1 Supplementary information

A. Laboratory setup

Figure 7: Picture of the laboratory setup

Figure 8: Dimensions of the laboratory setup

B. Scatterplot and range, mean and median values of the seven pollution indicators measured in this study

Table 5: Range and metrics for the pollution in the wastewater mixtures generated.

Water quality variable	Unit	Min	Max	Mean	Median
COD	mg/L	91.2	379.0	227.0	233.7
Turbidity	NTU	21.6	267.3	147.4	132.9
DOC	mg/L	45.1	302.9	132.3	124.2
TDN	mg/L	13.5	44.6	29.9	30.6
PO ₄ -P	mg/L	0.8	5.0	2.9	3.1
SO ₄ -S	mg/L	27.8	74.7	53.3	58.7
NH ₄ -N	mg/L	5.4	26.6	18.0	19.4

Figure 9: Scatterplot of the water quality indicators

C. Mathematical equations for: hyperspectral data-cubes pre-processing and spectra extraction

The hyperspectral data-cube of a given water sample is organized into a 3D reflectance array θ with dimensions 1020 x 51 x 300. We use the following indices to represent the dimensions of the array:

- i represents the pixel number, ranging from 1 to 1020.
- j represents the line number, ranging from 1 to 51.
- k represents the wavelength number, ranging from 1 to 300 and corresponding to the
 wavelength range between 400 and 1000nm with a 2nm resolution

Substep 1.1 Normalization to of the raw data-cube θ with dark and white reference

The normalized reflectance array $\theta_{i,j,k}^-$ is calculated with:

$$\theta_{i,j,k}^{-} = \frac{\theta_{i,j,k} - D_{i,j,k}}{W_{i,i,k} - D_{i,j,k}} \quad (i = 1...I; j = 1...J; k = 1...K) \quad (EQ. 1)$$

where $D_{i,j,k}$ is the dark reference data-cube and $W_{i,j,k}$ is the white reference data-cube.

Substep 1.2 Data-cube reframing

The reframed data-cube $\theta_{i,j,k}^{-}$ is obtained with the formula:

$$\theta_{i,j,k}^{-}{}^{*} = \theta_{i+110,j,k+10} (i=1...I^{*}; j=1...J^{*}; k=1...K^{*})$$
 (EQ. 2)

with:
$$I^* \times J^* \times K^* = 750 \times 45 \times 280$$

Substep 1.3 Pixel selection:

First, the light reflection intensity $R_{i,j}^{int}$ of each pixel (i, j) is calculated as the average reflectance across all wavelengths:

$$R_{i,j}^{int} = \frac{1}{K^*} * \sum_{k} \theta_{i,j,k}^{-*} (i = 1...I^*; j = 1...J^*) \quad (EQ. 3)$$

Second, the mask M_{ij} is calculated as an $I^* \times J^*$ array of boolean values:

$$M_{i,j} = \begin{cases} 1 & if \ L \leq R_{i,j}^{int} \leq U \\ 0 & otherwise \end{cases}, \ \left(i = 1...I^*; j = 1...J^*\right) \ (EQ.4)$$

where: L and U are the 20% and 80% percentiles of the array R^{int} .

Substep 1.4 Calculation of the mean reflectance spectra

After mask application, the total number of remaining pixels is:

$$0.6 \times I^* \times J^* = 20250$$

With these pixels, the mean (m) and standard deviation (S) of reflectance is calculated for every wavelength (k):

$$m_{k} = \frac{\sum_{i,j} M_{i,j} \cdot \theta_{i,j,k}^{-*}}{\sum_{i,j} M_{i,j}} (k = 1...K^{*}) \quad (EQ. 5)$$

$$s_{k} = \sqrt{\frac{\sum_{i,j} M_{i,j} \cdot (\theta_{i,j,k}^{-} + m_{k})^{2}}{\sum_{i,j} M_{i,j}}} (k = 1...K^{*}) \quad (EQ. 6)$$

The array m is representing the raw reflectance spectra extracted from a given data-cube

Substep 1.5 Spectra pre-processing

The processed reflectance spectrum R is finally obtained with:

$$R_k = log_{10}(P_k(x=k)) (k = 1...K^*)$$
 (EQ. 7)

Where: $P_k(x)$ is a second-order polynomial function fitted with the 17 reflectance values centered on the k^{th} value of the reflectance spectra m.

The following figure gives a visualization of the first three substeps, starting from a raw datacubes.

a. Raw hyperspectral data-cube

Figure 10: Step by step modification of the hyperspectral images to extract a representative spectrum

D. Mathematical equations for: Partial least squares parameter optimization and model evaluation

For this section, we are using s as the indices representing a wastewater sample (s=1...144) and v as the indices representing the water quality variable as defined in Table 1 (v=1...7).

The reflectance spectra R of each sample s (defined in EQ7) are combined into a $S \times K^*$ dimensional matrix X to be used as model features:

model features:
$$X_{s,k}$$
 ($s = 1...S = 144$)($k = 1...K^* = 280$)

The seven reference measurements of each sample s are combined in an $S \times 7$ -dimensional matrix Y.

model labels:
$$Y_{s,v}(s = 1...S = 144)(v = 1...7)$$

Substep 2.1 Classification of the wavelength

For each number of latent variables n_l and each water quality variable v, a PLS model was fitted with the full dataset to retrieve the wavelength classification $C_{nl,v}$:

$$C_{nl,v} = sort(abs(coeff(PLS_{nl}.fit(Y_v, X))))$$
 (EQ. 8)

where $^{PLS}_{nl}$ is a PLS model with n_1 latent variables and $^{Y}_{v}$ is the v-th column of the matrix Y.

Substep 2.2 Optimization of the PLS parameters

The PLS model performance was measured with the root mean squared error (RMSE) between the reference pollution values Y_v and the predictions Y_v^{pred} obtained with leave-one-out cross-validation (LOOCV). Therefore, the optimal parameters are defined by:

$$(n_l, n_w)$$

where: RMSE(
$$Y_v^{pred}(n_l, n_w), Y_v$$
) = $\min_{a:1\to 20, b:0\to 279} (RMSE(Y_v^{pred}(a,b), Y_v))$ (EQ. 9)

with:
$$RMSE(Y_v^{pred}, Y_v) = \sqrt{\frac{1}{S} * \sum_{s=1}^{144} (Y_{s, v}^{pred} - Y_{s, v})^2}$$
 (EQ. 10)

Step 2.3: Detailed optimal model evaluation

$$R^{2}(Y_{v}^{pred}, Y_{v}) = 1 - \frac{\sum_{s} (Y_{s,v}^{pred} - \bar{Y}_{v})^{2}}{\sum_{s} (Y_{s,v} - \bar{Y}_{v})^{2}} \quad (EQ. 11)$$

$$RMSE_{relative} \left(Y_{v}^{pred}, Y_{v} \right) = 100 * \frac{RMSE \left(Y_{v}^{pred}, Y_{v} \right)}{\bar{Y}_{v}} \ (EQ.12)$$

with
$$\bar{Y}_v = \frac{1}{S} * \sum_{s=1}^{144} Y_{s,v}$$
 (EQ. 13)

E. Two additional approaches to estimate turbidity

Model based on the light reflectance intensity

Figure 11: Estimation of turbidity from the light reflection intensity

Model based on the three RGB wavelengths

Figure 12: Estimation of the turbidity with a PLS model trained with wavelength at 464 (blue), 532 (green) and 630nm (red)

F. Results of the optimal PLS-models trained with the 36 samples composed of wastewater without formazine

Table 6: Detailed results of the model

Water quality variable	Unit	Min	Max	Optimal number of latent variables	Optimal number of wave- length	R ²	RMSE	RMSE (relative)
COD	mg/L	101.6	308.0	20	56	0.88	16.0	7.4%
Turbidity	NTU	21.6	80.7	20	143	0.94	3.6	5.9%
DOC	mg/L	45.1	228.0	20	60	0.92	10.7	10.2%
TDN	mg/L	15.1	33.7	20	100	0.97	0.7	2.6%
PO ₄ -P	mg/L	1.7	5.0	20	99	0.94	0.2	4.9%
SO ₄ -S	mg/L	58.3	74.7	20	85	0.77	1.9	3.0%
NH ₄ -N	mg/L	11.4	26.6	20	107	0.97	0.6	2.7%

Selected wavelength for each pollution indicator

Figure 13: Model selected wavelengths