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[1] Bubbles evolving from active gas seeps can be traced by hydroacoustic imaging up to 1000 m high
in the Black Sea water column. Although methane concentrations are not distinguishable between the
water column above the deep seep and reference sites, atmospheric noble gas measurements clearly
show the constant input of gases (mainly methane) via seepage into the Black Sea. Archaea (ANME-1,
ANME-2) and methanotrophic bacteria detected with specific 16S rRNA-targeted oligonucleotide
probes are related to active gas seeps in the oxic and anoxic water column. It is suggested that
methane seeps have a much greater influence on the Black Sea methane budget than previously
acknowledged and that ANME-1 and ANME-2 are injected via gas bubbles from the sediment into the
anoxic water column mediating methane oxidation. Our results show further that only minor amounts
of methane evolving from Black Sea gas seeps reach the atmosphere due to the very effective
microbial barrier. Hence only major thermodynamically and/or tectonically triggered gas hydrate
dissociation has the potential to induce rapid climate changes as suggested by the ‘‘clathrate gun
hypothesis.’’
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1. Introduction

[2] Methane, the second most important green-
house gas after carbon dioxide, has been held
responsible for dramatic climate changes in the
past [Dickens, 2003; Kennett et al., 2000]. Owing
mainly to anthropogenic production, atmospheric
methane concentrations have doubled from 850 ppb
to approximately 1750 ppb over the last 150 years
[Rasmussen and Khalil, 1984]. A significant pro-
portion of the methane emitted to the atmosphere
(30% of the total [Cicerone and Oremland, 1988])
is of natural origin; however, atmospheric meth-
ane concentrations would be much higher if the
huge methane pool that is stored in ocean sedi-
ments were to be released to the atmosphere. In
ocean sediments, the anaerobic oxidation of meth-
ane (AOM) and the formation of gas hydrates
generally hinder its release from the seafloor,
since methane is almost quantitatively converted
to bicarbonate [Reeburgh, 1976; Valentine and
Reeburgh, 2000]. Recent observations, however,
show that an unknown number of gas seeps exist
at the seafloor, through which methane is emitted,
thus escaping microbial transformation as streams
of gas bubbles and floating hydrates. The few
recent investigations that have been conducted
have found neither substantial methane oxidation
nor a methanotrophic community existing in the
gas plumes above seeps [Damm and Budeus,
2003].

[3] The Black Sea is the largest anoxic water body
on earth and serves as a model for both modern and
ancient anoxic environments. Stable stratification of
the water column suppresses substantial deep-water
renewal, fostering anoxia below the chemocline,
which is located at 90–170 m. Methane concentra-
tions in the deep water (below 500 m) are relatively
constant at a very high value (11–12 mM, i.e.,�5000

times the atmospheric equilibrium concentration),
and gradually decrease to only 10 nM in surface
waters [Reeburgh et al., 1991]. In the north-western
Black Sea, hundreds of active gas seeps, emitting
mainly methane [Blinova et al., 2003], exist along
the shelf and slope of the Crimean Peninsula at water
depths of between 35 and 800 m [Ivanov et al.,
1989]. The EU project CRIMEA has the objective to
investigate the methane seeps located on the north-
western Black Sea shelf and their role as a source for
methane to the atmosphere. In this paper we describe
the involvement of microorganisms in the transfor-
mation of methane in the water column from the
seafloor to the upper water layer with a special focus
on methane seeps.

2. Methods

[4] In the present study, we explored the biogeo-
chemical dynamics at a shallow seep site (44�500N,
31�590E, 92 m water depth) and at a deep seep site
(44�170N, 35�020E, 1985 m), together with two
reference sites (44�510N, 32�010E, 76 m and
44�140N, 32�300E, 1658 m) that were unaffected
by active gas emissions. Samples were taken from
the R/V Professor Vodyanitskiy during the CRI-
MEA project cruise in May/June 2003. Sampling
gears involved a CTD (Seabird SBE-9) connected
with a rosette of 12 water bottles each able to
sample 10 L of water at a specific water depth.
Water samples were taken immediately when the
rosette came onboard for noble gases, methane
concentration and methane isotopic composition,
and fluorescence in-situ hybridization (FISH).

2.1. Methane Concentration and Isotopic
Composition

[5] For CH4 analysis, a vacuum degassing method
was used whereby 1600 mL of water was injected
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into a pre-evacuated 2200 mL glass bottle, which
leads to almost quantitative degassing [Rehder et
al., 1999]. The gas phase was subsequently recom-
pressed to atmospheric pressure and the CH4

concentration of the extracted gas was determined
by gas chromatography on a Shimadzu GC14A
equipped with a flame ionization detector. Nitrogen
was used as the carrier gas, and separation was
performed using a 4 m 1/80 SS column packed with
Porapack Q (50/80 mesh) at 50 �C. The methane
carbon isotopic composition was determined for
the shallow stations using a Trace Gas linked to an
Isoprime mass spectrometer (GV Instruments).

2.2. CH4 Oxidation Rates

[6] Microbial methane oxidation was measured
using triplicate 20 mL crimp-seal bottles that were
filled with sampled water and sealed gas-tight.
From each triplicate, one sample was treated with
50 mL formaldehyde (37%) to function as a blank.
Oxygen-free aliquots of 50 mL tritiated methane
(3HCH3) with a specific activity of 20 Ci mmol 1

(Biotrend, Germany) were added to the bottles and
incubated in the dark at ambient water temper-
atures for 4 days. After incubation, samples were
killed with formaldehyde (37%), left opened over-
night, and stripped with nitrogen prior to counting,
to remove all non-reacted tracer. The product of
methane oxidation (3HHO) was measured on a
Wallac 1209 Rackbeta (Pharmacia) using a liquid
scintillation cocktail (Insta-gel Plus, Perkin Elmer).
Blank values were always lower than 15–50% of
the sample. Values were only approved as real
microbial turnover rates if the subtraction of twice
the standard deviation of all the blanks of one batch
from each sample value still resulted in positive
counts.

2.3. Noble Gas Measurements

[7] Water samples for noble gas analysis were
collected immediately when the rosette arrived on
deck and stored in gas-tight copper tubes for
analysis after the expedition. Noble gas measure-
ments were performed using a specialized vacuum
extraction and purification line combined with
mass spectrometric analysis [Beyerle et al., 2000].

2.4. Bacterial Abundance and FISH

[8] Bacterial abundance was determined by epi-
fluorescence microscopy (Zeiss Axioscope 2,
1,000 magnification) of DAPI (40, 6-diamidino-2-
phenylindole)-stained cells. For fluorescence in-
situ hybridization (FISH), bacterial cells were fixed

by the addition of concentrated formaldehyde so-
lution (5% final concentration) for 15 min at room
temperature and thereafter recovered by gentle
vacuum filtration (20 and 50 mL for each sample)
on to polycarbonate filters with a pore size of
0.2 mm (GTPB, Millipore). After washing with
PBS and water, the filters were transferred into
sterile PP petri dishes, sealed and stored frozen at
20�C for FISH. The protocol of Pernthaler et al.

[2002] was used for the hybridization procedure.
The following oligonucleotide probes (MWG, Ger-
many) were used to describe the microbial com-
munities: Arch915 for members of the domain
Archaea; Eel MS 932 (ANME-2 group); ANME-
1 862 (ANME-1 group), distantly related to Meth-
anosarcinales [Boetius et al., 2000]; and MG84/
705 and MA450, describing methanotroph groups I
and II [Eller et al., 2001], respectively. Probes were
labeled with the indocarbocyanine fluorescent dye
CY3 and fluorescein (MWG, Germany).

3. Results and Discussion

[9] At the newly discovered active Vodyanitskiy
mud volcano in the Sorokin Trough, at 1985 m
water depth, a very prominent and constant bubble
plume was found. Although the bubbles could be
followed vertically by the echosounder system for
more than 1000 m, methane concentrations mea-
sured in the water column in the vicinity of the
plume were not significantly different from those
measured in the water column at the reference sites
(Figure 1). The reason for not being able to
discriminate between the two sites is most likely
the already very high background values. This
confirms earlier results from deep Black Sea sites
indicating that elevated methane concentrations
above methane seeps occur only very close to the
sediments [Bohrmann et al., 2003].

[10] To determine the methane partitioning be-
tween the bubbles and the surrounding water, we
measured the distribution of noble gases in the
water column. Except for helium, which can be
supersaturated due to terrigenic input, the concen-
trations of dissolved atmospheric noble gases in
lake and ocean water correspond closely to the
equilibrium concentrations defined by the surface
water temperature and salinity that prevailed dur-
ing gas exchange with the atmosphere [Craig and
Weiss, 1971; Kipfer et al., 2002]. Noble gases are
chemically inert, and therefore any observed devi-
ations from the initial equilibrium concentrations
are interpretable in terms of purely physical pro-
cesses. The presence of gas bubbles in the water
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column stimulates gas exchange between the as-
cending gas phase and the surrounding water by
gas stripping and dissolution (see Figure 2, right-
hand panel) and therefore affects the local noble
gas concentrations [Clark et al., 2003; Leifer and
Patro, 2002; Wüest et al., 1992].

[11] Figure 2 shows the observed atmospheric
Neon (Ne) and Helium (4He) concentrations for
the deep reference and deep seep sites (depths >
800 m). Ne concentrations in the deep water are
approximately constant with depth for each of the
two profiles, but the mean Ne concentration deter-
mined in the plume is 3.2% lower than that
determined for the reference profile. Since a similar
depletion was observed in the 4He measurements,
we conclude that gas exchange takes place between
the rising bubbles and the surrounding water; i.e.,
that the gas bubbles strip dissolved Ne and He from
the water. At the seep site, this stripping directly
affects up to 1000 m of the water column and is in
accordance to bubble processes that have been
clearly documented at Coal Oil Point, off Califor-
nia [Clark et al., 2003]. It is important to note that
the Ne depletion and methane dissolution observed
are dependent on the timescales associated with
horizontal and vertical mixing in the deep water of
the Black Sea, and hence can be viewed as an
integrative measure of the gas release occurring on
these timescales.

[12] Recent publications have shown high concen-
trations of 13C-depleted biphytanes and glyceryl
dialkyl glyceryl tetraethers in the anoxic Black Sea
water column below 700 m, which clearly indicate
the involvement of archaea in the anaerobic oxi-
dation of methane [Schouten et al., 2001;Wakeham
et al., 2003]. However, the actual organisms me-
diating the anaerobic oxidation of methane in the
Black Sea water column are still unknown.

[13] To identify the community responsible for the
oxidation of methane in the gas plume we used 16S
rRNA-targeted oligonucleotide probes. Using Arch
915, a general archaeal probe, a 25% higher total
archaeal cell count was found in the anoxic water
column in the vicinity of the bubble plume than at
the equivalent reference site. An archaeal commu-
nity closely related to Methanosarcina, called
ANME-2, together with sulfate-reducing bacteria,
was found to be responsible for the anaerobic
oxidation of methane in sediments from Hydrate
Ridge off the coast of Oregon [Boetius et al.,
2000]. ANME-1 and ANME-2 cells have been
detected in the sediments at seep sites in the Santa
Barbara Basin and the Eel River Basin off the coast
of California [Hinrichs et al., 1999; Orphan et al.,
2001], whereas in a Black Sea reef structure,
mainly ANME-1 was found [Michaelis et
al., 2002]. Methane oxidation took place at both
sites with similar methane oxidation rates between

Figure 1. Methane concentrations in the water column above the deep seep site (solid red circles) and the
equivalent reference site (open orange circles). The methane concentrations at these two sites were very close to each
other beside a 1300 m high bubble plume influencing the water column above the seep site. The panel in the middle
shows the abundance (as percent of total DAPI counts) of ANME-1 (solid dark green circles) and ANME-2 cells
(open light green circles), so far known to mediate anaerobic oxidation of methane in sediments, in the water column
above the seep site. Whereas both communities in the vicinity of a bubble plume are present up to 3% of all DAPI
detected cells in the water column below 1000 m with a strong decrease toward the chemocline, only 1 to 2% of
ANME-1 and ANME-2 cells are found rather homogenously distributed over the whole anoxic water column at the
reference site (right-hand-side panel).
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Figure 2. Neon and heliwn ("He) concentrations (nonnaliz.ed to atmospheric equilibriwn concentrations) in the 
deep water of the Black Sea (left-hand and middle panels). The mean of the Ne concentrations at the reference site is 
3.2% higher than that at the plwne site. The difference in the noble gas concentration profiles is significant at the lcr 
level (unweighted standard deviations). A similar effect was observed for He: samples from the plwne are depleted 
relative to the reference samples ( ~2% on average over the given depth interval). Note that the deep water of the 
Black Sea contains significant amounts ofterrigenic He [Top et al., 1990]. The fact that He depletion is observable 
suggests that the deep seeps do not emit substantial amounts of terrigenic He. The right-hand panel illustrates the 
conceptual model of the stripping of noble gases from the surrounding water column by the ascending bubbles and 
concrurent bubble dissolution, leading to changes in the concentrations of the dissolved gases and in the bubble 
composition [Clark et al., 2003 ]. The observed noble gas depletion reflects the bubble volwne injected per volwne of 
water. If the hydrodynamics of the seep and the physical processes controlling the secondary gas exchange were 
known in detail, the observed noble gas depletion in the water could be interpreted in terms of the volwne of methane 
bubbles released by the seep. Using a simple model that asswnes that solubility equilibriwn is attained between the 
bubbles and the srurounding water [Brennwald et al., 2005] suggests that the injection of methane bubbles by the 
seep, if completely dissolved, corresponds approximately to the CH4 concentration in the deep water of the Black 
Sea. 

0.03 to 3.1 nM d 1 and we therefore tried to 
identify the community involved in anaerobic 
methane oxidation. Using 16S rRNA-targeted 
oligonucleotide probes specific to both groups, 
we were able to detect ANME-1 and AN1vffi-2 
cells in the water column, which had previously 
been described only in sediments. Cell counts of 
filters from the water column above the methane 
seep site revealed AN1vffi-l and ANME-2 cells at 
concentrations of up to 3% of all DAPI stained 
cells (Figure 1 ). At the deep reference site, cell 
counts detected AN1vffi-l and ANME-2 cells at 
lower concentrations of only 1 to 2%. Additionally, 
the distribution of the archaeal cells over the water 
column was different between the reference and the 

seep site. Whereas at the reference station the cells 
are rather homogenously distributed over the whole 
anoxic water column, at the seep site the archaeal 
abundance is higher exactly at the depth horizon 
where the methane plume could be observed with 
acoustical means, i.e., from the seafloor to approx-
imately 1000 m water depth (Figure 1 ). In general, 
bacteria are attached to interfaces, i.e., to solid/ 
liquid or water/gas phase boundaries. Of these, the 
gas/water interface is especially important for bac-
teria, since enrichment of hydrophobic molecules 
like proteins, lipids, and carbohydrates also occurs 
there [Kjelleberg and Stenstrom, 1980; Norkrans 
and Sorensson, 1977]. Our data imply that in the 
Black Sea water column, ANME-1 and ANME-2 
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cells (and presumably also other archaea attached
to the gas bubbles) are released from the seep-
related sediment and injected into the water
column. Such interpretation is supported by the
fact that the abundance of total archaeal cells, and
specifically ANME-1 and ANME-2 cells, found in
the water column in the vicinity of the bubble
plume is higher than that found at the reference site
and that the higher abundance exactly follows the
height of the methane plume.

[14] Although the seeps appear to currently add
microorganisms to the water column, it remains an
open question whether the deep bubble plumes had
in the past, and still have today, the capacity to
inoculate the entire anoxic water body of the Black
Sea with methane-oxidizing archaea. The 13C-de-
pleted biomarkers mentioned above as having been
detected in the anoxic water column of the central
Black Sea [Schouten et al., 2001; Wakeham et al.,
2003], an area where no seeps have yet been found,
suggest that there are other methane-transforming
archaea in addition to ANME-1 and ANME-2
awaiting discovery.

[15] In contrast to the deep sites, where the addi-
tional methane influx from seeps is difficult to
detect, the methane excess at the shallow seep site
was very pronounced, with concentrations that
were on average 10 times higher than at the
reference site (Figure 3a). This excess is compara-
ble to the situation at Coal Oil Point seep [Clark et
al., 2000]. Additionally, methane oxidation rates at
the seep site (0.02 to 1.6 nM d 1) were approxi-
mately 30 times higher than those at the reference
site (0.001 to 0.05 nM d 1), indicating that a
methanotrophic community lives in the oxic envi-
ronment affected by the bubble plume. Further
evidence for enhanced microbial activity comes
from the carbon isotope composition of the dis-
solved methane. Carbon isotope values at the
shallow seep site ( 66.1% VPDB) are character-
istically depleted with respect to those at the
reference site ( 58% VPDB, Figure 3b), clearly
indicating that gas seeps inject methane into the
overlying water. Additionally, the decrease in
methane concentration due to oxidation is associ-
ated with a carbon isotope effect that results in the
remaining methane being enriched with 13C [Bark-
er and Fritz, 1981] which can be clearly seen in
Figure 3b ( 66.1 to 48.7% VPDB from above
the sediment to the uppermost 5 m water depth).
Accordingly, using oligonucleotide probes for
methanotrophic bacteria types I and II [Eller et
al., 2001], up to 4% and 2.2%, respectively, of all

DAPI stained cells could be identified as methano-
trophic bacteria (Figures 3c and 3d). Methanotro-
phic bacteria of type II were detected only in the
deepest sample at the seep site. Type I methano-
trophs were rather uniformly distributed with
numbers < 0.5% at both shallow sites with the
exception of one sample. Since no higher metha-
notrophic bacterial numbers were detected in the
water column in the vicinity of the bubble plume,
higher oxidation rates must be a result of higher
metabolic rates in the community above the seep
site.

[16] Reeburgh et al. [1991] have estimated that
2.9 � 1011 mol CH4 are formed in the sediments of
the shelf and slope of the Black Sea and that �
99% is oxidized anaerobically in the euxinic water
column. In contrast, pore water methane in sedi-
ment cores from the NW shelf and slope is anaer-
obically oxidized by sulfate and never reaches the
water column [Jørgensen et al., 2001]. Further-
more, flux chamber experiments showed only a
negligible contribution of methane from the NW
shelf sediments [Friedl et al., 1998; Friedrich et
al., 2002]. The methane contribution from the
sediments would therefore seem to be rather small,
implying that methane emanating from seeps lo-
cated on the abyssal plain, shelf and slope regions
must be an important term in the methane budget
of the Black Sea.

[17] Twice as much methane was detected in the
uppermost 20 m of the water column at the shallow
seep site than at the reference site (Figure 3a,
inset). Surface waters above shallow seeps are
therefore methane-enriched, and emit this green-
house gas directly into the atmosphere. An enrich-
ment of methane in the water column above seep
stations with a subsequent release to the atmo-
sphere has also been described recently by Schmale
et al. [2005]. However, higher methane oxidation
rates demonstrate that microbes associated with the
bubble plume are catching up with the higher
methane concentrations. Our findings therefore
suggest that slow dissociation of gas hydrates due
to warmer bottom waters will not result in dramatic
climate changes. On the other hand, the huge
amount of methane released from gas hydrates as
the result of a sudden tectonic event as proposed by
the ‘‘clathrate gun hypothesis’’ [Kennett et al.,
2000] will certainly exceed the oxidation capabil-
ities of the microbial community, thus leading to an
increase in atmospheric methane concentrations.

[18] Higher mean surface water methane concen-
trations at the deep seep site, and hence higher rates
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of methane emission to the atmosphere are not
observed and are also not expected due to model-
ing results (D. F. McGinnis et al., The fate of rising
methane bubbles in stratified waters: What fraction
reaches the atmosphere?, submitted to Journal of
Geophysical Research, 2005). Although caution
has to be exercised in drawing any final conclu-
sions, we conclude that as long as the mixing
dynamics of the Black Sea are strongly reduced
by the prominent chemocline, methane from deep
plumes will not reach the atmosphere and will
therefore not result in higher atmospheric methane
concentrations.
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