
Click 
H ere 

WATER RESOURCES RESEARCH, VOL. 43, W09403, doi:10.1029/2006WR005600, 2007 

for 
Full 

Article 

Breakthrough curve tailing in a dipole flow field 
Jian Luo, 1 Marco Dentz, 2 Olaf A. Cirpka,3 and Peter K. Kitanidis4 

Received 7 October 2006; revised 5 February 2007; accepted 6 June 2007; published 7 September 2007. 

[1] Studying the tailing behavior of breakthrough curves (BTCs) is useful in the 
characterization of anomalous transport, matrix diffusion, and kinetic sorption. We analyze 
how BTCs of nonreactive and sorbing tracers behave at late time in well-to-well flow 
fields in homogeneous media. In the absence of regional flow, an asymptotic solution is 
derived for the traveltime distribution which follows a power law with exponent 4/3 
at late times. With regional flow, the traveltime distribution exhibits a power law with 
exponent 4/3 over a certain period of time, followed by exponential decay. Dispersion 
influences the early time behavior but has little effect on the late-time tailing. We also 
consider the BTC tailing of tracers undergoing kinetic sorption and diffusive mass transfer 
into immobile regions. If the memory function characterizing sorption kinetics is 
exponential, the late-time behavior of the BTC is controlled by the traveltime distribution 
and thus follows a power law with exponent 4/3. In case of a matrix diffusion model, 
the memory function exhibits a power law with exponent 112, and the BTC in the 
dipole flow field follows a power law with exponent 7 /6 in an intermediate time range, 
which differs from the exponent of 3/2 observed in uniform flow. Our analysis 
demonstrates that the flow configuration has to be considered when the tailing behavior of 
BTCs is used to characterize mass transfer kinetics. In particular, truncating a well-to-well 
tracer test at times where the traveltime distribution still follows the power law 
behavior may lead to the erroneous interpretation that the power law tailing of the BTC is 
caused by matrix diffusion. 
Citation: Luo, J., M. Dentz, 0. A. Cirpka, and P. K. Kitanidis (2007), Breakthrough curve tailing in a dipole flow field, Water Resour. 
Res., 43, W09403, doi: 10.1029/2006WR005600. 

1. Introduction 
[2] The late-time tailing behavior of breakthrough curves 

(BTCs) has gained attention in hydrogeology. For nonreac-
tive tracer transport, long BTC tails may result from the 
tracer injection mode, aquifer heterogeneities, kinetic mass 
transfer or diffusion between mobile and stagnant zones, 
among others. The mode of tracer injection significantly 
influences BTC tailing [ Widestrand et al., 2007]. This 
impact can easily be identified by taking measurements at 
the inlet of the system. The most common injection mode 
consists of an injection with finite duration. While mixing in 
the inlet may lead to an exponentially decaying inflow 
concentration, its effect on the BTC may be neglected in 
many applications [e.g., Wuiestrand et al., 2007]. In homo-
geneous media, kinetic mass transfer between immobile 
water in matrix pores and mobile water in preferential flow 
paths is usually considered as the primary mechanism 
responsible for long breakthrough tails [Haggerty et al., 
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2000]. After the tracer peak has passed, the retention of 
tracer resulting from kinetic mass transfer starts to dominate 
the BTC, causing a long tail oflow concentrations. Thus the 
tailing behavior can be used to identify an appropriate 
model for the description of kinetic mass transfer [Haggerty 
et al., 2000], to characterize the retention properties caused 
by diffusion into the rock matrix in fractured aquifers 
[Hadermann and Heer, 1996; Haggerty et al., 2001], and 
to study sorption/desorption properties for sotbing tracers 
[Dunnivant et al., 1992; Farrell and Reinhard, 1994; Werth 
et al., 1997]. 

[3] In heterogeneous media, the spatially variable velocity 
field can cause anomalous transport, which is also charac-
terized by extended tracer BTC tails [e.g., Selroos 
and Cvetkovic, 1992; Berkowitz and Scher, 1997, 1998; 
Berkowitz et al., 2000; Guswa and Freyberg, 2000; Di 
Donato et al., 2003; Dentz et al., 2004; Di Donato and Blunt, 
2004; Zinn et al., 2004; Berkowitz et al., 2006; Fiori et al., 
2006]. The highly asymmetric BTCs cannot be described 
well by the classical advection-dispersion equation (ADE) 
with uniform velocity and dispersion coefficient. Here, part 
of the tracer mass moves quickly along preferential flow 
paths, resulting in early first arrival and even an early 
concentration peak, whereas a substantial portion of the 
tracer mass moves slowly along low-velocity paths, causing 
a long BTC tail. Levy and Berkowitz [2003] showed that even 
tracer BTCs in homogeneous, saturated sand may be too 
asymmetric to be fully explained by advective-dispersive 
transport with uniform coefficients. 
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[4] Interestingly, many studies cited above reported a
power law behavior of concentration at late time with
exponent �3/2. This exponent is consistent with mass
transfer described by a diffusion model [Crank, 1975].
Thus, in order to characterize kinetic mass transfer in the
experiments, most researchers applied either the diffusion
model or a multirate model [Haggerty and Gorelick, 1995;
Haggerty et al., 2001; Widestrand et al., 2007]. In highly
heterogeneous systems with kinetic mass transfer it is
generally difficult to identify the primary mechanism
responsible for the enhanced BTC tailing [Selroos and
Cvetkovic, 1992]. Cvetkovic and Haggerty [2002] analyzed
this case by weighting the local BTC, related to a certain
residence time t in the mobile zones, with the probability
density of t and integrating over all possible values of t. In
this context, the distribution of t reflects heterogeneous
advection, which may be correlated to the mass exchange
between the mobile and stagnant zones. Cvetkovic and
Haggerty [2002] found that the traveltime distribution can
significantly affect the BTC behavior at late time. More
interestingly, their derivation showed that the BTC power
law behavior may display different exponents if the
traveltime distribution tail also follows a power law. Becker
and Shapiro [2000, 2003] observed power law behavior in
late-time BTCs of forced-gradient tracer tests in fractured
crystalline rock, which they explained by heterogeneous
advection.
[5] In the present study, we analyze transport in a dipole

flow field created by an extraction-injection well pair with
equal pumping strength in homogeneous media. Particularly,
we are interested in the BTC tailing behavior in the

extraction well. Dipole flow fields have been applied in
many field-scale applications for forced-gradient tracer
testing and groundwater remediation [e.g., Welty and
Gelhar, 1994; Hadermann and Heer, 1996; Sutton et al.,
2000; Cunningham and Reinhard, 2002; Novakowski et al.,
2004; Ptak et al., 2004; Tiedeman and Hsieh, 2004; Luo et
al., 2006a; Wu et al., 2006]. Experimental results showed
the late-time BTC behavior in a dipole flow field followed a
power law decay, which cannot be characterized by the
Gaussian behavior predicted by quasi-one-dimensional
ADEs [Kurowski et al., 1994; Hadermann and Heer,
1996; Becker and Shapiro, 2000, 2003]. Muskat [1937]
determined the shape and position of a tracer front for a
dipole flow field in the absence of regional flow and the
advective breakthrough time for the injected tracer reaching
the extraction well. Recently, more analytical and semi-
analytical solutions were also developed to evaluate the
traveltime distribution and reactive transport within the
recirculation zone between the injection and extraction well
in homogeneous and heterogeneous media [Chilakapati and
Yabusaki, 1999; Dagan and Indelman, 1999; Zhan, 1999;
Cunningham et al., 2004; Luo and Kitanidis, 2004].
However, none of these reported any late-time behavior of
the traveltime distribution. Zhang and Koplik [1997] and
Koplik [2001] showed that in a dipole flow field in a circular
domain the traveltime distribution has a region of power law
decay, a transitional shoulder, an exponential decay region.
Unlike the research mentioned above, our present work
attempts to study the relative importance and effects of
different flow and transport mechanisms on the late-time
tailing behavior in a dipole flow field. In particular, we want
to examine the BTC tailing behavior when both the
traveltime distribution and transport mechanisms may be
responsible for the power law behavior of late-time BTCs.
The paper is organized as follows: section 2 describes the
dipole flow field mostly applied in field-scale applications
of tracer testing and groundwater remediation; section 3
derives an asymptotic solution at late time to the traveltime
distribution in a dipole flow in the absence of regional flow
by extending our previous analytical solutions; the impacts
of regional flow and dispersion on the traveltime distribu-
tion are analyzed in section 4 and 5, respectively; section 6
extend the analysis by studying the combined effect of tracer
transport in the dipole flow configuration under diffusive
mass transfer and first-order sorption kinetics and analyze the
effect on the tailing behavior of BTCs; finally, section 7
summarizes the main results and conclusions.

2. Dipole Flow Field

[6] The methodology to study the dipole flow field
follows the studies of Luo and Kitanidis [2004] and Luo
et al. [2006b], who derived an analytical solution of
traveltimes in an ideal dipole flow field in the absence of
dispersion and regional flow, and a semianalytical scheme
in a dipole flow field in the presence of regional flow to
quickly evaluate the traveltime distribution. As illustrated in
Figure 1, we consider an extraction and an injection well in
a confined homogeneous and isotropic aquifer. The system
of coordinates is chosen such that the extraction well is
located at (d, 0), and the injection well at (�d, 0). The
uniform regional flow is oriented at angle a from the
positive x axis. Water is pumped from the extraction well

Figure 1. Plan view of the flow field created by an
extraction-injection well pair with uniform regional flow in
a dimensionless domain. Thin solid lines are streamlines;
dashed lines are hydraulic equipotential lines; and thick
solid lines are separation streamlines; a is the regional flow
orientation. Zone I is the capture zone; zone II is the
recirculation zone; and zone III is the release zone (after Luo
and Kitanidis [2004], with permission from Elsevier).
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with a pumping rate Qw and reinjected into the injection
well with the same rate. Generally, the created flow field
consists of a capture zone, a recirculation zone, and a
release zone, delineated by the separating streamlines pass-
ing through the stagnation points (denoted zones I, II, and
III in Figure 1, respectively). Outside of the bounding
streamlines regional flow does not pass through any of
the wells. We are interested in the traveltime distribution
within the recirculation zone from the injection well to the
extraction well (zone II in Figure 1).

3. Traveltime Tailing in an Ideal Dipole Flow
Field

[7] In an ideal dipole flow field without regional flow, the
traveltime distribution at the extraction well caused by
advection only is given by (for details, see Luo and
Kitanidis [2004])

t ¼ td
T

¼ 1þ p 1 Ynð Þ cot pYnð Þ
sin2 pYnð Þ ð1Þ

in which td is the dimensional traveltime, t is the
dimensionless traveltime, normalized by the characteristic
time T (the median traveltime) that depends on the distance
2d between the wells, the pumping rate Qw, the effective
porosity n, and the thickness of the aquifer b:

T ¼ 4pnbd2

Qw

ð2Þ

In the rest of the manuscript, all the time variables without
particular definition will be rendered dimensionless by
dividing by T. Yn is the dimensionless stream function:

Yn ¼ 2 Yj j
Qw

ð3Þ

where Y is given by

Y ¼ Qw

2p
tan�1 y

x d

� �
tan�1 y

xþ d

� �� �
ð4Þ

where x and y are spatial coordinates.

[8] Because the flow field is symmetric and the flow rate
within a stream tube can be determined by the stream
function difference, the cumulative density function (cdf )
of t is given by [Luo and Kitanidis, 2004]

F tð Þ ¼ 1 Yn tð Þ ð5Þ

Substituting (5) into (1) leads to

t ¼ 1 pF cot pFð Þ
sin2 pFð Þ ð6Þ

By taking the derivative of equation (6) with respect to F,
we obtain

dt
dF

¼ 3p sin pFð Þ cos pFð Þ þ p2F þ 2p2F cos2 pFð Þ
sin4 pFð Þ ð7Þ

The traveltime distribution, y0, is then given by

y0 tð Þ ¼ dF

dt
¼ sin4 pFð Þ

3p sin pFð Þ cos pFð Þ þ p2F þ 2p2F cos2 pFð Þ
ð8Þ

where F is calculated by equation (6) for a given t.
[9] At late time, i.e., F ! 1, (6) can be approximated by

t ffi p pF þ pF

p pFð Þ3 ¼ p�2 1 Fð Þ�3 ð9Þ

resulting in

F ¼ 1 p�2=3t�1=3 ð10Þ

Taking the derivative of equation (10) with respect to t, we
obtain that the late-time behavior of the traveltime
distribution at the extraction well follows a power law with
an exponent of �4/3:

y0 ¼
1

3
p�2=3t�4=3 ð11Þ

The power law behavior is consistent to that reported by
Koplik et al. [1994], in which they described the traveltime
as a function of the streamline orientation at the injection
well.
[10] Figure 2 shows the traveltime distribution at the

extraction well in a log-log plot. After a short initial time,
y0 becomes a straight line with a slope of k = �4/3. The
asymptotic solution of equation (11) matches the late-time
distribution. Because the power law exponent is larger than
�2, the first-order moment of the traveltime distribution is
infinite. That is, a mean traveltime cannot be defined in the
ideal dipole flow field.

4. Traveltime Tailing in the Presence of Regional
Flow

[11] As already mentioned, in the presence of uniform
regional flow, the flow field generally consists of a capture
zone, a recirculation zone, a release zone, and a regional

Figure 2. Traveltime distribution from the injection well
to the extraction well in an ideal dipole flow in the absence
of dispersion and regional flow.
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flow zone that is not connected to any of the pumping wells.
However, these zones do not always coexist. For example,
when a = 0, there is only a recirculation zone, but there are
no capture and release zones. For a 6¼ 0, a critical pumping
rate must be exceeded to maintain recirculation. Luo et al.
[2006b] identified this critical value in dimensionless terms.
Considering the specific discharge q0 of regional flow, Luo
et al. [2006b] identified a minimal dimensionless pumping
rate l = Qw/2pdq0 of 0.6366, guaranteeing that a recircu-
lation zone exists regardless of the orientation of regional
flow. In the following, we consider only cases where this
condition is satisfied. We evaluate traveltimes from the
injection well to the extraction well by a streamline tracing
technique using a fourth-order Runge-Kutta scheme based
on the complex discharge function, which was developed
for capture zone delineation [Fienen et al., 2005]. The
number of traced streamlines is 36,000.
[12] Figure 3 shows the effects of the well pumping rate

and the regional flow orientation on the late-time behavior
of the BTC. Here, the dimensionless traveltime t is defined
by t = td/T0*, in which T0* = 2nbd/q0 is the time needed by a
solute particle to travel the distance between the two wells
exclusively by regional flow. The thick grey lines are
reference lines with a power law exponent of �4/3. The
traveltime distributions follow a power law decay with
exponent �4/3 for a limited time period, followed by
exponential decay behavior. The results indicate that higher
the pumping rate, the longer the period with power law
behavior. The exponential behavior ensures that the first and
all higher moments of the traveltime distribution are finite,
which corresponds to a recirculation zone with finite area.
The case a = 0 represents the situation where the regional
flow is oriented exactly in the direction from the injection to
the extraction well, creating a completely closed recircula-
tion zone, whereas a = p represents the case where regional
flow is oriented exactly from the extraction to the injection
well, creating a large capture zone. The late-time behavior
of the traveltime distribution is similar for all orientations.
In addition, a larger regional flow angle means that the

exponential behavior begins earlier. That is, for a given
pumping rate, the power law behavior lasts the longest
when a = 0. Furthermore, at high pumping rates, the early
time residence time distribution are not affected by the
regional flow orientation; that is, only the late-time behavior
is influenced by the well placement (or regional flow
orientation) at large well pumping rates.

5. Effects of Dispersion

[13] Dispersion modifies traveltime distributions. We first
consider only longitudinal dispersion which does not
change the travel paths of particles; that is, the particles
still move along streamlines. We evaluate the travel times
by a particle tracking/random walk scheme, corrected by the
stream function [Strack, 1989]. In the presence of transverse
dispersion, particles are allowed to cross the streamlines.
The spatial discretization is Ds = 0.002 (a dimensionless
spatial step normalized by d), and we apply the fourth-order
Runge-Kutta scheme with corrected velocity field in the
vicinity of the wells [Kitanidis, 1994; Zheng and Bennett,
2002]. 36,000 particles are initially distributed at the injec-
tion-well boundary according to the discharge function.
[14] Figure 4 shows the residence time distributions at the

extraction well in the presence of local dispersion, but in the
absence of regional flow. Local dispersion significantly
influences the residence time distributions at early times.
In particular, longitudinal dispersion enhances and trans-
verse dispersion diminishes spreading of the BTCs. How-
ever, local dispersion does not change the power law decay
behavior at large times. This characteristics was identified
by Welty and Gelhar [1994], in which only the early time
tracer BTC was used to approximate the dispersion coeffi-
cient. Because of the numerical random walk approach, the
distributions shown in Figure 4 are not as smooth as those
computed for strictly advective transport. Nonetheless, they
all show the same power law behavior with an exponent of
�4/3. In fact, local dispersion cannot change the fact of an
infinite recirculation zone, so that the mean residence time
remains infinite. The distribution of the streamlines, differ-

Figure 3. Effects of well pumping rates on the traveltime distribution in the dipole flow field with
regional flow; a = 0 indicates that the regional flow is exactly in the direction from the injection well to
the extraction well; a = p/2 indicates that the regional flow is perpendicular to the well placement; and
a = p indicates that the regional flow is exactly from the extraction well to the injection well.
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ing in advective traveltime, dominates the tailing behavior
of the residence time distribution at the extraction well.
[15] In the presence of both local dispersion and regional

flow, the tails of these curves are similar to those obtained
for strictly advective transport in a dipole flow field with
regional flow. The late-time behavior is dominated by the
distribution of streamlines, exhibiting a power law with
exponent �4/3 over a certain time period and changing to
exponential decay of the tail at very late times.

6. Breakthrough Tailing of Tracers Undergoing
Linear Mass Transfer

[16] The above analyses consider either pure advection or
advection plus local dispersion. In the presence of an
immobile pore space, the mass transfer between the mobile
and immobile domains will change the overall residence
time distribution. In this context, it is worth noting that first-
order kinetic sorption models and linear mass transfer
models are formally equivalent: the immobile/sorbed solute
fraction cim depends linearly on the mobile/dissolved solute
fraction cm [e.g., Carrera et al., 1998; Haggerty et al.,
2000; Dentz and Berkowitz, 2003]:

cim x; tð Þ ¼
Z t

0

8 t t0ð Þcm x; t0ð Þdt0 ð12Þ

in which we assume that there is initially no immobilized
solute, and 8(t) is the so-called memory function. Dentz and
Berkowitz [2003] give the following general expression for
8(t):

8 tð Þ ¼
Z1

0

w timð ÞP timð Þf t=timð Þdtim ð13Þ

where tim denotes the residence time in an immobile region,
w(tim) is the trapping rate, and P(tim) is the distribution of

residence times. The trapping rate w(tim) and the local
memory function f(t/tim) are determined by the particular
mass transfer mechanism under consideration. In the
following we focus on single-rate diffusive mass transfer
and first-order kinetic sorption reaction, i.e.,

P timð Þ ¼ d tim t0ð Þ ð14Þ

in which t0 is the diffusion time in the immobile zone in the
case of diffusive mass transfer and the sorption time for
kinetic sorption reactions, and d is the delta function. The
trapping rate is given by w = qtim

1, where q is the volume
ratio between the mobile and immobile region. The memory
function, equation (13), then simplifies to

8 tð Þ ¼ q
t0

f t=t0ð Þ ð15Þ

For the following asymptotic analysis, it is convenient to
transform the memory function to Laplace space. The
Laplace transform is defined in, e.g., Abramowitz and
Stegun [1972]; Laplace transformed quantities in the
following are denoted by an upper bar. Thus the Laplace
transform of the memory function 8(t) is given by

8 sð Þ ¼ qf st0ð Þ ð16Þ

in which s is the coordinate in the Laplace domain.

6.1. Traveltime Distribution

[17] Within this framework, mass conservation gives for
the traveltime y(t, t) on a given streamline:

@y t; tð Þ
@t

þ @

@t

Z t

0

8 t t0ð Þy t0; tð Þdt0 þ @y t; tð Þ
@t

¼ 0 ð17Þ

It may be worth noting that here the traveltime distribution
is identical to the flux concentration for an instantaneous
unit pulse because local dispersion is neglected.

Figure 4. Effects of local dispersion on the traveltime distribution in the dipole flow field in the absence
of regional flow. Dispersivities are normalized by the half distance between the two wells. The
longitudinal dispersivity is aL = 0.01, and aT/aL = 10.
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[18] We obtain for the Laplace transform y(s, t) of y(t, t):

s 1þ 8 sð Þ½ �y s; tð Þ þ @y s; tð Þ
@t

¼ 0 ð18Þ

Equation (18) can be integrated straightforwardly to

y s; tð Þ ¼ exp st 1þ 8 sð Þ½ �f g ð19Þ

A similar expression was derived by Cvetkovic and
Haggerty [2002].
[19] Finally, we obtain the Laplace transform of the

global traveltime distribution by a weighted integral of
equation (19) over all traveltimes:

y sð Þ ¼
Z1

0

exp st 1þ 8 sð Þ½ �f gy0 tð Þdt ð20Þ

The right side of equation (20) is the Laplace transform of
y0(t) so that it can be written as

y sð Þ ¼ y0 s 1þ 8 sð Þ½ �f g ð21Þ

The given form of the traveltime distribution y(s) in terms
of the corresponding distribution y0(s) without mass
transfer has been obtained by Sardin et al. [1991], Cvetkovic
and Haggerty [2002], and Margolin et al. [2003] in the
context of the continuous time random walk method.
Equation (21) is the basis for the following asymptotic
analysis of the late-time arrival-time distribution consider-
ing linear mass transfer in a diploe flow field.

6.2. Asymptotic Analysis

[20] In general, we apply the asymptotic analysis of
Margolin et al. [2003]. The late-time behavior of the
traveltime distribution y0(t) is given by equation (11) for
t � T in which T is the characteristic time defined by

equation (2). Thus the Laplace transform of y0(t) can be
approximated for s � T 1 by [e.g., Dentz and Berkowitz,
2003]

y0 sð Þ ¼ 1
TG 2=3ð Þ
p2=3

sTð Þ1=3þ . . . : ð22Þ

Thus, for s� T 1, y(s), equation (21) can be approximated
by

y sð Þ ¼ 1
TG 2=3ð Þ
p2=3

sT þ sT8 sð Þ½ �1=3þ . . . : ð23Þ

For y0(t), the asymptotic regime is determined by the
characteristic time T, equation (2); that is, the asymptotic
behavior given by equation (11) is valid for traveltimes
larger than T. For y(t), identifying the onset of the
asymptotic regime is more complicated, because the
memory function 8(t) introduces additional timescales that
need to be taken into account in the asymptotic analysis. In
the following, we study the asymptotic behavior of y(t) for
transport considering (1) linear driving-force kinetics of
sorption and (2) diffusive mass transfer into spheres.
6.2.1. First-Order Kinetics of Sorption
[21] For linear first-order sorption, the local memory

function is given by

f t=t0ð Þ ¼ exp
t

t0

� �
ð24Þ

The Laplace transform of f(t) is given by

f sð Þ ¼ 1

1þ s
: ð25Þ

Substituting equation (25) into (16), we obtain for single-
rate kinetic sorption

8 sð Þ ¼ 1

1þ st0
ð26Þ

For times large compared to the typical adsorption time t0,
which corresponds to s � t0 1, equation (26) can be
expanded in s according to

8 sð Þ ¼ 1 st0 þ . . . : ð27Þ

Substituting equation (27) into equation (20), using
equation (23) and subsequent expansion for s � min(t0 1,
T 1) gives for y(s) in leading order:

y sð Þ ¼ 1
TG 2=3ð Þ
p2=3

sTð Þ1=3 1þ st0ð Þ1=3þ . . . ð28Þ

which is in leading order identical to equation (22). Thus,
asymptotically, the tailing behavior is the same as in the
case without sorption. Figure 5 shows the adsorption
timescale t0 can only affect the time for the breakthrough
tails to start the power law behavior, but cannot change the
exponent �4/3, which is fully controlled by the traveltime
distribution. The behavior is more interesting in the case of
diffusive mass transfer studied in the following.

Figure 5. Breakthrough curve of tracers undergoing linear
first-order sorption; t0 is the sorption timescale, normalized
by the characteristic time T. The gray line is a reference line
with exponent �4/3.
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6.2.2. Diffusive Mass Transfer Into Spheres
[22] For diffusive mass transfer into spherical immobile

zones the memory function f(t/tim) is defined by its
Laplace transform as [e.g., Harvey and Gorelick, 1995]

f sð Þ ¼ 1

s
p coth s

p� 	 1

s
p

� �
ð29Þ

[23] Substituting equation (29) into equation (16) and
equation (25) into equation (13), we obtain for the memory
function for single rate diffusive mass transfer

8 sð Þ ¼ q
st0

p coth st0
pð Þ 1

st0
p

� �
ð30Þ

For times small compared to the typical diffusion time t0 in
the immobile spheres, t � t0, which corresponds to s �
t0

1, the memory function can be expanded in s according to

8 sð Þ ¼ q
st0

p þ . . . ð31Þ

where the dots denote subleading contributions. For
traveltimes much larger than the diffusion timescale t0;
that is, for s � t0

1, the memory function behaves as

8 sð Þ ¼ q
3

1
s

15

� �
þ . . . ð32Þ

where the dots denote higher-order terms contributions.
[24] We assume that the characteristic timescale T and the

diffusion timescale t0 are well separated, T � t0. Then, T
and t0 define two relevant time regimes. (1) the intermedi-
ate time regime T � t � t 0. Note that for diffusive mass
transfer in uniform flow the BTC behaves as t 3/2 in this
time regime [e.g., Hadermann and Heer, 1996]. (2) The

asymptotic large-time regime t � t0. In the intermediate
time regime, which corresponds to t0

1 � s � T 1 for the
Laplace variable, the Laplace transformed traveltime distri-
bution y0(s) can be approximated by equation (23) while
the Laplace transformed memory function y(s) is given by
equation (32). Thus we obtain for y(s), (21), in this regime

y sð Þ ¼ 1
T4=3q1=3G 2=3ð Þ

t1=60 p2=3
s1=6 þ . . . ð33Þ

where the dots denote subleading contributions. Inversion
of equation (33) [e.g., Dentz and Berkowitz, 2003] gives the
power law behavior

y tð Þ ¼ A
t

T

� ��7=6

þ . . . ð34Þ

for y(t) in the intermediate time regime T � t � t0. The
constant A is defined by

A ¼ q1=3G 2=3ð Þ
6G 5=6ð Þp2=3

T

t0

� �1=6

ð35Þ

Thus the tailing behavior of the traveltime distribution y0(t)
can be changed in the presence of diffusive mass transfer
mechanisms and lead to a tail characterized by the exponent
�7/6 if the characteristic time T and the diffusion timescale
t0 are well separated.
[25] The above analyses can be conveniently extended to

generalize the case of power law traveltime distribution and
power law mass transfer (either diffusive or sorptive).
Consider the traveltime distribution with asymptotic late-
time behavior y0(t) � t g [Berkowitz et al., 2006] and a
memory function with asymptotic behavior 8(t) � t b

[Haggerty et al., 2000] in the time regime T � t � t0.
The resulting asymptotic power law behavior on this
timescale of combining the traveltime distribution and the
memory function is

y tð Þ / t�1�b g�1ð Þ; for 0 < b < 1; 1 < g < 2 ð36Þ

[26] In the late-time regime t � t0, i.e., s � t0
1, the

Laplace transform of the traveltime distribution is obtained
by substituting equation (32) into equation (23):

y sð Þ ¼ 1
TG 2=3ð Þ
p2=3

1þ q
3

� �
sTð Þ1=3þ . . . ð37Þ

The inverse Laplace transform of equation (37) gives for the
travel time distribution in the long-time regime t � t0

y tð Þ ¼ B
t

T

� ��4=3

ð38Þ

with the constant B defined by

B ¼ 1þ q=3
3p2=3

ð39Þ

Thus the long-time tailing behavior of the traveltime
distribution remains unchanged in the presence of diffusive
mass transfer.

Figure 6. Breakthrough curve of tracers undergoing
diffusive mass transfer into spherical immobile zones; t0
is the diffusion timescale, normalized by the characteristic
time T. The gray lines are reference lines with exponents
�4/3, �7/6, and �3/2.
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[27] Figure 6 shows the BTC tailing with different
diffusive timescales. For small t0, the intermediate regime
with exponent �7/6 is very short. With the increase of t0,
the intermediate regime becomes longer and more obvious.
At very large time, t � t0, all the BTCs fall into a same line
with exponent �4/3. Note, however, that in practical
applications the diffusion time t0 can be very large and so
that it can take very long until this asymptotic time regime is
reached. In the more relevant intermediate regime, in
contrast, the tailing behavior is changed, as outlined above.
Note that the lines with different power law exponents (the
grey lines in Figure 6) are not dramatically different. In
practical applications, accurate measurements at low con-
centrations must be taken in order to analyze the controlling
mechanisms responsible for the power law tailing behavior.

7. Conclusions

[28] The distribution of traveltime from the injection to
the extraction well in a dipole flow field has interesting late-
time behavior. In an ideal dipole flow field in homogeneous
media in the absence of regional flow, the traveltime
distribution, y0(t), follows a power law with exponent
�4/3, which also occurs at large well pumping rates with
regional flow. This behavior is not surprising given that the
recirculation area is infinite. In the case with regional flow,
which creates a finite recirculation area, y0 shows a power
law with exponent �4/3 for a certain period of time,
followed by exponential decay, which assures a finite mean
value, as well as finite higher-order moments of the
traveltime distribution. Local dispersion is found not to
influence the late-time behavior, but has significant effects
at early times. Thus the early time BTC is important for
estimating dispersion coefficients.
[29] BTCs at the extraction well in a dipole flow field are

highly affected by the nonuniform distribution of travel paths
and the nonuniform velocity field, resulting in different
traveltimes along the streamlines. We analyzed the travel-
time distribution y(t) for tracers undergoing diffusive mass
transfer from mobile into immobile regions and first-order
sorption kinetic. In both cases the immobile/adsorbed solute
fraction is given by a linear functional of the mobile/
nonadsorbed solute fraction. We consider single linear
kinetic sorption, which is characterized by an exponential
memory function. In this case the tailing behavior is
controlled by the dipole flow geometry implying the expo-
nent �4/3. For diffusive mass transfer, we distinguish two
relevant time regimes determined by the typical diffusion
time t0 in the immobile regions and the characteristic
breakthrough time without mass transfer, T, which are
assumed to be well separated, T � t0. In the intermediate
time regime T � t � t0, the breakthrough tailing is
characterized by the exponent �7/6 as opposed to the �4/3
without mass transfer. The exponent �7/6 is given by the
characteristic exponent b = 1/2 for the memory function of
matrix diffusion and the exponent g = 4/3 determined by the
dipole flow geometry, as �1 � b(g � 1), which is the
generalized result for the case of power law traveltime
distribution and power law mass transfer. In the long-time
regime t� t0 the exponent bywhich the BTC decays is again
�4/3 as given by the dipole flow geometry. Thus, in an ideal
dipole flow field in homogeneous media in the absence of

regional flow, the BTC tailing behavior is ultimately domi-
nated by the nonuniform flow field over dispersion, sorption,
or mass transfer. In the presence of sufficiently strong
regional flow, yet another regime may occur, where the
advective traveltime distribution, y0(t) changes to exponen-
tial tailing behavior before the diffusive timescale is reached.
This would result in power law tailing dominated by diffusive
mass transfer, i.e., with exponent �3/2.
[30] Our study exemplifies that the flow configuration has

significant impact on the tailing behavior of BTCs. Power
law tailing can be caused by (1) kinetic mass transfer,
(2) variability of hydraulic conductivity, and (3) flow con-
figuration. If the tailing of BTCs obtained by well-to-well
tracer tests is used to identify mechanisms of kinetic mass
transfer, the impact of the flow configuration must not be
neglected. It may be necessary to observe the breakthrough
curve for very long periods of time in order to identify the
various regimes involved. Obviously, this requires accurate
measurements at low concentrations. Premature truncation of
the test, which may be enforced by reaching the limit of tracer
detection, may lead to erroneous interpretations regarding
mass transfer kinetics. In addition, in heterogeneous media,
most flow may travel along preferential flow paths, resulting
in fast decay of the actual traveltime distribution, and the late-
time behavior of the BTC may be ultimately dominated by
kinetic mass transfer.
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