 scale, slope= 5.168, t10 ¼ 2:94,
p¼ 0:0147; Figure 2e; Appendix S1: Table S3). Target
body size and forecast error were positively correlated
(Appendix S1: Figure S6).

Across targets, increasing the proportion of retained
time points resulted in lower forecast errors (phytoplank-
ton slope: −0.087; zooplankton slope: −0.050; F1,10¼ 5:67,
p¼ 0:0386; Figure 2f; Appendix S1: Table S2). While
there was no significant difference in slope between the

two plankton groups (F1,10 ¼ 0:418, p¼ 0:5323), the fore-
cast errors were lower for the phytoplankton targets
(intercept difference: −0.069, F1,10 ¼ 5:20, p¼ 0:0457).

Interaction estimates as a function of
sampling design and functional traits

Increasing the sampling frequency by 0:1 samplings/day
increased the estimated number of interactions by 0:225
across the phytoplankton targets (t10:8 ¼ 2:76, p¼ 0:0190;
Figure 3a; Appendix S1: Table S4), but not for the zoo-
plankton targets (t10:8 ¼ 0:03, p¼ 0:9793). The sampling
frequency had no effect on the estimated mean interac-
tion strengths of the targets (F1,10 ¼ 0:13, p¼ 0:7245;
Figure 3b; Appendix S1: Table S5), regardless of the
plankton group.

For the phytoplankton, decreasing the proportion of
time points by 10% decreased the estimated number of
interactions by 0:469 (t10 ¼ 2:69, p¼ 0:0227; Figure 3c;
Appendix S1: Table S4), and there was weak evidence
that it increased the estimated mean interaction strengths
by 0:015 (t10 ¼ 1:85, p¼ 0:0943; Figure 3d; Appendix S1:
Table S5). Across the zooplankton targets, the proportion
of time points used did not affect the interactions esti-
mates (t10 ¼ 0:08, p¼ 0:9376 and t10 ¼ 0:25, p¼ 0:8069,
respectively, for the number and the mean strength of
interactions), but we detected target-specific trends
(Appendix S1: Figure S7).

The maximum net growth rates were unrelated with
the number of interactions (t10 ¼ 1:41, p¼ 0:1890;
Figure 3e; Appendix S1: Table S4) and their mean
strength (t10 ¼ 1:17, p¼ 0:2686; Figure 3f; Appendix S1:
Table S5), as was the body size (Appendix S1: Figure S6).

Effect of sampling design on the detection
of correlations between variables

We found no relation between the interaction estimates
and the forecast error in the reduced sampling fre-
quency data (Figure 4a,b; Appendix S1: Table S6). With
the data containing 9/12 of the time points, we found a
negative relation between the number of interactions
and the abundance forecast error (Figure 4c). With the
data containing 9/12 and 6/12 of the time points, we
found a positive relation between the mean interaction
strength and the abundance forecast error (Figure 4d).
For the complete data and the other data containing a
reduced number of time points, the estimated slopes
between the interaction estimates and the abundance
forecast errors also matched in sign with the results of
Daugaard et al. (2022; Figure 4e,f), but with CIs
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overlapping zero (Figure 4c,d; exception: data
containing 1/12 of the points in Figure 4d). We further
confirmed these relations with the complete data when
we made one day-ahead forecasts, as done by Daugaard
et al. (2022; Appendix S1: Figure S10). The number and
mean strength of interactions were negatively correlated
(Appendix S1: Figure S9).

DISCUSSION

We show that abundance forecasts are negatively affected
by a reduction in sampling frequency across almost all
targets. Further, our forecasts were better for targets with
smaller maximal net growth rates and for targets
with smaller body sizes. Despite this, we found that
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growth rates are useful indicators of the optimal ampling
frequency only in the simulated single-species time
series, but not in the field data. The estimation of interac-
tions also depended on sampling design, as we estimated
the phytoplankton targets to interact more the denser the
time series were.

Sampling frequency has widely been recognized as
having significant impacts on various analyses
(e.g., Lehtiniemi et al., 2022; Ma et al., 2022), and yet
sampling frequencies are commonly too low (Estes et al.,
2018). The implications for ecological forecasting are not
well known, as we are aware of few and contrasting

findings regarding the effects of sampling frequency on
forecasting (Derot et al., 2020; Wauchope et al., 2019),
and which potentially were influenced by sample sizes.
We found that lowering the sampling frequency wors-
ened the abundance forecasts for 11 out of the 12 targets.
Because forecasting is one of the central aims of ecology
(Dietze et al., 2018), its dependence on sampling fre-
quency exemplifies the importance of thoughtful sam-
pling design. Failure to carefully calibrate the sampling
frequency to match the process of interest could result in
inadequate estimations and forecasts, which ultimately
could lead to wrong conclusions and inappropriate
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policies. Notably, the choice of the sampling frequency is
part of a larger set of decisions that need to be made so
that skillful forecasts can be achieved. This set includes,
for example, the choice of the forecasting method,
of the data assimilation strategy, of the predictors, and
of the validation and benchmarking approaches (see
Dietze, 2017).

Conversely, because forecasts can be evaluated quan-
titatively their dependence on sampling frequency shows
their potential to guide sampling designs. Skillful fore-
casts not only are an objective in ecology, but also can
advance its theoretical understanding (Lewis et al., 2023).
Building on this, we argue that besides improving theory
and informing decision-makers, forecasting can guide the
design of scientific studies and monitoring programs.
Adjusting the sampling frequency based on forecast skill
is likely to improve the time series so that the
process-relevant signals are captured, which is crucial in
community ecology (Isles & Pomati, 2021).

We found that we estimated fewer interactions for the
phytoplankton targets when we decreased the frequency
of the samplings. As we achieved the best forecasts at the
highest sampling frequency, we expect the estimated
number of interactions to be most accurate at this fre-
quency and underestimated otherwise. While the true
target interactions are unknown and thus the correctness
of the estimations cannot be evaluated, this may become
possible thanks to recent advances in the manipulation
of species interactions in microcosm experiments (Hu
et al., 2022).

The high-frequency data needed to select the sam-
pling design based on forecasts are not always available.
In such cases, alternative criteria to decide the sampling
frequency are needed. We found that selecting based on
growth rates was possible in simulated single-species
dynamics but not in the field data, although we achieved
better forecasts for targets with smaller growth rates
(which also had smaller body sizes, see discussion in
Appendix S1: Section S2.1). Thus, in natural systems,
more frequent sampling is needed than what would be
expected based on growth rates. While this could
be because of a mismatch between the true target divi-
sion rates and the estimated maximum net growth rates,
the found relation between the latter and the abundance
forecasts makes this less likely. Instead, we hypothesize
that the reason is the greater complexity of the natural
system. Indeed, the Nyquist–Shannon sampling theorem
used in signal processing theory states that to correctly
record a time series, the sampling frequency needs to be
at least twice as high as the highest frequency present in
the true time series (Shannon, 1949). With interacting
variables leaving imprints in each other’s time series
(Takens, 1981), to adequately capture the dynamics of a

target, it may be necessary to select the sampling
frequency not based on the target itself, but on the
interacting variable with the fastest time series (e.g., the
species with the highest growth rate).

The need for high-frequency data is further corrobo-
rated by our result that the effects of sampling design on
forecasts and interaction estimations were compounded.
We were not able to reproduce the laboratory result that
the forecasting of a target depends on the number and
strength of its interactions (Daugaard et al., 2022), unless
we used the high-frequency field data containing enough
time points. Auspiciously, the need for high-frequency
data in ecology is increasingly being covered (e.g., Besson
et al., 2022; Pomati et al., 2011).

Reducing the number of time points worsened fore-
casts and, in the case of the phytoplankton groups,
resulted in fewer interactions being estimated as signifi-
cant and thus likely in an underestimation of their actual
number. Contrasting this, for the zooplankton groups,
the interaction estimates were, on average, unaffected by
both the used number of time points and the used sam-
pling frequency. A potential explanation for these differ-
ences between phyto- and zooplankton might be that the
higher trophic level (or other trait differences) of the
zooplankton groups renders the estimation of their inter-
actions less data-demanding. It is also possible that these
differences have arisen because of the necessarily
different grouping approach (i.e., taxonomically vs. mor-
phologically). However, a closer look at the relation
between sample size and interaction estimates shows
that the decrease in sample size led to target-specific
over- and underestimations of interactions for both the
zoo- and the phytoplankton groups (Appendix S1:
Figure S7). This suggests that the found differences are
not caused by differences between the zoo- and phyto-
plankton groups but by other differences among targets.
Moreover, the fewer the time points we used, the more
the interaction estimates became similar across the tar-
gets (Appendix S1: Figure S8), indicating a loss in power
to correctly estimate them. This further shows the
importance of adequate sampling design for quantitative
analyses.

Varying the sampling frequency necessarily results in
time series that either differ in their time range or
in number of time points. We controlled for the latter as
we considered it to be a stronger confounder and
attempted to control for different time ranges with our
subsampling and forecasting approaches. Yet, it is possi-
ble that the different time ranges influenced the results,
for instance because the species network may have
changed over time (Merz et al., 2023). However, because
we only considered a relatively short time and used
grouped data which are less likely to change, we do not
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expect this to be the case. Nevertheless, as a robustness
analysis, we repeated the forecasting with fixed time
ranges across sampling frequencies and confirmed our
results (Appendix S1: Section S2.4.2).

In conclusion, we clarify the role of sampling fre-
quency in ecology for the forecasting and estimation of
processes. As we face climate change and biodiversity
loss (Bellard et al., 2012; Cardinale et al., 2012), ecological
forecasting is a field of increasing importance (Dietze,
2017). Our results have the potential to improve the
design of experiments and field observations, and the
estimation of species interactions (an important aspect of
biodiversity). Especially the use of forecasts not only as
an aim but also as a tool shows promise in this regard.
Ultimately, better study designs will improve ecological
inference and forecasting, which is fundamental for a
better theoretical understanding of ecology and for the
implementation of better performing policies and mea-
sures that deal with current global challenges.
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