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Divergent natural selection acting on ecological traits, which also affect mate choice, is a key element of ecological 
speciation theory, but has not previously been demonstrated at the molecular gene level to our knowledge. Here we 
demonstrate parallel evolution in two cichlid genera under strong divergent selection in a gene that affects both. 
Strong divergent natural selection fixed opsin proteins with different predicted light absorbance properties at 
opposite ends of an environmental gradient. By expressing them and measuring absorbance, we show that the 
reciprocal fixation adapts populations to divergent light environments. The divergent evolution of the visual system 
coincides with divergence in male breeding coloration, consistent with incipient ecological by-product speciation. 

Citation:Terai Y, Seehausen 0, Sasaki T, Takahashi K, Mizoiri S, et al. (2006) Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol 4(12): 
e433. DOI: 10.1371/ joumal.pbioD040433 

Introduction 
Adaptive radiatio n, the ge neratio n of ecological diversity 

in a rapidly multiplying lineage, is receiving much a tte ntio n 
by evolutio na ry b iologists and ecologists because it is thought 
to be a fo rce able to quickly ge nerate la rge numbe rs of new 
species and ecological diversi ty through multiple episodes o f 
ecological specia tio n (1). Diverge nt na tural selectio n (selec 
tio n o n ecologically relevant traits that favors differe nt alleles 
in different e nvironme nts) is thought to be its ma in driver 
(1,2). It can po te ntially cause ecological differentia tio n a nd 
speciatio n simulta neously when its ac tio n o n ecological t raits 
in contrasting envi ronments affects mate cho ice as a by 
p roduc t (1). The concept of by p roduc t specia tio n is 
theoretically and mathe ma tically well es tablished (1,3), a nd 
experimental evide nce supports tha t the mechanism works 
[2,4,5). However, because the ge nes respo nsible for varia tio n 
in ecological and ma ting t raits are rarely ide ntified, the 
hypo thesis has rema ined la rgely untested at the ge ne level. In 
particular, that selectio n has fixed alleles with opposite effects 
o n a n adaptive trait in different closely rela ted populatio ns 
has rarely been de mo nstrated [6,7), a nd to our knowledge, no t 
for traits tha t affect adapta tio n and ma ting preferences 
simul ta neously, even though ch ro moso mal regio ns with 
effects o n both have been singled out by qua ntita tive trait 
locus mapping (4,5). Ye t, without such de mo nstratio n, the 
discussio n about the role of diverge nt natural selectio n in 
speciatio n remains somewhat speculative. 

African cichlid fish are becoming a model syste m fo r the 
gene tics of vertebrate specia tio n and adaptive radia tio n (8). 
Lake Victo ria, the largest of the Afr ican great Jakes, hosts the 
youngest of the large cichl id radiatio ns. Geological evide nce 
even suggests tha t Lake Vic toria d r ied up a t the end of the 
Ple istocene a nd refilled o nly 15,000 years ago (9). Levels o f 
polymorphism in mitocho ndrial DNA suggest tha t the neutral 
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gene tic diversity conta ined in the radiatio n is less tha n 
200,000 y o ld (10) and may indeed be younger (11). 
Surp r isingly, despite 10 fold lower mitocho ndr ial DNA 
diversity, the pheno typic divers ity a mong Lake Victo ria 
cichlids is similar to tha t in the several millio n y old Lake 
Malawi (12). This implies rapid selectio n d r iven divers ifica 
tio n in Lake Vic toria but remained untested a t the gene level. 

Male nuptial coloratio n is o ne of the most a mazingly 
variable pheno typic traits a mong Lake Victoria c ichlid fish. 
Water is a de nse medium that ge nerates highly he teroge neous 
light e nvi ronme nts tha t fish have to adapt the ir visual syste ms 
to. Visual pigments in the pho toreceptor cells of the re tina 
consist of a light absorbing compo nent the ch romophore 
a nd a p ro te in mo iety, the opsin (13). The light se nsitivi ty of a 
visual pigment is de termined by the ch romophore (Al (11 cis 
re tinal] or A2 (11 cis 3, 4 dehyd rore tinal) pigme nts) and by its 
interactio n with the a mino acid res idues coating the retinal 
binding pocket of the opsin in which the ch romophore lies 
(14). 

In haploch romine cichlids, e ight different opsins have been 
found (15 18). As predic ted by adaptive evolutio n, the most 
variable between species are those tha t absorb a t the extreme 
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ends of the light spectrum where most environmental
variation in light transmission is found: short wavelength
sensitive opsin 1 and long wavelength sensitive opsin (LWS)
[17].

Within Lake Victoria, LWS, which has a peak value of light
absorption (kmax) at long (red) wavelengths [16], is by far the
most variable opsin [17]. LWS is a candidate for a gene under
strong divergent selection in Lake Victoria, because it entails
five times more variation in the cichlids of Lake Victoria than
in the at least 10 fold older Lake Malawi cichlid radiation
[19,20]. The photic environment in Lake Victoria is charac
terized by much steeper gradients in water clarity, light
intensity, and spectral composition [21]. Given the impor
tance of vision in food acquisition, predator avoidance,
territorial defence, and mate choice of cichlid fish, these
gradients are likely exerting strong selection on opsin genes
and on associated mating traits. In several pairs of closely
related species of Lake Victoria cichlids, the species with the
larger LWS kmax has red male breeding colors and lower
detection thresholds for red light, whereas the species with
smaller LWS kmax has blue breeding colors and is less
sensitive to red light and more sensitive to blue light,
consistent with sensory drive (divergence in male coloration
evolving as a consequence of divergent visual sensitivities)
[20,22,23]. Hence, the LWS gene may be involved in ecological
adaptation and mate choice simultaneously. Here we dem
onstrate evolution in LWS under strong divergent ecological
selection along an environmental gradient, and we show
correlated divergence in male nuptial coloration, implicating
population divergence through sensory drive.

Results/Discussion

Population Divergence at the LWS Gene
We studied multiple populations of each of four different

Lake Victoria cichlid species along a 100 km long cline in
water clarity (Figure 1A). All four have lake wide but patchy
distributions, being restricted to rocky islands and headlands:
Neochromis greenwoodi (including its offshore incipient species
N. omnicaeruleus [24]), Neochromis rufocaudalis, Mbipia mbipi, and
Pundamilia pundamilia [24]. We determined the sequences of
exons 2 5 of LWS (872 base pairs [bp]) that code the trans
membrane region from 117 individuals (234 alleles) of N.
greenwoodi/omnicaeruleus (10 populations), 44 individuals (88
alleles) of N. rufocaudalis (6 populations), 55 individuals (110
alleles) of Mbipia mbipi (5 populations), and 43 individuals (86
alleles) of Pundamilia pundamilia (11 populations). For this
analysis, we considered it appropriate to treat N. greenwoodi/
omnicaeruleus as one taxon (i.e., superspecies), because N.
omnicaeruleus replaces N. greenwoodi at the clear water islands
in the Speke Gulf and differs only in male coloration (light
blue) from neighbouring N. greenwoodi populations along the
mainland (blue black) [24]. The four taxa occupy different
water depths and microhabitats, living either mostly outside
or inside the rocky interstices (Figures 1B and S1). N.
rufocaudalis and P. pundamilia are everywhere restricted to
very shallow waters. N. rufocaudalis grazes on algae on the
outside of rocks, whereas P. pundamilia lives in crevices
between rocks, feeding on insect larvae. M. mbipi has a deeper
modal depth and lives predominantly outside the rocky
crevices. N. greenwoodi/omnicaeruleus has the widest depth
range, a modal depth slightly deeper than M. mbipi, and also

lives mostly outside the rocky crevices [25] (Figures 1B and
S1). Both are omnivorous feeders. We predicted that N.
greenwoodi/omnicaeruleus and M. mbipi should experience strong
divergent selection on the visual system between populations,
exerted by differences in light transmission between islands
with different water clarity, whereas species that live
exclusively in very shallow water (and in rocky interstices)
would be less affected.
We report the results on N. greenwoodi/omnicaeruleus first and

then compare results on the three other species against them.
We observed ten polymorphic sites (one synonymous, nine
nonsynonymous) among the LWS sequences of N. greenwoodi/
omnicaeruleus (Figure S2). From the bovine rhodopsin crystal
structure [26], we inferred that two of the variable amino acid
positions, 177 and 275, are located in the retinal binding
pocket, and the others are distant from retinal. We focused
on positions 177 (nucleotide site 529) and 275 (sites 823 and
824) and divided all observed alleles into four groups based
on these two amino acid positions: The L group includes all
alleles with 177S (529T) and 275I (823A and 824T). The H
group includes all alleles with 177A (529G) and 275C (823T
and 824G). The M1 group includes all alleles with 177A (529G)
but 275I (823A and 824T). The M2 group includes all alleles
with 177S (529T) but 275C (823T and 824G). M1 and M2
alleles can be considered recombinants of L and H alleles or
intermediate alleles. The frequencies of allele groups in the
ten populations are shown in Figure 1C.
In populations that live in very turbid water (,80 cm

Secchi disk transparency), the L group alleles appeared to be
fixed or almost fixed (station 2: number of L alleles [L]¼ 57,
98.3% and station 3: L ¼ 10, 100%) (Figures 1C and S2). On
the other hand, the H group alleles (H) appeared to be fixed
in all the offshore island populations with high water
transparency (�180 cm; station 14: H ¼ 8, 100%, station 15:
H¼ 50, 100%, station 10: H¼ 40, 100%) (Figures 1C and S2).
With one exception (one H group allele at station 2), the L
and H allele groups were observed only in populations that
live in waters of equal to or less than, and equal to or more
than 85 cm Secchi transparency, respectively (Figure 1C).
Mantel tests [27] of the significance of correlations between
matrices of (i) pairwise population differentiation at the LWS
locus, (ii) pairwise difference in water transparency, and (iii)
pairwise geographical distance, revealed a highly significant
positive correlation between LWS divergence and trans
parency (cross matrix correlation 0.80, p¼ 0.0008), but only a
weak correlation between LWS divergence and geographical
distance (0.55, p ¼ 0.04), and an even weaker correlation
between transparency and geographical distance (0.42, p ¼
0.08). The clinal change from L dominated to H dominated
populations through populations dominated by the recombi
nant/intermediate allele groups M1 and M2 is consistent with
gene flow between populations in a stepping stone fashion.
We estimated the number of migrants per generation (M)
from neutral marker FST (Table S1) [M¼ (1/ FST � 1)/4] as M¼
5.6 between the most turbid inshore station 2 and the most
clear offshore station 10, M ¼ 7.6 between station 2 and the
offshore Namatembi Island (station 15), and M¼14.5 between
the two clear offshore stations 10 and 15. However, FST
derived estimates of M should be taken with great caution
because they rely on the assumptions of Wright’s island model
[28] (all populations have the same population size and
migration rate, are in migration/drift equilibrium, equally
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likely to give and receive migrants from all other populations,
and the number of alleles is infinite) [29]. Our estimates of
gene flow between the most distant and the most environ
mentally distinct islands may be taken as a clear indication
that significant differentiation at the LWS locus between any
two geographically closer populations on our transect
requires divergent selection on LWS to overcome gene flow.

Divergent Selection Acting on LWS Gene

To search for the molecular signature of divergent natural
selection between populations, we analyzed sequences up
and downstream of LWS. The DNA fragments including the
LWS gene and its 5 kilobase (kb) upstream and 3.5 kb
downstream flanking sequences (total 11 kb) were amplified
by long PCR, and 10.5 kb were determined. We sequenced 18

Figure 1. Maps and Frequencies of LWS Alleles

(A) The study area in southern Lake Victoria. Arabic numerals indicate stations at which cichlids were collected. The Secchi disk water transparency (cm)
at each station is shown in parentheses. The stations are: 1, Buyago Rocks; 2, Marumbi Island; 3, Matumbi Island; 4, Luanso Island; 5, Python (Nyamatala)
Islands; 6, Kissenda Island; 7, Hippo Island; 8, Juma Island; 9, Bwiru Point; 10, Makobe Island; 11, Igombe Island; 12, Ruti Island; 13, Senga Point; 14,
Sozihe Islands; 15, Namatembi Island; 16, Nyamatala (Nyameruguyu) Island; 17, Gabalema Islands; 18, north end of Luanso Bay. Where the local name
differs from that used in previous publications, the local name is indicated in parenthesis.
(B) A representation of the microhabitat distribution of the studied species by water depth and between, as opposed to outside, the rocky boulders.
Photos show males of the blue morph in nuptial coloration. ‘‘Affected’’ and ‘‘Non affected’’ indicate the species with the LWS allele frequencies that are
strongly affected and not strongly affected by variation in water transparency, respectively.
(C) LWS allele group frequencies in the populations of N. greenwoodi/omnicaeruleus.
(D) LWS allele group frequencies in the populations of M. mbipi.
(E) LWS allele group frequencies in the populations of N. rufocaudalis.
(F) LWS allele group frequencies in the populations of P. pundamilia.
In (B E), Arabic numerals correspond to those in (A). The size of a pie indicates the number of haplotypes sequenced: N. greenwoodi: n 58 at station 2;
n 10 at 3; n 14 at 5; n 10 at 7; n 14 at 9; n 22 at 11; n 8 at 13; n 8 at 14; n 50 at 15, and N. omnicaeruleus, n 40 at 10. M. mbipi: n 36 at
station 5; n 32 at 7; n 30 at 10; n 10 at 11; n 2 at 13. N. rufocaudalis: n 42 at station 5; n 16 at 6; n 10 at 10; n 10 at 16; n 6 at 17; n 4 at
18. P. pundamilia: n 2 at station 1; n 10 at 2; n 4 at 3; n 8 at 4; n 18 at 5; n 8 at 6; n 6 at 8; n 6 at 9; n 10 at 10; n 6 at 11; n 8 at 12. The
color of the sections of the pie indicates the frequency of allele groups L (red), M1 (yellow), M2 (green), H (blue), M3 (orange), P (blue green), and other
alleles (black). The amino acid differences among allele groups are shown for every species in the corresponding white panels.
DOI: 10.1371/journal.pbio.0040433.g001
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alleles (from nine individuals of N. greenwoodi/omnicaeruleus)
from each of the Marumbi (station 2), Makobe (station 10),
and Namatembi (station 15) populations. Sliding window
analysis revealed that population differentiation in the LWS
gene region between populations from clear and turbid
waters (FST . 0.8) (Figure 2A, Makobe Marumbi, black line;
Namatembi Marumbi, blue line) was at least four times larger
than in the regions of up and downstream sequences (FST ,

0.2) and 17 times larger than in unlinked neutral polymorphic
loci (FST , 0.046: Table S1). Populations in clear and turbid
waters are strongly differentiated from one another only in
the sequences of the LWS gene region. The contrast between
differentiation in LWS gene region versus flanking sequences
was shown to be statistically significant by applying the
McDonald test [30] (Makobe: p , 0.0001, Namatembi: p ,

0.0001, Marumbi: p , 0.024, with the recombination
parameter set to 2, 4, 10, 32, and 1000 replicates) and was
further supported by HKA tests [31] revealing a significantly
smaller ratio of within population polymorphism to between
population divergence in the LWS gene region than in up
and downstream flanking regions (Table S2). The larger FST
value can be caused either by stronger differentiation
between populations or by reduced variation within pop
ulations [32]. In the present case, the differentiation is caused
by larger divergence of the region between exon 1 and exon 3

compared to those in other regions (Figure 2B, Makobe
Marumbi, black line; Namatembi Marumbi, blue line). This
result strongly suggests action of divergent selection on the
LWS gene, possibly caused by the difference between clear
and turbid waters.
In contrast, only weak population differentiation was

observed throughout the sequences when we compared
populations from similar water transparencies (Figure 2A,
red line, Figure 2B, gray line: Makobe Namatembi), and no
evidence for divergent selection (HKA tests, Table S2). Hence,
divergent selection has acted on the LWS alleles only between
populations from different water transparencies, strongly
implicating divergent adaptation to the different photic
environments. The FST values in the LWS gene region imply
fewer than one migrant every ten generations (,0.06 per
generation), compared to about one migrant per generation
in the up and downstream regions, and six to eight at
unlinked neutral loci. Hence, strong divergent selection
effectively reduces migration in the LWS region compared
to the rest of the genome by more than an order of
magnitude. The FST values in 2 3 kb of sequences upstream
of LWS were also higher than further up and downstream,
suggesting the possibility of genetic hitchhiking caused by the
divergent selection on the downstream LWS gene, or further
divergent selection on this region itself (Figure 2A, black and
blue lines).

Parallel Divergent Adaptation of the LWS Gene
To determine the adaptive significance of the LWS

divergence, we reconstituted the LWS pigments from both
L and H alleles in vitro with both A1 and A2 derived retinal
and measured their absorption spectra. The ratio of A1 to A2
chromophores in haplochromine cichlids was reported to be
about ten to one [16]. We confirmed this ratio from
laboratory bred Lake Victoria cichlids and detected both
chromophores in N. greenwoodi from the Mwanza Gulf by the
method described previously [16]. Replacing an A1 by an A2
derived retinal shifts the kmax value to a longer wavelength
[33]. Even though in other vertebrates a 7 nm shift was
reported even with A1 pigments for the amino acid replace
ment at the position corresponding to cichlid LWS position
177 (position 180 in human red and green pigments [14]), we
did not observe any difference between A1 pigments of H and
L alleles (Figure 3A and 3B). However, we found that the peak
spectral sensitivity (kmax) of the A2 pigment of the L allele was
red shifted by 7 nm compared to that of the H allele (Figure
3C and 3D).
The transmission light spectra at different water trans

parencies in Lake Victoria were measured previously. Highly
transparent waters transmit broad spectra, whereas the
dissolved and dispersed organic matter in turbid waters
selectively scatters and absorbs light of short wavelengths,
leading to a shift in spectral composition towards longer
wavelengths [21]. Although we do not rule out other
functional differences between H and L alleles [13], the
fixation in red shifted turbid waters of the LWS alleles of the
L group, from which we reconstituted a red shifted A2
pigment, is likely an adaptation to a photic environment
enriched in longer wavelengths.
Our results on the three other species corroborate this

conclusion. In M. mbipi, the species that is ecologically most
similar to N. greenwoodi (Figures 1B and S1), populations from

Figure 2. Detection of Selection Pressure on the LWS Gene

The genome structure of the LWS gene and its flanking region and (A)
sliding window analysis of FST between Marumbi (Mr., station 2: N.
greenwoodi), Namatembi (Nm., station 15: N. greenwoodi), and Makobe
(Ma., station 10: N. omnicaeruleus) populations (Marumbi versus Makobe,
Marumbi versus Namatembi, and Makobe versus Namatembi indicated
by black, blue, and red lines, respectively).
(B) Sliding window analysis of silent polymorphism (ps) in Marumbi (Mr:
light blue), Namatembi (Nm: red), and Makobe (Ma: yellow), and silent
divergence (ks) between Marumbi, Namatembi, and Makobe populations
(Marumbi versus Namatembi, Marumbi versus Makobe, and Makobe
versus Namatembi indicated by blue, black, and gray lines, respectively).
p s and ks were calculated for segments of 700 bp in 25 bp intervals. The
solid lines under the genome structure of LWS indicate the three regions
used in HKA tests (Table S2). The LWS gene region is defined as the
sequence between initiation codon and stop codon (2205 bp) of LWS.
The up and downstream regions are defined as the 59 and 39 ends of
sequences of the same length as the LWS gene region.
DOI: 10.1371/journal.pbio.0040433.g002
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high (258 cm Secchi, station 10, n¼ 30 alleles) and low (85 cm
Secchi, station 5, n ¼ 36 alleles) transparency were strongly
differentiated in their LWS sequences too (Figure 1D, FST ¼
0.54, p , 0.001). Just like in N. greenwoodi, the clear water
population of M. mbipi was fixed for H group alleles. Going
into more turbid waters, the frequencies of these alleles
stayed somewhat higher than in the somewhat deeper living
sympatric N. greenwoodi. In contrast with N. greenwoodi, the M.
mbipi population from the most turbid water in which this
species was found (station 5) was dominated by a group of M3
alleles including all alleles with amino acid positions 177A
(529G), 230T (688A), and 275I (823A and 824T) (Figures 1D
and S3).

In N. rufocaudalis, a species that lives exclusively in very
shallow waters (Figures 1B and S1), the allele of the H group
that in the deeper living N. greenwoodi and M. mbipi dominated
only in clear water populations dominated in all populations.
One allele of the M2 group was found at a place of
intermediate transparency, and the only two alleles of the L
group came from the turbid end of this species’ distribution
range (Figures 1E and S4). In the cave dwelling P. pundamilia,
populations from high and low water transparency were
identical and a different allele group P (including all alleles
with 177A, 179V, 216F, 230T, and 275I) dominated (Figures
1F and S5). Hence, (i) strong divergent evolution at the LWS
locus between populations occurred in two species from
photic habitats that are strongly affected by variation in
water transparency, but not in two species whose habitats are
not strongly affected; (ii) the transparency associated geo
graphical cline in allele frequencies observed within two
species was mirrored by a depth associated cline in allele
frequencies between the three species N. rufocaudalis, M.
mbipi, and N. greenwoodi that live outside the rocky crevices
(Figure 1B). The parallel divergent adaptation in N. greenwoodi
and M. mbipi is likely to include some true parallel evolution
at the gene level, because visual adaptation to turbid waters is
achieved by substituting the clear water LWS allele H with
different alleles in the two species (L and M3, Figure S6),

which cannot be explained by very recent introgressive
hybridization.

Correlation between Frequencies of LWS Allele and Male
Nuptial Coloration
Nuptial color display is important in mate choice of Lake

Victoria cichlids [21,34,35]. Female mating preferences may
be affected by color vision [22,36], and closely related species
with red versus blue male nuptial coloration possess LWS
alleles with larger and smaller kmax respectively, where the
difference in kmax is similar to the one observed here between
L and H alleles [20]. It is therefore conceivable that the
reciprocal fixation of LWS alleles with small and large kmax

would cause populations at the ends of the water trans
parency cline to diverge in nuptial coloration, a first step
towards parapatric ecological by product speciation [37]. We
collected and photographed a large number of males in
breeding dress from all populations of N. greenwoodi/omnicaer
uleus and M. mbipi and determined the frequencies of male
nuptial color morphs in each population. Globally, most
males of these species are blue or blue black, but yellow red
(N. greenwoodi/omnicaeruleus) or yellow (M. mbipi) males occur at
low, but variable frequencies in much of their ranges. In the
relatively turbid waters of Lake Victoria, yellow and red light
travel further than blue light, and yellow and red colors may
hence be perceived as brighter than blue at long path length
(deeper water) [22]. This effect is stronger the more turbid the
water [21].
In populations of N. greenwoodi/omnicaeruleus, the frequency

of yellow red males ranged from 0% 47% (Figure 4A) and
was strongly positively correlated with the frequency of
relatively longer wavelength shifted LWS alleles (cross matrix
correlation between population differentiation at the LWS
locus and in color morph frequency 0.87, Mantel test p ¼

Figure 3. Absorption Spectra of the LWS Pigments Evaluated by the

Dark Light Difference Spectra

The LWS pigments were reconstituted from (A) H allele with A1 retinal,
(B) L allele with A1 retinal, (C) H allele with A2 retinal, and (D) L allele with
A2 retinal. The kmax values are indicated with their standard errors.
DOI: 10.1371/journal.pbio.0040433.g003

Figure 4. The Relationship between the Frequency of LWS Alleles, Male

Nuptial Color Morphs, and Water Transparency

(A) The relationship between the frequency of long wavelength
sensitive allele group L at the LWS locus (black), yellow red male nuptial
color (red), and water transparency (Secchi disk [cm]) in N. greenwoodi.
(B) The relationship between the frequency of allele group M3 at the LWS
locus (black), yellow male nuptial color (red), and water transparency in
M. mbipi.
DOI: 10.1371/journal.pbio.0040433.g004
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0.019), and less strongly with water transparency (cross
matrix correlation 0.58, p ¼ 0.023). Both relationships were
also strong in M. mbipi (Figure 4B, cross matrix correlation
between difference in the frequency of yellow males and
differentiation at the LWS locus 0.83, p , 0.001, with water
transparency 0.93, p , 0.001), and populations at the
extremes of the cline were almost fixed for the different
colors. Hence we have evidence for parallel correlated
divergent evolution in a visual gene and in male nuptial
coloration in two species along the same environmental
cline. Divergence in male nuptial coloration may be a
consequence of divergent adaptation in the LWS gene.
Although long wave shifted male nuptial coloration became
common, it has not become fixed in populations in which
long wave shifted LWS alleles got fixed. This may suggest
that population divergence at the LWS locus alone is not
necessarily sufficient for complete population divergence in
male nuptial coloration. This may not be surprising, because
several selection forces are known to operate on male
nuptial coloration in haplochromine cichlids [21,34,35,38].
Our data suggest that evolution at opsin genes may influence
the balance between these. It is possible that complete
fixation of alternative nuptial colors requires reinforcement
of mating preferences in sympatry, something we are
currently testing with another data set.

The parallel divergence in LWS along the same environ
mental cline in two unrelated cichlid species suggests rapid
divergent evolution under natural and sexual selection, may
not be uncommon along the strong gradients in light
environment that characterize Lake Victoria. The nucleo
tides in L, H, and M3 alleles at 529, 688, 823, and 824 also
occur in other cichlid species in Lake Victoria [19], and the
different alleles are not monophyletic within the species that
we studied here (Figure S6). This suggests that the alleles
originated prior to establishment of the species, and
certainly prior to establishment of the intraspecific popula
tion structure that we investigated here, consistent with the
fact that the island populations that we sampled cannot be
older than 15,000 y independent of whether the lake was
entirely dry during its last major low stand [9]. Hence, the
intraspecific allelic diversity must have been acquired either
from a single polymorphic ancestral population or through
hybridization between species. Persistence of L/H allele
polymorphisms seems rare in contemporaneous populations,
and we found no evidence for L/M3 polymorphisms at all
(Figures 1 and S6). It seems therefore more likely that locally
favored LWS alleles are acquired by occasional hybridization
in overlap zones between species adapted to different light
environments (i.e., different water depths), a hypothesis that
is consistent with our finding that the most common H
group alleles in clear water populations of the unrelated
species M. mbipi, N. greenwoodi, and N. rufocaudalis are
sequence identical (Figure S6). It is also consistent with the
observation that P. pundamilia, the species with quite differ
ent habitat use, shares none of the LWS alleles with the other
species.

Here, we have for the first time, to our knowledge, shown
rapid evolution in African cichlid fish driven by strong
divergent selection in a gene responsible for ecological
adaptation, which also affects mate choice, consistent with
incipient ecological by product speciation that occurs in
parallel in several unrelated species. The evolutionary history

of the mutations involved, and the relevance of reticulate
evolution in swapping locally advantageous mutations be
tween species during the rapid adaptive radiation of Lake
Victoria cichlids deserve the attention of evolutionary
geneticists in the future.

Materials and Methods

Samples. Specimens of N. greenwoodi, N. omnicaeruleus, M. mbipi, and
P. pundamilia were collected by OS in 1995 and 1996, except for 17 of
the 25 individuals from Namatembi, which were collected in 2005 by
TS, HM, and SM, 11 of 18 of M. mbipi from Python, and 12 of 16 from
Hippo Island, which were collected in 2005 by NK and HM, and eight
of 15M. mbipi from Makobe, which were collected in 2004 by HM, SM,
and S Mzighani. Specimens of N. rufocaudalis were collected in 2004
and 2005 by SM, KT, and S. Mzighani. Identification of all specimens
was verified by OS.

DNA sequencing. Determination of the cichlid LWS gene was as
described [19]. To determine the LWS flanking sequences, the BAC
clone including the LWS gene was screened and isolated from a Lake
Victoria cichlid BAC library [39]. The DNA of BAC clone was digested
with HindIII and subsequently subcloned into pUC 19 plasmid vector.
The HindIII fragment including the LWS gene was screened, and the
sequence determined by the shot gun sequencing method described
elsewhere [40]. Based on the sequence of the HindIII fragment, we
designed primers for PCR amplification and performed direct
sequencing. The positions of primers are described above and below
the schematic HindIII fragment (Figure S7). The DNA fragment
including LWS gene and both flanking regions was amplified by LA
(long and accurate) PCR (TaKaRa, Shiga, Japan) using primers
LWSB LF and LWSB LR with genomic DNA (;50 ng) as templates.
Amplifications were carried out in the PTC 100 Programmable
Thermal Controller (MJ Research, Massachusetts, United States). The
PCR program consisted of a denaturation step for 3 min at 94 8C,
followed by 30 cycles, each cycle consisting of 20 s denaturation at 98
8C, 15 min annealing and extension at 68 8C. The amplification
product was then used as a template to amplify and sequence four
overlapping fragments using the primers for upstream (LWSB LF
and LWSB R3), (LWSB F3 and LWSB R5), LWS gene (LWSB F5
and LWSB R8), and downstream (LWSB F8 and LWSB LR)
regions. These PCR products were purified and determined by direct
sequencing with all primers described above and below the schematic
HindIII fragment (Figure S7). Once determined, the sequences were
connected by using the GENETYX MAC Version 10.1 program. The
sequences of primers are described in Figure S8.

Measurement of absorption spectra of cichlid LWS pigments. The
H allele sequence was amplified via RT PCR using total RNA
extracted from eyes of Lake Victoria cichlid as template with a pair
of PCR primers (Eco6LWS and LWS Flag stop NotI, Figure S8)
designed to produce fusion protein with FLAG tag (Sigma Aldrich,
St. Louis, Missouri, United States) in its C terminus. The amplified
DNA fragments were digested with EcoRI and NotI and cloned into the
EcoRI/NotI digested (removing ID4) pMT5 expression vector [41]. In
vitro mutagenesis of the LWS for construction of other sequences of
alleles, expression, reconstitution, purification, and measurement
were performed as described previously [16] with minor modifica
tions. After pigment reconstitution, these experiments were per
formed under infrared light (.900 nm) with the vision of a digital
video camera in ‘‘night shot’’ mode (SONY, Tokyo, Japan) or
complete darkness.

Matrix correlations. We calculated the mean pairwise LWS
sequence distance between populations as Dxy values (the average
number of nucleotide substitutions per site between populations)
using only the sites that were used for the identification of allele
groups. We measured geographical distance as the shortest waterway
distance between sites. We calculated the pairwise difference in water
transparency and in the frequency of yellow red or yellow males
between sites. To evaluate the significance of correlations between
these variables we used Mantel tests [27].

Population genetic analysis. The DNA fragment including the LWS
gene and its flanking sequence (10560 bp) was split into two putative
alleles for the analysis by the program DnaSP 4.0 [42]. We performed
sliding window analysis to calculate approximate values for FST (Da/
Dxy [43]), ps , and ks in 700 bp windows, sliding the window in steps of
25 bp throughout the total 10.5 kb sequences. We performed the
McDonald test for heterogeneity across a region of a DNA sequence
in the ratio of polymorphism to divergence [30].
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Supporting Information

Figure S1. Habitat Distribution of the Four Species

The distribution of (A) P. pundamilia, (B) N. rufocaudalis, (C) M. mbipi,
and (D) N. greenwoodi studied along a cline of water transparency (x
axis) and water depth (y axis). Arrowheads indicate transparencies at
which we sampled. Ranges of occurrence are hatched.

Found at DOI: 10.1371/journal.pbio.0040433.sg001 (231 KB PDF).

Figure S2. An Alignment of All Polymorphic Sites in the LWS
Sequences of N. greenwoodi and N. omnicaeruleus
The nucleotide sites and amino acid positions are shown on top and
below the alignment, respectively. Dots indicate where nucleotides
are identical with those in the top line. The nucleotide sites 529, 823,
and 824 are highlighted. Amino acids in the row directly under the
amino acid positions indicate the amino acids translated from the
sequence in the top line. Amino acids in the bottom line indicate
amino acids substituted from the top line. The sampling station
numbers are described in Figure 1A.

Found at DOI: 10.1371/journal.pbio.0040433.sg002 (294 KB PDF).

Figure S3. An Alignment of All Polymorphic Sites in 55 LWS
Sequences from M. mbipi
The nucleotide sites are shown on top of the alignment. n and s
indicate nonsynonymous and synonymous sites, respectively. Dots
indicate where nucleotides are identical with those in the top line.
The sequences of N. omnicaeruleus from Makobe (N. omnicaeruleus Ma)
and N. greenwoodi from Marumbi (N. greenwoodi Mr) are aligned at the
bottom. The sampling station numbers are described in Figure 1A.

Found at DOI: 10.1371/journal.pbio.0040433.sg003 (52 KB PDF).

Figure S4. An Alignment of All Polymorphic Sites in 44 LWS
Sequences from N. rufocaudalis
The nucleotide sites are shown on top of the alignment. n and s
indicate nonsynonymous and synonymous sites, respectively. Dots
indicate where nucleotides are identical with those in the top line.
The sequences of N. omnicaeruleus from Makobe (N. omnicaeruleus Ma)
and N. greenwoodi from Marumbi (N. greenwoodi Mr) are aligned at the
bottom. The sampling station numbers are described in Figure 1A.

Found at DOI: 10.1371/journal.pbio.0040433.sg004 (50 KB PDF).

Figure S5. An Alignment of All Polymorphic Sites in 43 LWS
Sequences from P. pundamilia
The nucleotide sites are shown on top of the alignment. n and s
indicate nonsynonymous and synonymous sites, respectively. Dots
indicate where nucleotides are identical with those in the top line.
The sequences of N. omnicaeruleus from Makobe (N. omnicaeruleus Ma)
and N. greenwoodi from Marumbi (N. greenwoodi Mr) are aligned at the
bottom. The sampling station numbers are described in Figure 1A.

Found at DOI: 10.1371/journal.pbio.0040433.sg005 (64 KB PDF).

Figure S6. Maximum Likelihood Tree for Alleles Studied Here, and
Alleles 1 14 [19].

Maximum likelihood analysis was performed with MOLPHY version
2.3 [44]. An NJ tree was used as the starting tree for a local
rearrangement search for the ML tree with the HKY85 model [45].
The scale bar indicates the number of substitutions per site.
Bootstrap values are shown at the branches. An alignment of all
informative sites of alleles and the frequencies (%) of each allele are
shown in right panel. Dots indicate where nucleotides are identical
with those in the top line. The frequency of ‘‘other’’ alleles is not
shown.

Found at DOI: 10.1371/journal.pbio.0040433.sg006 (41 KB PDF).

Figure S7. Schematic Demonstration of the Position of Each Primer
on the LWS Gene and Its Flanking Region

Arrows indicate the primers. The flanking sequences of the LWS gene
were determined from a BAC clone.

Found at DOI: 10.1371/journal.pbio.0040433.sg007 (33 KB PDF).

Figure S8. Sequences of Primers

Found at DOI: 10.1371/journal.pbio.0040433.sg008 (15 KB PDF).

Table S1. FST Values for Polymorphic Neutral Markers

Found at DOI: 10.1371/journal.pbio.0040433.st001 (81 KB PDF).

Table S2. HKA Test for the Statistical Significance (p) of Hetero
geneity between Regions

Found at DOI: 10.1371/journal.pbio.0040433.st002 (34 KB PDF).

Accession Numbers

The GenBank http://www.ncbi.nlm.nih.gov/Genbank) accession num
bers for DNA sequences discussed in this paper are: AB221133
AB221343 and AB240064 AB240138.
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