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Abstract: With the pending implementation of REACH, both old and new chemicals will have to be registered and 
chemical safety reports will have to be compiled. Depending on the yearly tonnages produced or imported, (eco-) 
toxicological and chemical fate data of varying degrees of detail will have to be produced. It has been forecast that 
these new requirements will result in higher costs for registration and an increased need for animal testing. Some of 
this additional workload could be avoided by making use of in vitro or in silico prediction methods. At Eawag (Swiss 
Federal Institute of Aquatic Science and Technology) several research groups are working on the development and 
validation of quantitative structure–activity relationships (QSARs) and related methods to predict ecotoxicological 
and fate endpoints, such as reactivities in or partitioning between different environmental media, based on chemical 
structure or easily measurable physico-chemical properties. When developing such tools, special attention has to 
be paid to use only descriptors whose mechanistic significance for the modelled endpoint is well understood on a 
molecular level. In this article four examples of our work in the field of compound fate and effect predictions will be 
presented: i) the measurement of compound descriptors for use in linear-free-energy relationships to predict parti-
tion coefficients between environmental media; ii) the development of free-energy relationships for the prediction 
of indirect photolysis; iii) the evaluation of existing structure–biodegradability models to predict soil biodegradation 
half-lives; and iv) the application of mode-of-action-based test batteries to develop quantitative structure–activity 
relationships to classify chemicals according to their modes of toxic action. 
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(quantitative) structure–reactivity relation-
ships ((Q)SARs [2]). One of the main cor-
nerstones of REACH is that the distinction 
between old and new chemicals will disap-
pear. In other words, all chemicals currently 
on the market as well as newly developed 
chemicals will need to undergo registration 
and, depending on the tonnage produced, 
a more or less extensive evaluation of 
their risk to humans and the environment 
(‘chemical safety assessment’). As a con-
sequence, the need for environmental fate 
data, i.e. data on partitioning and reactivi-
ties, as well as for (eco-)toxicological data 
will increase. Table 1 gives an overview of 
the data requirements for the various ton-
nage classes.

An estimated cost of 1 to 5 billion h is 
expected due to required additional testing, 
primarily due to toxicity studies (http://eu-
ropa.eu.int/comm/enterprise/reach/white-
paper/ biajune2002.htm), with some indus-
try groups projecting even higher costs (18–
32 billion h) [3]. The implementation of 
REACH will thus significantly increase the 
need for developing and validating in vitro, 

in silico and read-across methods as cost-
effective alternatives to determine chemical 
fate and effect endpoints. The Institute for 
Health and Consumer Protection (IHCP) of 
the European Commission issued several 
documents on the cost-saving potential of 
QSARs and estimated that 700–940 Mio 
h and a lot of test animals could be saved 
[4]. However, they also acknowledged that 
here are still gaps for a full regulatory accep
tance of most published QSARs, amongst 
them a vigorous and independent validation 
exercise.

While in the present Swiss [5] and Eu-
ropean legislation the use of (Q)SARs and 
related predictive methods for fate and ef-
fect endpoints is still limited, REACH ex-
plicitly opens up the opportunity to predict 
such properties based on knowledge about 
structurally related compounds and based 
on the outcome of mechanism-based in 
vitro effect tests. Chapter 2, Annex VI of 
REACH states that “The registrant should 
also collect all other available and relevant 
information (...). This should include infor-
mation from alternative sources (e.g. from 
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1. Introduction

The pending implementation of the new 
European chemicals regulation REACH 
(Registration, Evaluation and Authoriza-
tion of Chemicals) [1] will have a signifi-
cant impact on the development and vali-
dation of in silico methods, among them 
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(Q)SARs, read-across from other substanc-
es, in vivo and in vitro testing, epidemio-
logical data) which may assist in identify-
ing the presence or absence of hazardous 
properties of the substance and which can 
in certain cases replace the results of ani-
mal tests.” In Annex XI it is further speci-
fied that only those (Q)SAR models shall 
be used whose scientific validity has been 
established and which are adequately docu-
mented.

At Eawag (Swiss Federal Institute of 
Aquatic Science and Technology) one of 
the three major fields of research activi-
ties, besides ‘urban water management’ 
and ‘aquatic ecosystems’, is ‘chemicals 
and their effects in water’. Within the lat-
ter field, ongoing research is focused in five 
working groups (Table 2), whose activities 
reach from fundamental research on ecotox-
icological mechanisms and chemical fate 
processes (WG 1–3) all the way to putting 

these findings into use in collaboration with 
the public authority or implementing them 
into regulatory risk assessment procedures 
(WG 4–5). In the context of REACH, work-
ing group 4 on environmental risk assess-
ment of chemicals is of particular interest. 
One of the major goals within this working 
group is to develop and validate methods to 
predict fate and ecotoxicological endpoints 

of large sets of diverse chemicals based on 
chemical structure, easily measurable phys-
ico-chemical properties or in vitro assays.

When developing such methods, a 
number of processes need to be understood 
on a molecular level (e.g. adsorption, bulk 
partitioning, or complexation; direct or 
indirect (photo)chemical, or biologically 
mediated transformation reactions; uptake 
into organisms and interaction with bio-
logical target molecules). The quantifica-
tion of these individual processes requires 
quantitative information on the pertinent 
compound- and system specific proper-
ties and reactivities. For some of the abi-
otic processes such as partitioning between 
bulk phases, adsorption to surfaces, or deg-
radation reactions such as hydrolysis or 
direct photolysis, the underlying molecu-
lar mechanisms are fairly well understood 
and quantifiable, and various predictive 
methods for these endpoints already ex-
ist. Unfortunately, many of these methods 
are based on regressions against various 
types of molecular descriptors that are of-
ten selected on purely statistical grounds, 
rather than on a mechanistic understanding 
of their influence on the endpoint of inter-
est. As a consequence, it is often not clear 
to what range of chemical structures they 
are applicable and they are mostly valid for 
one specific endpoint only. One of the com-
mon denominators of the tools developed 
in our research is that they are based on 
descriptors or explanatory variables whose 
mechanistic significance for the modelled 
endpoint is well understood. In such a way, 
we assure that the tools are broadly appli-
cable to diverse sets of chemical structures, 
that their applicability domain is clearly de-
fined, and that they can encompass several 
related endpoints in a consistent manner. 
Specific activities in this area include the 
measurement of compound descriptors for 
use in polyparameter linear-free-energy re-
lationships to predict partition coefficients 
between various environmental media (Sec-
tion 2), and the development of free-energy 
relationships for the prediction of indirect 
photolysis (Section 3).

Whereas for the quantification of abi-
otic processes it is sufficient to understand 
the chemicals’ tendency to interact with a 
given sorbent or reactant and to know the 

Table 1. Relevant data requirements for the chemical safety report requested within REACH [1] for 
chemicals of different tonnages

Physico-chemical and environmental fate 
data

Ecotoxicological data

≥1 t/a (Appendix VII) (standard data requirements)

Octanol-water partition coefficient Short-term toxicity testing on daphnia

Water solubility

Vapour pressure

Ready biodegradability

≥10 t/a (Appendix VIII) (additional data requirements)

Hydrolysis as a function of pH Short-term toxicity testing on fish

Adsorption/desorption screening study Activated sludge respiration inhibition test

≥100 t/a (Appendix IX) (additional data requirements)

Dissociation constant in water Long-term toxicity testing on daphnia

Simulation testing on ultimate degradation in 
surface water 

Long-term toxicity testing on fish

Soil degradation simulation study Reproductive toxicity to fish

Sediment degradation simulation study Short-term toxicity to soil invertebrates

Identification of degradation products Effects on soil micro-organisms

Bioaccumulation in aquatic species (fish) Short-term toxicity to plants

Refined adsorption/desorption study

≥1000 t/a (Appendix X) (additional data requirements)

Long-term toxicity testing on soil 
invertebrates

Long-term toxicity testing on plants

Long-term toxicity to sediment organisms

Long-term or reproductive toxicity to birds

Table 2. Working groups (WG) within field of activity ‘chemicals and their effects in water’ at Eawag 
(Swiss Federal Institute of Aquatic Science and Technology)

Working group 1 Realistic exposure scenarios

Working group 2 Internal exposure

Working group 3 Multiple effects, multiple stressors and sequential exposure

Working group 4 Environmental risk assessment of chemicals

Working group 5 Decision support for government agencies, politics, and industry
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abundance and properties of that sorbent or 
reactant, the situation becomes considerably 
more complex when biological processes 
are involved. To quantify biodegradabil-
ity, for instance, the bioavailability of the 
compounds, their interaction with enzyme 
systems catalyzing their breakdown and the 
abundance of these enzyme systems further 
need to be understood. Our work on validat-
ing and analyzing the shortcomings of ex-
isting structure–biodegradability models to 
predict biodegradation rates in soil (Section 
4) confirms that the most we can currently 
expect from these models is that they cor-
rectly rank chemicals with regard to their 
relative tendency to be biodegraded, whereas 
prediction of actual biodegradation rates in 
real environments is currently not feasible. 
Likewise, to predict ecotoxicological effects 
in a mechanistically sound manner, under-
standing bioavailability and identifying the 
targets and key mechanisms of toxic effects 
are essential prerequisites. The application 
of mode-of-action-based test batteries to 
develop quantitative structure–activity rela-
tionships to classify chemicals according to 
their modes of toxic action (Section 5) is an 
example of our research in this area.

The four areas of research mentioned 
will be presented in more detail in the fol-
lowing and it will be pointed out how and 
at what point of the assessment process the 
resulting models might be instrumental for 
chemical safety assessment within REACH.

2. A General Principle to Predict 
Partitioning Between Diverse 
Environmental Phases

According to REACH, a detailed expo-
sure assessment for the five environmental 
spheres, aquatic, terrestrial and atmospheric 
environment, food chain and sewage treat-
ment plants, needs to be carried out for 
chemicals that are produced in volumes 
above 10 t/a and that are dangerous in ac-
cordance with 67/548/EEC or 1999/45/EC 
or that have been demonstrated to exhibit 
PBT or vPvB properties. Chemicals are sub-
ject to various partitioning processes within 
and between these environmental spheres, 
which influence their expected presence in 
any of these spheres. The measurement of 
these partition coefficients is tedious and co-
efficients reported in the literature often vary 
over several orders of magnitude for a given 
compound and partitioning system [7].

Alternatively, many different predictive 
models for partition coefficients exist, rang-
ing from one parameter linear-free-energy 
relationships, over structure–property rela-
tionships all the way to quantum chemical 
calculations. Most of them, however, suffer 
from one of the following shortcomings: i) 
they only apply to compounds with similar 
molecular structures, ii) they fail in describ-

ing complex environmental phases such 
as natural organic matter, where possible 
interaction sites are countless and not well 
characterized, or iii) they are developed for 
one specific partitioning system only and do 
not produce coefficients that are consistent 
over several systems, e.g. in terms of the 
thermodynamic cycle. Polyparameter linear-
free-energy relationships (pp-LFER), which 
describe the partitioning of a chemical be-
tween two phases in terms of the energy con-
tributions of the most important solute-phase 
intermolecular interactions, overcome these 
problems and are therefore rapidly gaining 
ground in environmental chemistry [8][9]. 
One of the most prominent pp-LFERs for 
describing equilibrium partitioning between 
bulk phases is the solvation parameter model 
by Abraham [10] (Eqn. (1)).

log K = eE + sS + aA + bB + vV� (1)

The dependent variable log K is the 
partition coefficient and the five descriptor 
pairs quantify the molecular interactions 
that govern the partitioning process: Van der 
Waals interactions (e, E), polar interactions 
(s, S), H-bond donor (b, A) and acceptor (a, 
B) interactions and cavity formation in bulk 
media (v, V). The five descriptors in capi-
tal letters describe the tendency of a given 
chemical to undergo these types of interac-
tions independent of the partitioning system 
in question (solute descriptors). The corre-
sponding descriptors in lower case letters 
describe the difference in capacity between 
any two phases to undergo the various inter-
molecular interactions (phase descriptors). 
Similar equations for adsorption to surfaces 
exist, the main difference being that there is 
no need for the cavity formation term [11]. 
Due to the fundamentally mechanistic nature 
of the solute descriptors, they are universally 
applicable to all relevant partitioning sys-
tems and therefore only need to be measured 
once. The same is true for the phase descrip-
tors. Once measured, they are valid to quan-
titatively describe the partitioning behaviour 
of all sorts of neutral compounds. Thus, if 
both solute and phase descriptors are known, 
the equilibrium partitioning of a chemical in 
a two-phase system can be calculated with 
much higher accuracy than with other meth-
ods. A further advantage of the mechanistic 
basis of pp-LFERs is that the interpretation 
of phase descriptors and solute descriptors 
is straightforward and allows for efficient 
consistency checking of experimentally ob-
tained values.

Phase descriptors for numerous bulk 
phase–water, bulk phase–air and surface–air 
partitioning systems have been and are cur-
rently being determined experimentally [12–
20]. A selection of environmentally relevant 
partitioning systems with available phase 
descriptors is given in Table 3. It should be 
noted that especially partitioning between 

air and bulk phases or surfaces is highly 
dependent on temperature and, in the latter 
case, also humidity. Phase descriptors have 
therefore always been determined under var-
ious conditions of temperature and humid-
ity and in some cases expressions for these 
dependencies on environmental conditions 
could even be derived on theoretical grounds 
[11]. The availability of phase descriptors for 
a broad variety of environmental phases such 
as snow, mineral surfaces, soot etc. and con-
ditions opens up an avenue to describe the 
effect of the variable composition of relevant 
environmental subcompartments such as 
soil solid material or tropospheric aerosols 
on partitioning much more concisely than it 
is currently done in chemical fate modelling 
[21].

To pave the way towards practical ap-
plicability of pp-LFERs, there is not only a 
need to determine phase parameters for the 
relevant environmental systems but there is 
also a need for methods to efficiently deter-
mine solute descriptors for a broad set of 
compounds. Especially for polar compounds 
with multiple functional groups such as pes-
ticides and veterinary pharmaceuticals there 
is currently a lack of descriptors. While the E 
and the V descriptors can be calculated pre-
cisely from molecular structure, the S, A and 
B descriptors have to be determined experi-
mentally. In our research group, solute de-
scriptors for complex environmental chemi-
cals are currently being measured using 
high-performance liquid chromatography 
systems (HPLC). This method is based on 
the fact that the measured net retention time 
of a given compound in an HPLC system 
is proportional to its partition coefficient 

Table 3. Environmentally relevant two-phase 
systems with available phase descriptors

Two-phase system Reference

Surface–gas partitioning

Quartz–air [13]

Water–air [18]

Snow–air [19]

Diesel soot–air [20]

Humic acid–air [14]

Bulk phase–surface partitioning

Water–soil organic matter [17]

Water–blood [12]

Water–fatty tissues [12]

Passive transport

Cell permeation [16]

Plant cuticle permeation [15]
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in the system. To determine the three miss-
ing solute descriptors S, A and B, at least 
three HPLC systems are therefore required. 
These systems must differ strongly in the 
intermolecular interactions that control the 
retention (partitioning) process. For the ex-
act determination of solute descriptors we 
actually use nine different HPLC systems 
that include various mobile and stationary 
phases. With this setup we recently meas-
ured solute descriptors for a set of about 40 
substances from different classes of pesti-
cides and pharmaceuticals. When inserted 
into existing pp-LFER equations for parti-
tion coefficients such as log Kow or log Koc 
and compared to directly measured values 
of these partition coefficients, we could 
show that partition coefficients derived with 
solute descriptors determined in the HPLC 
systems did not exhibit any systematic error 
and deviated from directly measured ones 
by a factor of 3 on average only. It can thus 
be expected that the same solute descrip-
tors can be used to predict other partitioning 
properties with a similar level of accuracy.

In the context of REACH, pp-LFERs of-
fer the opportunity to predict various types 
of partitioning properties and transfer rates 
based on only five solute descriptors and 
in a consistent manner. At the moment, 
their applicability is limited by the lack of 
solute descriptors and also phase descrip-
tors for some environmentally relevant 
systems such as soils or sediments. While 
experimental determination of phase and 
solute descriptors is ongoing in different 
research groups, another option to obtain 
solute descriptors, besides the straight-
forward HPLC method mentioned, is to 
predict them with a group contribution 
approach [22]. This approach has been 
implemented as the so-called ‘Absolv’ 
module in the ADME-Boxes software 
(© 2001–2006, Pharma Algorithms, inc.). 
Although the predictive power of ‘Absolv’ 
is increasing, the need for experimentally 
determined solute descriptors is currently 
still strong as a means to validate and im-
prove ‘Absolv’ by expanding the testing 
or training database. Currently, the use of 
‘Absolv’-generated solute descriptors can-
not yet be recommended due to a lack of 
transparency with regard to the calculation 
algorithm and its validity [23]. In the fu-
ture, however, it could become the method 
of choice to predict partition coefficients.

3. Prediction of Indirect 
Phototransformation in Surface 
Waters

As defined by the requirements listed 
in Table 1, the tendency of chemicals to be 
removed from the environment by abiotic 
or biotic degradation has to be documented 
for their registration. For chemicals with a 

production volume <100 t/a, hydrolysis is 
explicitly stated as the only abiotic chemi-
cal process to be studied. However, for 
certain compounds other processes, such 
as reductions, oxidations or photoinduced 
reactions, may constitute other relevant 
abiotic pathways leading to degradation. 
Here, we give an overview of the impor-
tance of different photoinduced reactions 
and suggest a simple approach to assess the 
potential for indirect phototransformation 
through aquatic photooxidants. This Sec-
tion might help registrants to evaluate the 
photodegradation potential of a chemical to 
be registered, and could serve as a basis for 
proposing photodegradation studies in the 
testing proposal for a given chemical.

Rates of direct phototransformation 
are generally highly dependent on the 
electronic absorption spectrum of the tar-
get contaminant and the quantum yield of 
its reaction, the latter quantity being dif-
ficult to predict by computational meth-
ods. A well studied example, where direct 
phototransformation in surface waters is a 
relevant environmental removal process, 
are fluorescent whitening agents, a class of 
high production volume chemicals widely 
used in laundry detergents and paper and 
cloth manufacturing [24–27]. A limited 
number of QSARs concerning very spe-
cific photoreactions, such as the photo-
hydrolysis of aromatic halides [28], have 
been derived to date.

A different type of phototransforma-
tion reactions are indirect (or sensitized) 
phototransformations, which occur mainly 
by interaction between target contaminant 
and transient reactants formed upon irra-
diation of light-absorbing water compo-
nents, such as dissolved natural organic 
matter (DOM), nitrate and nitrite ions, or 
iron(iii) complexes. Relevant transient re-
actants occurring in the aerated, sunlight-
exposed upper layer of surface waters are 
called photooxidants and comprise hy-
droxyl radicals, carbonate radicals, singlet 
molecular oxygen, excited triplet states of 
DOM (3DOM*) and other DOM-derived 
radicals [29]. The overall first-order rate 
constant for depletion by indirect pho-
totransformation is made up of the con-
tribution of each individual photooxidant. 
Hydroxyl radicals are among the most 
powerful oxidants occurring in the aquatic 
environment and react with most organic 
compounds containing aromatic moieties 
very readily, at nearly diffusion-limited 
rates. QSARs for aqueous hydroxyl radi-
cal reaction rate constants have been re-
cently reviewed [30]. Such rate constants 
are available for more than one thousand 
compounds [31] and can be easily deter-
mined using competition kinetics methods 
[32]. However, the very low concentration 
of OH radicals in sunlit natural waters, 
which typically results in half-lives in the 

order of several months for this specific 
type of reaction, reduces their importance 
for the degradation of aquatic contami-
nants.

The other known aquatic photooxidants 
are more selective than hydroxyl radicals, 
which means that their second-order rate 
constants vary by several orders of mag-
nitude and high reactivity is reached for a 
limited number of compounds only. How-
ever, for such subgroups of compounds 
they can represent significant causes of 
degradation, since their concentration 
may be much higher than that of hydroxyl 
radicals. 3DOM* seems to play a domi-
nant role in the surface water degradation 
of electron-rich phenolic compounds [33] 
and various phenylurea herbicides [34]. 
Therefore interest has grown in quantify-
ing this indirect photochemical pathway 
and predicting degradation rates of tar-
get contaminants. Because the nature of 
3DOM* is largely unknown and, due to the 
great variety of chromophoric DOM com-
ponents, their characterization by spectro-
scopic techniques is currently not feasible, 
we have used model aromatic ketones to 
mimic DOM triplet states. For substituted 
phenols [35] and, more recently, phenylu-
reas [36] we could show that oxidation of 
such target contaminants was largely con-
trolled by the rate of bimolecular electron 
transfer to the excited triplet state of the 
aromatic ketone. Second-order rate con-
stants for the initial electron transfer from 
a target phenol to excited triplet ketones 
followed a non-linear relationship (Fig. 1), 
which could be modelled using a Marcus 
or a Rehm-Weller relationship [33], with 
the Gibbs free energy of electron transfer 
(∆Gº

el) between the oxidizing species and 
the contaminant being the descriptor varia-
ble. This relationship allows the prediction 
of absolute rate constants if the one-elec-
tron standard reduction potentials of the 
oxidizing species (the excited triplet) and 
of the target contaminant are known. Fig. 
1 shows that rate constants (kobs) level off 
towards negative ∆Gº

el, approaching limit-
ing values of ≈4×109 M–1 s–1, which can 
be considered as the diffusion limit for this 
specific reaction, and that they strongly 
decrease with increasing ∆Gº

el.
For fast-reacting compounds such as 

electron-rich phenols, half-lives of the or-
der of a few hours are typical for surface 
waters [33]. These are about two orders of 
magnitude shorter than those determined 
for the hydroxyl radical-induced degrada-
tion [37], which may be considered a slow, 
unspecific ‘background’ degradation for 
those compounds showing reactivity to-
wards 3DOM*. The relationships derived 
to date for substituted phenols and phe-
nylureas allow us to select, based on their 
one-electron standard reduction potential, 
candidate contaminants that will probably 
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undergo indirect photolysis by the 3DOM*-
mechanism. Based on the estimated effec-
tive potential of DOM, we can further pre-
dict that for compounds having one-electron 
standard reduction potentials above a certain 
limit, 3DOM*-induced phototransformation 
should be negligible. We believe that once 
the method has been verified for other class-
es of compounds and refined accordingly, it 
will be possible for a given target contami-
nant either to quantify its 3DOM*-induced 
phototransformation or to exclude it a priori. 
In the context of REACH such a method will 
be helpful to estimate the likelihood that, for 
a given contaminant, indirect phototransfor-
mation besides hydrolysis plays a role for its 
abiotic degradation in surface waters.

4. Evaluation of QSARs for 
Biodegradability

For compounds that do not contain an 
easily hydrolysable moiety or that either 
have a low potential for phototransforma-
tion or are not exposed to sunlight, biodeg-
radation is often the only remaining pathway 
removing them from the environment. For 
PBT (Persistence, Bioaccumulation and 
Toxicity) assessment as well as for more 
detailed exposure analyses, the half-lives of 
a compound in soil and water are essential 
compound properties that need to be known. 
Within REACH, cutoff criteria are given for 
persistent compounds (soil half-life >120 d, 
aqueous half-life >40 d (fresh water) and >60 
d (marine water), marine sediment half-life 
>180 d) and for very persistent compounds 
(soil and sediment half-life >180 d, aqueous 
half-life >60 d). Several initiatives have been 

taken to identify molecular substructures and 
descriptors that influence biodegradability 
and to construct quantitative models for bio-
degradability prediction based thereupon. 
To date, a set of validated models that allow 
for a reasonably accurate prediction of ready 
biodegradability is available [38]. However, 
for comparison to cutoff values and for ex-
posure modelling, a more precise prediction 
of environmental half-lives in the media soil, 
water and sediment is necessary. Developing 
QSAR models that fulfill this purpose seems 
to resemble the quest for the Holy Grail, as 
a series of continuously less optimistic edi-
torials about the prospect of predicting bio-
degradation rates over a period of 20 years 
illustrates [39–41].

Currently, the most frequently used mod-
els for the prediction of primary or ultimate 
biodegradation half-lives are the BIOWIN 
Primary or Ultimate Survey Models from 
the US EPA EPI Suite package (freely down-
loadable from http://www.epa.gov/opptintr/
exposure/docs/episuite.htm). They are based 
on the results of an expert survey and use 
a group contribution approach to predict 
biodegradability on a scale from 1 to 5. To 
convert this raw output into compartmental 
half-lives, it is suggested in the EPI Suite 
package that the results from the BIOWIN 
Survey Models be translated into water half-
life categories (<1.75: 180 d, 1.75–2.25: 60 
d, 2.25–2.75: 37.5 d, 2.75–3.25: 15 d, 3.25–
3.75: 8.7 d, 3.75–4.25: 2.3 d, 4.25–4.75: 1.3 
d, >4.75: 0.2 d) and that soil and sediment 
half-lives be derived from these water half-
lives by using multiplication factors of 2 and 
9 respectively. Alternatively, Arnot et al. [42] 
suggest a regression equation for translating 
BIOWIN raw output into half-lives, which 

they have derived from experimental soil 
and water half-lives of a set of 40 diverse 
chemicals.

In the context of our work on the ex-
posure assessment of pesticide transforma-
tion products [43], we evaluated how well 
soil half-lives could be predicted with the 
BIOWIN Primary Survey Model (PSM). To 
translate the raw PSM output into half-lives 
we used the translation rules suggested in 
the EPI Suite package, the regression equa-
tion by Arnot et al. [42] as well as our own 
regression equation fitted to our collection 
of pesticide data (comprising 38 compounds 
with experimental soil half-lives, including 
20 parent pesticides and 18 pesticide trans-
formation products). Where more than one 
soil half-life was reported for a given com-
pound, the median was used in the compari-
son. Fig. 2 shows how the BIOWIN PSM 
output compares to the experimental soil 
half-lives, and how the EPI Suite translation 
rules and the two regression equations com-
pare to the data points.

From the comparison in Fig. 2, it can be 
seen very clearly that the output of BIOWIN 
PSM and the median experimental half-lives 
do not correlate well (r2 = 0.49). Our regres-
sion equation is mainly driven by a few old, 
recalcitrant pesticides such as DDT, hep-
tachlor, aldrin and dieldrin in our data set. 
For the better degradable pesticides with 
BIOWIN outputs between 2.5 and 4, no cor-
relation between experimental soil half-lives 
and BIOWIN output can be detected at all. In 
Table 4 these results are summarized as the 
maximum negative and positive deviations, 
the average deviation as well as the rms er-
ror between experimental and predicted soil 
half-lives on a log scale. It clearly shows that 
none of the three translation methods, i.e. the 
EPI Suite translation rules, the Arnot et al. 
correlation, or our own correlation, is supe-
rior. All three methods yield maximal errors 
of around 1.5 log units, which translate into 
maximal uncertainties in the prediction of 
half-lives of a factor of 30. While EPI Suite 
translation rules show a tendency to under-
predict half-lives, using the Arnot et al. rela-
tionship rather seems to lead to an overpre-
diction of half-lives for the 30 compounds 
investigated.

These large uncertainties are quite unsat-
isfactory and will translate into correspond-
ingly large errors in the exposure assessment 
of compounds for which no experimental 
half-lives are available. Since REACH ex-
plicitly allows for read-across, we tested 
whether, for the special case of transforma-
tion products, the predictions could be opti-
mized by using the parent pesticide half-life 
as a starting point [44]. Unfortunately this 
approach also failed to improve the predic-
tive power significantly.

All in all, using BIOWIN for the pre-
diction of compartmental half-lives results 
in maximal uncertainties as large as a fac-

Fig. 1. Rehm-Weller 
plots for electron 
transfer rate constants 
from substituted 
phenols (kobs) to 
1) excited triplet 
benzophenone and 
2-acetonaphthone 
(full circles) and 2) 
excited triplet 3’-
methoxyacetophenone 
(open circles). Lines 
correspond to fits of 
the two different data 
sets to the Rehm-Weller 
equation [33].
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tor of 30 and mean uncertainties, deduced 
from the rms error, of about a factor of 5, 
which is hardly sufficient for an in-depth 
exposure analysis. Fig. 2 indicates that 
the predictive power might be sufficient 
to distinguish between clearly persistent 
and clearly non-persistent compounds for 
the purpose of PBT assessment, which is 
confirmed by a similar analysis by Aron-
son et al. [45]. Actual biodegradation rates 
in soil or water, however, are influenced by 
many different factors beside chemical re-
activity such as temperature, humidity, pH, 
soil texture, pollutant concentration, redox 
conditions and most importantly the micro-
bial consortium present. They can therefore 
not be expected to be predictable based on 
results from ready biodegradability tests or 
from expert surveys, which are the basis of 

BIOWIN. In the future, models that allow 
for a more accurate prediction of half-lives 
will only be obtained through training on 
actually measured half-lives. In doing so, 
the challenge lies in separating the influ-
ence of molecular structure on biochemical 
reactivity from the confounding influences 
of different environmental and experimen-
tal conditions under which biodegradation 
rates have been measured [46].

5. Development of QSARs for 
Ecotoxicological Endpoints

In the field of QSARs for toxic end-
points we face a paradoxical situation today 
with both the need for QSARs as well as 
scepticism against their usefulness increas-

ing. The reasons and possible solutions to 
this problem are discussed in a very clear-
sighted article by Veith [47]. He states that 
to overcome this scepticism, we first need 
to understand mechanisms in order to ap-
ply a model correctly and, second, we need 
to move from the current ‘test now-model 
later’ approach to using QSARs for setting 
the priorities for experimental testing. Both 
claims fit in with the research conducted at 
Eawag over the last decade, as we will try 
to show here. Currently, the technical guid-
ance document [6] contains a chapter on 
QSARs for ecotoxicity endpoints such as 
acute toxicity towards fish and other aquat-
ic life. Unfortunately, at present, in the EU 
QSARs are accepted only for the predic-
tion of baseline toxicity. Pollutants that are 
hydrophobic and persistent are a particular 
problem because they tend to bioaccumu-
late. Inside the organisms they accumulate 
preferentially in storage lipids and in mem-
brane lipids. Membrane lipids are target 
sites for toxic effects, with baseline toxic-
ity being a nonspecific disturbance of struc-
ture and functioning of the lipid bilayer of 
membranes [48]. Baseline toxicity, also 
called narcosis, constitutes the minimum 
toxicity of any compound. Therefore it is 
useful to be able to estimate the effect level 
for baseline toxicity. However, in order to 
identify ‘pollutants of concern’, it is desir-
able to have tools for the identification and 
prediction of chemicals with specific, and 
therefore more potent, modes of toxic ac-
tion (MOA). Since identification of MOA 
and classification are crucial, we discuss 
these issues in more depth before present-
ing an example of a predictive model from 
our own research.

5.1. Classification
The most relevant MOA-based QSAR 

collection is the ASTER-system (ASsess-
ment Tool for Evaluating Risk) of the US 
EPA. In ASTER, the appropriate QSAR for 
a new compound is selected on the basis 
of the occurrence of chemical fragments 
[49]. However, a fragment-based rule sys-
tem is limited because it reduces a chemi-
cal structure to a specified substructure and 
ignores the other topological and electronic 
features of the entire compound, which may 
influence its propensity to act according to 
a given mode of toxic action [50]. With 
the aim to overcome this limitation several 
studies on MOA classification have been 
published in the last years [51–53].

The comparison of these models reveals 
great differences in the number and types of 
MOAs considered, methods used to assess 
the predictive power, and the selection of the 
compounds. Already the experimental data 
used to build the models show fundamen-
tal differences in the assignment of MOAs 
with disagreements ranging from 23–32% 
within sets of overlapping compounds 

Fig. 2. Comparison of BIOWIN PSM output with experimental soil half-lives for 30 pesticides and their 
transformation products. In addition, three possible methods for translating BIOWIN PSM output into 
actual half-lives are also indicated: EPI Suite translation rules (indicated as ‘EPI Suite Soil’), the Arnot 
et al. [40] regression and our own regression based on the pesticide data.

Table 4. Maximum negative and positive deviations, the average deviation as well as the rms (root 
mean square) error between experimental and predicted soil half-lives for the three translation 
methods shown in Fig. 2, as well as for two read-across methods (parent compound (PC) adjusted 
regressions). All differences are expressed on a log scale (log t1/2,soil (d))

log t1/2,soil (d) Average deviation
Maximum 
deviation

Minimum 
deviation

rms error

BIOWIN –0.20 1.21 –0.73 0.73

Regression Arnot 0.29 1.60 –0.98 0.67

Regression own work 0.00 1.31 –1.22 0.59

PC adjusted regression Arnot –0.27 1.44 –1.35 0.62

PC adjusted regression own work –0.26 1.44 –1.32 0.61
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[54]. Furthermore, a general trend can be 
observed that the number of correctly clas-
sified compounds decreases rapidly with 
increasing diversity of the data sets. Thus, 
the coverage of different chemical classes 
is still a major problem in QSAR model-
ling and is only feasible if the variables of a 
model are closely related to the underlying 
molecular mechanism of toxicity [52]. 

An example from our work may serve 
to illustrate the complexity of MOA assign-
ments. We have developed a set of bioassays 
to classify and to describe the toxicity of 
electrophilic chemicals [56]. The effects 
were related to reaction rate constants to-
wards model nucleophiles [54]. However, 
the entire data set needed to be broken 
down into a number of different subsets be-
cause of distinct differences in the reaction 
mechanism of the nucleophilic substitution 
reaction and differences in preferred target 
nucleophile, which resulted in very small 
data sets and a large number of different 
QSAR equations unsuitable for further use 
in regulatory applications [57].

This example illustrates that there is still 
a long way to go until classification methods 
based on molecular descriptors can be ap-
plied for regulatory purposes, which require 
robust and particularly transparent models. 
Therefore it seems that in the first phase of 
REACH more pragmatic approaches based 
on the occurrence of fragments, like in AS-
TER or as proposed by von der Ohe et al. 
[58], will be used with the known limita-
tions described above.

5.2. Quantitative Models
Apart from the previously mentioned 

technical guidance document from the EU, 
the OECD proposed QSARs for two MOAs, 
namely, baseline toxicity and uncoupling of 
oxidative phosphorylation [59], but the as-
signment of chemicals to the appropriate 
QSAR is not complete nor fully correct ac-
cording to our own analysis [60]. For as-
sessing uncoupling, we have developed an 
in vitro test system based on time-resolved 
spectroscopy of single-turnover events 
in the photosystem of the photosynthetic 
bacterium Rhodobacter spaeroides, which 
allows one to quantify baseline toxicity, 
uncoupling and inhibition of the electron 
transfer chain and the ATP synthetase and 
to differentiate between these mechanisms 
[61][62]. The results for uncoupling ob-
tained with this test system have been shown 
to correlate quite well with other in vitro 
endpoints and cytotoxicity tests [61]. We 
also found linear correlations of the in vitro 
data with fish toxicity data, but those are 
of lower quality due to additional toxicoki-
netic parameters determining the overall 
effect in fish [61]. Nevertheless, the results 
obtained with this test system are a good 
example for the assignment of mechanisms 
of membrane toxicity and intrinsic toxicity 

to a large set of environmental pollutants.
The data on baseline toxicity and un-

coupling (for a compilation see [60]) were 
used to develop a MOA classification 
scheme and to derive a QSAR for intrinsic 
uncoupling activity [63]. The classification 
scheme distinguishing uncouplers from 
other MOA [54] is based on specifying 
ranges of physico-chemical descriptors that 
are characteristic for uncouplers and, thus, 
it does not suffer from the drawbacks of, for 
example, fragment-based approaches. The 
striking feature of the quantitative model is 
its mechanistic basis and the low number of 
only three calculated descriptor variables. 
The mechanistic insights leading to such 
models might require years of experimental 
work, however, if such knowledge is avail-
able, it is invaluable to QSAR-modelers in 
order to focus their search for meaningful 
molecular descriptors and also to the regu-
latory agencies, who need transparent mod-
els as the basis for their decisions. 

However, the work presented here is on-
ly a first step towards establishing QSARs 
for regulatory purposes, which need to ful-
fill stringent validation criteria. The OECD 
principles of (Q)SAR validation read as 
follows [64]: “To facilitate the consid-
eration of a (Q)SAR model for regulatory 
purposes, it should be associated with the 
following information: (1) a defined end-
point, (2) an unambiguous algorithm, (3) 
a defined domain of applicability, (4) ap-
propriate measures of goodness-of-fit, ro-
bustness and predicitivity, (5) a mechanistic 
interpretation, if possible”. To fulfill point 
(4) and to expand and define point (3), a 
‘critical mass’ of measured data is required, 
which goes beyond the work for develop-
ing an in vitro test. Financing for additional 
research to fill this data gap is difficult to 
obtain from national and international re-
search foundations due to its lack of being 
fundamentally new. Nevertheless, we feel 
the obligation as a governmental research 
institution to make a contribution, not only 
for scientific advancement but also for ap-
plication of our results in the context of 
REACH and the Swiss legislation.

6. Conclusions

The OECD principles of (Q)SAR vali-
dation request “a mechanistic interpretation 
[of the (Q)SAR], if possible”. In our opin-
ion, it goes without saying that QSARs in-
tended for use in REACH must be defenda-
ble based on solid scientific findings, which 
is achievable exclusively through a mecha-
nism-based algorithm. A mechanism-based 
QSAR brings with it further advantages that 
should also be of interest in the context of 
REACH: It is broadly applicable to structur-
ally diverse sets of chemicals as well as for 
the prediction of several endpoints in a con-

sistent manner, which has been illustrated 
by the example of pp-LFERs for the predic-
tion of partition coefficients. While QSARs 
that fulfill this request exist for physico-
chemical properties and abiotic reactivities, 
biological processes such as ecotoxicologi-
cal effects and biodegradation are generally 
considered too complex to be approached 
in such a way. It is encouraging that mode-
of-action-based classification has by now 
been recognized as an important basis for 
the development of stringent QSARs in that 
it helps decomposing observed effects into 
their several underlying processes, which, 
in turn, is the basis for successful model-
ling. In biodegradation research, however, 
two extremes are still observed: QSARs are 
either applicable to broad sets of different 
chemicals but can hardly be interpreted in 
a mechanistic manner, or their mechanistic 
basis is understood but they are only appli-
cable to a very restricted set of chemicals 
structures. Future work in the field needs 
to go toward bridging this gap. Assigning 
chemicals to their most likely ‘mode of 
enzyme-catalyzed reaction’ and to develop 
QSARs for comparative assessment within 
these reaction classes might be a way for-
ward.
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