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[1] Temporal moment equations are generalized for transport under linear mass transfer,
which has been used to model a broad range of small-scale processes: kinetic sorption,
diffusion into immobile regions, and transport through heterogeneous aquifers. Solving
the moment equations, which are formally identical to steady state transport equations, is
computationally more efficient than evaluating the temporal moments by integrating the
transient flux concentrations. We derive recursive relations for the moments of the flux
concentration, which involve the moments of the memory function but do not dependent
on its shape. It turns out that two mass transfer models have the same kth temporal
moment if the moments of order lower than k are equal. Particularly, the mean retention
time, i.e., the first moment of the retention probability density function (pdf) in the
immobile domain, decides the second temporal moment of concentration. A mass transfer
model with two first-order rate coefficients can match up to the fourth temporal moment
described by a multirate model with a predescribed pdf of the mass transfer rate
coefficient. The kth temporal moment is finite when the (k-1)th moment of the memory
function exists.
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1. Introduction

[2] Mass transfer in subsurface hydrogeology often refers
to exchange processes between relative mobile and immo-
bile domains, in which the latter may consist of sorption
sites, dead-end pores, porous particles, aggregates, rock
matrix between fractures, or the domain in between macro-
pores. Transport simulations of mass transfer usually con-
ceptualize a porous or fractured medium as consisting of
two overlapping continuous media: a mobile domain, in
which advective-dispersive transport occurs, and an immo-
bile one with a continuous withdrawal and return of solute
mass [Coats and Smith, 1964; van Genuchten and Wierenga,
1976]. Mass transfer between the two domains is kinetically
controlled. As an approximation, first-order models are
often used to describe the kinetic (diffusive) mass transfer
processes. However, the classical first-order mass transfer
model assumes perfect mixing within the immobile domain,
whereas in reality solute distribution in the immobile
domain is nonuniform so that a distribution of exchange
rates rather than a single value may be more appropriate.
Another ideal model is the single diffusion rate model,

which describes the mass transfer rate by Fickian diffusion
into a body with known geometry [Crank, 1975]. In such a
model, the concentration is nonuniformly distributed in the
immobile domain. However, a constant grain size (or a
constant radius for a sphere model) is often employed,
which may also not be sufficient to represent microscale
heterogeneity [Carrera et al., 1998]. Haggerty and Gorelick
[1995] proposed a multirate model by superimposing a
distribution of first-order mass transfer rates to characterize
incomplete mixing in the immobile domain and various
diffusion processes. On the basis of the same belief of the
microscale heterogeneities, Carrera et al. [1998] developed
a more versatile model of linear mass transfer, in which
mass transfer rates are described by a convolution product
of concentrations in the mobile domain and a memory
function rather than predefining the mass transfer model.
By choosing appropriate memory functions, the model can
reproduce the first-order, multirate, sphere, layer or cylinder
diffusive models [e.g., Carrera et al., 1998; Haggerty et al.,
2000].
[3] Mass transfer processesmay result in nonideal behavior

of concentration measurements, e.g., heavily tailed break-
through curves [Haggerty et al., 2000]. From a macroscopic
view, the solute initially enters the immobile domain driven
by concentration gradients, and after the plume peak has
passed, the immobile domain releases solute mass to the
mobile domain driven by reversed concentration gradients.
Thus the concentration breakthrough curve measured at a
certain point may have a long tail of low concentrations. In
heterogeneous media, the spatially variable velocity field
may cause anomalous transport as well, leading to similar
nonideal behavior. Thus, in the absence of sufficient aquifer
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characterization, mass transfer processes may be used with
macroscopic advective-dispersive models to describe anom-
alous transport [e.g., Berkowitz and Scher, 1997, 1998;Dentz
and Berkowitz, 2003; Zinn et al., 2004; Berkowitz et al.,
2006]. The presence of mass transfer in heterogeneous
media complicates scientific analyses and practical applica-
tions, be it through theoretical studies, model development,
field measurements, or site remediation.
[4] The approach of temporal moments is an efficient tool

for characterizing transport with mass transfer. For example,
rather than using the entire concentration breakthrough
curve, one may use the first temporal moment of the
breakthrough curve to describe the mean travel time, the
second central moment to describe the variance of travel
times, and the third moment to investigate the skewness of
the breakthrough curve. In addition, these temporal
moments may be used to estimate effective mass transfer
parameters by matching the moments to the analytical
expressions derived for homogeneous transport models
[e.g., Kreft and Zuber, 1978; Valocchi, 1985; Cunningham
and Roberts, 1998].
[5] In numerical simulations of transport in heteroge-

neous media, the evaluation of temporal moments generally
requires one to integrate the concentrations solved from
transient governing equations. The computation is costly
because long tails of the breakthrough curve with small
concentrations may dominate high-order moments. For
example, a spherical diffusion model of mass transfer
creates a breakthrough curve with intermediate power law
behavior and exponential decay at late time [e.g., Carrera et
al., 1998]. To obtain high-order temporal moments, it is
necessary to integrate the breakthrough curve until the
exponential behavior is exhausted. The approach of tempo-
ral moment equations derived by Harvey and Gorelick
[1995] dramatically simplifies this problem by solving only
steady state governing equations to evaluate the temporal
moment at any point in the domain. The latter authors
considered the commonly applied mass transfer models
including the first-order and diffusive models.
[6] The present work aims (1) to generalize the approach

of temporal moment equations to transport with an arbitrary
linear mass transfer model and (2) to compare transport
systems with arbitrary linear mass transfer models in
terms of temporal moments of concentration breakthrough
curves.

2. Governing Equation

[7] Multidimensional advective-dispersive transport of a
compound undergoing linear kinetic mass transfer between
a mobile and immobile domains [Carrera et al., 1998] can
be described by

@c

@t
þ btot

@cim
@t

¼ �v � rcþr � Drcð Þ; ð1Þ

where c is the concentration in the mobile domain; cim the
concentration in the immobile domain; t is time; btot = qim/qm
is the capacity coefficient, i.e., the ratio of immobile to
mobile porosity [Haggerty and Gorelick, 1995]; and v is the
seepage velocity, typically assumed to be divergence-free,
i.e., r � v = 0, although the equation is still valid otherwise

[see, e.g., Saaltink et al., 2004]. Commonly, the dispersion
tensor D is described by [Bear, 1972]

D ¼
v� v

vk k
aL � aTð Þ þ I vk kaT þ Dmð Þ; ð2Þ

in which v � v is the tensor product of v with itself, jjvjj is
the absolute value of v, aL and aT are the local-scale
longitudinal and transverse dispersivities, respectively; and
Dm is the molecular diffusion coefficient.
[8] We specify the zero initial concentrations within the

domain:

c x; t ¼ 0ð Þ ¼ cim x; t ¼ 0ð Þ ¼ 0: ð3Þ

Thus the immobile domain is initially tracer-free. It has
been shown [e.g., Carrera et al., 1998; Haggerty et al.,
2000; Dentz and Berkowitz, 2003] that the immobile
concentration can then be written as a linear functional of
the mobile concentration c(x, t),

cim x; tð Þ ¼

Z

t

0

f t � t0ð Þc x; t0ð Þdt0; ð4Þ

where f(t) is the memory function, originally devised by
Herrera and Rodarte [1973] to characterize water storage in
aquitards. Actual details of the memory function depend on
the specific mass transfer processes under consideration.
Our definition of the memory function is different from that
of Carrera et al. [1998], in which the capacity ratio btot was
included in the memory function. Here, the memory
function f(t) can be interpreted as the probability density
function (pdf) of the retention time in the immobile domain
or the transfer time distribution [Villermaux, 1987; Sardin
et al., 1991], and the zeroth moment of f(t) is unity, i.e.,
R

0
1f(t) dt = 1.
[9] The transport equation (equation (1)) can now be

written as

@c

@t
þ btot

@

@t

Z

t

0

f t � t0ð Þc x; t0ð Þdt0 ¼ �v � rcþr � Drcð Þ: ð5Þ

Equation (5) describes a transient linear mass transfer
system subject to advection and dispersion. The concentra-
tion within the immobile domain is described by a linear
convolution, in which the concentration in the mobile
domain is the input function and the memory function is the
unit impulse response function. By specifying particular
parametric models, f(t) can reproduce the first-order,
multirate, sphere, layer or cylinder diffusive models, etc.
[Carrera et al., 1998; Haggerty et al., 2000].
[10] A uniform tracer pulse is instantaneously injected

into the domain over the inflow boundary Gin:

n � vc� Drcð Þ ¼
min

Q
d tð Þn � v on Gin; ð6Þ

where min is the mass of the injected solute, and Q is the
total discharge crossing the inflow boundary Gin. At all
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other parts of the boundary, denoted G\Gin, the dispersive
flux normal the boundary is zero:

n � Drcð Þ ¼ 0 on GnGin: ð7Þ

3. Temporal Moments

[11] The kth temporal moment of a breakthrough curve
obtained at location x is defined as

mk xð Þ ¼

Z 1

0

tkc x; tð Þdt: ð8Þ

The mean breakthrough time or travel time is given by the
first normalized moment

�t xð Þ ¼
m1

m0

; ð9Þ

and the second central temporal moment is

m2c xð Þ ¼

Z 1

0

t � �t xð Þð Þ2c x; tð Þdt ¼ m2 �
m2
1

m0

; ð10Þ

which measures the spread of the concentration break-
through curve. The variance of particle travel times is
described by

s2
t xð Þ ¼

m2c

m0

: ð11Þ

Higher-order moments are also available to characterize the
properties of the concentration breakthrough curve and
travel times. For example, the asymmetry and peakedness of
the travel times can be measured by the third and fourth
standardized moments, i.e., the skewness coefficient and the
kurtosis. The accurate estimation of equation (8) for high-
order moments requires complete time series of data. For a
pulse injection, this implies that the concentrations must be
computed until the initial value of zero has been reached
again, which is costly because mass transfer processes often
generate heavily tailing breakthrough curves.

4. Temporal Moment Equations

[12] In order to determine the moment equation for the
kth temporal moment, we multiply both sides of (5) with tk

and integrate over time. As outlined in Appendix A, this
yields, for mk(x1) with k > 0,

kmk�1 þ btotk
X

k�1

l¼0

k � 1

l

� �

wk�1�lml

¼ v � rmk xð Þ � r � Drmk xð Þð Þ; ð12Þ

where wk is the kth temporal moment of the memory
function,

wk ¼

Z 1

0

tkf tð Þdt: ð13Þ

Specifically, for k = 0 and k = 1, w(k is given by

w0 ¼ 1;w1 ¼

Z 1

0

tf tð Þdt ¼ �tim;

where �tim represents the mean retention time in the
immobile domain. Thus the equations for the zeroth, first,
and second temporal moments are given by

v � rm0 �r � Drm0ð Þ ¼ 0; ð14Þ

v � rm1 �r � Drm1ð Þ ¼ m0 þ btotm0w0; ð15Þ

v � rm2 �r � Drm2ð Þ ¼ 2m1 þ 2btotm0w1 þ 2btotm1w0;

ð16Þ

subject to the boundary conditions

n � vmk � Drmkð Þ ¼
min

Q
n � vdk0 on Gin;

n � Drmkð Þ ¼ 0 on GnGin:

[13] Equations (14)–(16) are a generalization of linear
mass transfer models which extends the equations presented
by Harvey and Gorelick [1995] for specified mass transfer
models. These equations can also be generalized to cases of
transient water flux (i.e., nondivergence free seepage veloc-
ities) using the results of Varni and Carrera [1998].
Unfortunately, in this latter case, the resulting moment
equations would no longer be steady state. The temporal
moment equations are steady state transport equations. The
zeroth temporal moment is free of sources and sinks. The
high-order moments are subject to sources and sinks con-
trolled by the lower-order moments of the breakthrough
curve and the memory function. If the tracer injection is
spatially uniform over the inflow boundary as given in
equation (6), the zeroth moment m0 is uniform

m0 ¼
min

Q
8x: ð17Þ

[14] In the following, we normalize the first and higher
moments by the uniform value of m0. Then, equations (15)
and (16) simplify to

v � rm1 �r � Drm1ð Þ ¼ 1þ btot ð18Þ

v � rm2 �r � Drm2ð Þ ¼ 2m1 þ 2m1btot þ 2�timbtot: ð19Þ

Substituting equations (10) and (18) into (19) and applying
the uniform zeroth moment yields the equations for the
second central moment (see Appendix B)

v � rm2c �r � Drm2cð Þ ¼ 2rm1 � Drm1ð Þ þ 2�timbtot ð20Þ

subject to the boundary conditions

n � vm2c � Drm2cð Þ ¼ 0 on Gin; ð21Þ
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n � Drm2cð Þ ¼ 0 on GnGin: ð22Þ

The boundary conditions represent zero flux of m2c across
the inflow boundary and zero dispersive flux of m2c at all
other boundaries. It is important to notice that equation (20)
holds only for uniform injection of the solute over the entire
inflow boundary as given in equation (6). The moment
equation for m2c contains two source terms: the first one
stems from local dispersion [see Cirpka and Kitanidis,
2000], whereas the second is related to kinetic mass transfer.
[15] The concentrations and moments defined so far are

all considered at idealized points (i.e., resident concentra-
tions and moments). Breakthrough at the outflow boundary
is typically measured in terms of the total flux crossing
boundary

cf tð Þ ¼
1

Q

Z

Gout

n � qc xð Þ � qmDrcð Þdx ¼
1

Q

Z

Gout

n � qc xð Þdx;

ð23Þ

in which cf is known as flux (or flux-averaged) concentra-
tion, and we have made use of the boundary condition,
equation (7). Q is the total discharge. With known local
moments mk along the outflow boundary, the raw moments
Mk of the flux concentration can be evaluated

Mk ¼

Z 1

0

tkcf tð Þdt ¼
1

Q

Z

Gout

n � qmk xð Þdx: ð24Þ

[16] M0 equals min/Q if the injection over the inflow
boundary is uniform. It is worth noting that while the raw
moments Mk of the normalized flux concentration in the
outflow are the flux-weighted averages of the local
moments mk, this is not the case for central moments. In
particular (see also Vanderborght and Vereecken [2002])

M2c ¼ M2 �M2
1 �

1

Q

Z

Gout

n � qm2c xð Þdx: ð25Þ

That is, the spread observed in the breakthrough curve
measured over a large observation plane is considerably
larger than the average spread of the locally observed
curves, unless the flow field and interphase mass transfer
parameters are homogeneous.
[17] The derived temporal moment equations provide an

efficient tool to evaluate temporal moments at any location
in a potentially heterogeneous domain. More importantly, as
discussed in section 5, we can draw several significant
conclusions for transport under linear kinetic mass transfer
in heterogeneous media.

5. Discussion

5.1. Comparison With Transport Without Mass
Transfer

[18] By removing the terms of temporal moments of the
memory function from equations (18) and (20), we can obtain
the moment equations for transport systems without mass
transfer [Varni and Carrera, 1998; Cirpka and Kitanidis,
2000]. The zeroth moments for both systems are uniform,

i.e., the presence of the immobile domain does not influence
the evaluation of the zeroth moment, because the solute
mass entering the immobile domain will eventually be
released. For transport system with linear mass transfer,
the sink/source term in equation (15) for the first moment is
larger than in systems without mass transfer [see, e.g.,
Cirpka and Kitanidis, 2000]. This results in larger first
moments, commonly known as retardation. This result is
well known based on analytical expressions derived for
homogeneous media, where the mean travel time in the
mobile domain �t = (1 + btot)

x
v
[e.g., Valocchi, 1985]. In the

absence of mass transfer, neglecting local dispersion would
result in zero m2c, i.e., without local-scale dispersion, the
heterogeneous advection flow field cannot create dilution
and mixing. The breakthrough curve measured at a point
will be a Dirac shape curve corresponding to the Dirac
injection mode. By contrast, the presence of mass transfer
processes can create dilution and mixing also in the absence
of local-scale dispersion

@ vim2cð Þ

@x
¼ 2�timbtot; ð26Þ

which indicates that in a uniform flow field, m2c increases
linearly with distance. Thus the zeroth to second moments
of any linear mass transfer model are equivalent to an
advective-dispersive system with a retardation factor of
1 + btot and an equivalent longitudinal dispersion coefficient
of �timbtotv

2/(1 + btot). In fact, in the chemical engineering
literature [e.g., Villermaux, 1974] local dispersion is often
neglected as the impact of nonequilibrium mass transfer
upon spreading and mixing of a solute is dominant.

5.2. Moment Matching for Different Mass Transfer
Model

[19] Importantly, equations (18)–(20) theoretically prove
that temporal moments rely only on the lower moments of
the memory function or the retention time distribution in the
immobile domain, but do not depend on the specific shape
of the memory function. Thus, for two mass transfer models
with identical capacity ratio and first moment of the
memory function, i.e, btot and tim (the mean retention time),
the transport system would achieve equivalent first and
second temporal moments everywhere in the heterogeneous
medium. This result is consistent with the findings of
Villermaux [1987], Cunningham and Roberts [1998], and
Sánchez-Vila and Carrera [2004], who analyzed specific
mass transfer models in homogeneous media. Moreover,
equation (12) shows that any order of temporal moment of a
local-scale breakthrough curve will be identical for two
mass transfer models having memory functions with the
same lower-order moments. This also provides the approach
of moment matching to evaluate effective simpler mass
transfer models, such as first-order models, for complex
mass transfer systems [e.g., Valocchi, 1990; Haggerty and
Gorelick, 1995].
[20] The memory function for multirate mass transfer, for

example, is given by [Carrera et al., 1998; Haggerty et al.,
2000]

f tð Þ ¼

Z 1

0

ab að Þe�at da; ð27Þ
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where a is mass transfer rate coefficient, and b (a) is the pdf
of a. The zeroth and kth moments of f (t) are

w0 ¼

Z

1

0

b að Þda ¼ 1 ð28Þ

wk ¼

Z 1

0

Z 1

0

tkab að Þe�atdadt ¼ k!

Z 1

0

b að Þ

ak
da: ð29Þ

Single rate first-order mass transfer is characterized by a
delta rate distribution b (a)

b að Þ ¼ d a� af

� �

; ð30Þ

where d is the delta function, and af is a lumped first-order
rate coefficient. To match the first and second temporal
moments of a breakthrough curve, the effective first-order
mass transfer rate coefficient for a multirate model is given
by

af ¼

Z 1

0

b að Þ

a
da

� ��1

: ð31Þ

Equation (31) is consistent to the result presented by
Haggerty et al. [2000]. Note that the (k + 1)th temporal
moment can be matched by setting

af ¼
wk

k!

� 	�1=k
: ð32Þ

However, in order to describe both the second and third
moments of a breakthrough curve, compare equation (12),
we need to introduce two first-order mass transfer rate
coefficients to match a multirate model

b að Þ ¼ b1d a� af 1

� �

þ b2d a� af 2

� �

: ð33Þ

The moment-matching equations are given by

b1 þ b2 ¼ 1; ð34Þ

b1

af 1

þ
b2

af 2

¼

Z 1

0

b að Þ

a
da; ð35Þ

b1

a2
f 1

þ
b2

a2
f 2

¼

Z 1

0

b að Þ

a2
da: ð36Þ

This equation system has four unknowns and three
equations, yielding infinite number of solutions. By
considering the equation to match the peakedness

b1

a3
f 1

þ
b2

a3
f 2

¼

Z 1

0

b að Þ

a3
da; ð37Þ

we obtain a unique solution. Thus a model with two first-
order mass transfer rate coefficients can match a multirate
model in terms of the first four moments.

5.3. Moment Existence

[21] High-order temporal moments of a breakthrough
curve may be infinite. Haggerty et al. [2000] discusses this
issue using the breakthrough tailing behavior. Here,
equation (12) indicates that the existence of the kth temporal
moment of a breakthrough curve is fully controlled by the
lower-order moments of the memory function. The first
temporal moment of a breakthrough curve can always be
evaluated because it is related to the zeroth moment of the
memory function or the retention time pdf, which is unity.
However, the second or higher temporal moment may not
exist because the first or higher moments of the memory
function may be unavailable. For example, for a memory
function having a power law decaying behavior with an
exponent of p, i.e.,

f tð Þ � t�p; t ! 1; ð38Þ

where p > 1 to satisfy the constraint that the zeroth moment
of a pdf must be 1, one can only evaluate the p–1th
temporal moment for the concentration breakthrough curve.
For memory functions with exponential decaying behavior
eventually, any order of temporal moments can be evaluated
because of the existence of any order moments of the
memory function.

6. Concluding Remarks

[22] We have generalized the temporal moment equations
presented by Harvey and Gorelick [1995] for transport
under linear kinetic mass transfer. Here the total concentra-
tion is given by the sum of the mobile concentration and the
concentration in the immobile domains. The latter is a linear
functional of the mobile concentration expressed by a
convolution product with a memory function that carries
the details of the particular mass transfer mechanism and
can be seen as the distribution density of retention times in
the immobile regions. We obtain steady state partial differ-
ential equations for the kth temporal moments of the mobile
concentration, which depend on all lower-order temporal
moments of both the mobile concentration and the memory
function quantified by source terms. The derived relations
are of general nature and do not depend on a particular mass
transfer model.
[23] We find that the equation for the second centered

moment, which is a measure of the spreading of the solute
distribution, has two source terms, one stemming from local
dispersion the second one originating from kinetic mass
transfer. Thus, in contrast to transport without mass transfer,
here there can be mixing and dilution in the absence of
local-scale dispersion.
[24] The local moments derived from the mobile concen-

trations quantify solute arrival at point locations within the
aquifer. They are related to the moments of the flux
concentration at an outflow boundary. While the raw
moments of the normalized flux concentration are the flux
averages of the local moments, the second centered raw
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moments quantify an artificial spreading due to variations of
the mean local solute breakthrough times along the control
plane.
[25] On a more technical level, the moment equations

reveal that the existence of the kth temporal moments
depends on the finiteness of the (k–1)th moment of the
memory function. Furthermore, two different mass transfer
models will have the same kth temporal moments if only the
moments of the memory function of order lower than k are
identical. Specifically, the second temporal moments
depend on the mean retention time. In an example applica-
tion for first-order kinetic multirate mass transfer we find
that a double rate mass transfer model can match the first
four temporal moments of a more complex multirate model.
[26] The derived temporal moment equation can facilitate

the analysis and characterization of breakthrough curves in
heterogeneous aquifers for which mass transfer together
with advective dispersive transport is frequently employed
for the efficient modeling of anomalous transport features.

Appendix A

[27] For the zeroth temporal moment, integrating (5) over
time yields

Z 1

0

@c

@t
dt þ

Z 1

0

Z 1

0

@c t � t0ð Þ

@t
f t0ð Þdt0dt

¼ c tð Þ½ �10 þ

Z 1

0

f t0ð Þ c½ �10 dt0 ¼ 0: ðA1Þ

For the kth temporal moment, we obtain

Z 1

0

tk
@c

@t
dt ¼ tk c½ �10 �k

Z 1

0

tk�1cdt ¼ �kmk�1 ðA2Þ

Z 1

0

tk
Z 1

0

@c t � t0ð Þ

@t
f t0ð Þdt0dt

¼

Z 1

0

f t0ð Þ

Z 1

0

tk
@c t � t0ð Þ

@t
dtdt0

¼

Z 1

0

f t0ð Þ tkc t � t0ð Þ






1

0
�k

Z 1

0

tk�1c t � t0ð Þdt

� �

dt0

¼ �k

Z 1

0

f t0ð Þ

Z 1

0

tk�1c t � t0ð Þdtdt0

¼ �k
X

k�1

l¼0

k � 1

l

� �

ml

Z 1

0

f t0ð Þt0k�1�ldt0

¼ �k
X

k�1

l¼0

k � 1

l

� �

wk�1�lml; ðA3Þ

where we apply

Z 1

0

tk�1c t � t0ð Þdt ¼

Z 1

t0
t0 þ zð Þ

k�1
c zð Þdz

¼
X

k�1

l¼0

k � 1

l

� �

t0k�1�l

Z 1

�t0
zkc zð Þdz

¼
X

k�1

l¼0

k � 1

l

� �

t0k�1�lml: ðA4Þ

Appendix B

[28] The governing equation for m1
2 is evaluated by

�r � vm2
1 � Drm2

1

� �

¼ �2m1r � vm1ð Þ þ r � 2Dm1rm1ð Þ

¼ �2m1r � vm1ð Þ þ 2rm1

� Drm1ð Þ þ 2m1r � Drm1ð Þ

¼ �2m1r � vm1 � Drm1ð Þ

þ 2rm1 � Drm1ð Þ ðB1Þ

�r � vm2
1 � Drm2

1

� �

¼ �2m1 1þ btotð Þ þ 2rm1 � Drm1ð Þ:

ðB2Þ

[29] Substituting equations (10), (18), and (B1) into (19)
and applying the unit zeroth moment yields equation (20).
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