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[1] Modeling mixing-controlled reactive transport using traditional spatial discretization
of the domain requires identifying the spatial distributions of hydraulic and reactive
parameters including mixing-related quantities such as dispersivities and kinetic mass
transfer coefficients. In most applications, breakthrough curves (BTCs) of conservative
and reactive compounds are measured at only a few locations and spatially explicit models
are calibrated by matching these BTCs. A common difficulty in such applications is
that the individual BTCs differ too strongly to justify the assumption of spatial
homogeneity, whereas the number of observation points is too small to identify the spatial
distribution of the decisive parameters. The key objective of the current study is to
characterize physical transport by the analysis of conservative tracer BTCs and predict the
macroscopic BTCs of compounds that react upon mixing from the interpretation of
conservative tracer BTCs and reactive parameters determined in the laboratory. We do this
in the framework of traveltime-based transport models which do not require spatially
explicit, costly aquifer characterization. By considering BTCs of a conservative tracer
measured on different scales, one can distinguish between mixing, which is a prerequisite
for reactions, and spreading, which per se does not foster reactions. In the traveltime-based
framework, the BTC of a solute crossing an observation plane, or ending in a well, is
interpreted as the weighted average of concentrations in an ensemble of non-interacting
streamtubes, each of which is characterized by a distinct traveltime value. Mixing is
described by longitudinal dispersion and/or kinetic mass transfer along individual
streamtubes, whereas spreading is characterized by the distribution of traveltimes, which
also determines the weights associated with each stream tube. Key issues in using the
traveltime-based framework include the description of mixing mechanisms and the
estimation of the traveltime distribution. In this work, we account for both apparent
longitudinal dispersion and kinetic mass transfer as mixing mechanisms, thus generalizing
the stochastic-convective model with or without inter-phase mass transfer and the
advective-dispersive streamtube model. We present a nonparametric approach of
determining the traveltime distribution, given a BTC integrated over an observation plane
and estimated mixing parameters. The latter approach is superior to fitting parametric
models in cases wherein the true traveltime distribution exhibits multiple peaks or long
tails. It is demonstrated that there is freedom for the combinations of mixing
parameters and traveltime distributions to fit conservative BTCs and describe the tailing.
A reactive transport case of a dual Michaelis-Menten problem demonstrates that the
reactive mixing introduced by local dispersion and mass transfer may be described by
apparent mean mass transfer with coefficients evaluated by local BTCs.

Eawag 05291

Citation: Luo, J., and O. A. Cirpka (2008), Traveltime based descriptions of transport and mixing in heterogeneous domains, Water

Resour. Res., 44, W09407, doi:10.1029/2007TWR006035.

1. Introduction

[2] Dilution and mixing in subsurface media have been
recognized as a critical issue for successful remediation of
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contaminated groundwater and soil [Lee et al., 1988; Molz
and Widdowson, 1988; Sturman et al., 1995; Cirpka et al.,
1999b]. Mechanisms that may create mixing include the
following: (1) local dispersion, (2) kinetic mass transfer
between mobile and immobile phases, (3) chromatographic
effects, and (4) hydrodynamic instability [Oya and Valocchi,
1998; Weeks and Sposito, 1998; Cirpka et al, 1999b;
Cirpka, 2005]. By contrast, macrodispersion, mainly de-
scribing the spreading of a plume at field scales, cannot be
used as a measure of dilution and mixing [Kitanidis, 1994].
Modeling dilution and mixing in heterogeneous media
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using traditional spatial discretization of the domain
requires identifying the spatial distribution of hydraulic
conductivity and mixing-related transport parameters such
as local dispersivities and kinetic mass transfer coefficients.
A particular challenge lies in predicting mixing-controlled
reactive transport in heterogeneous domains. If mean con-
centrations of reactive species are predicted by solving
macroscopic advective-dispersive-reactive transport, cali-
brated by fitting mean conservative concentrations, the
degree of mixing and related reaction rates will be over-
estimated [Molz and Widdowson, 1988; Semprini and
McCarty, 1991; Ginn et al., 1995; Sturman et al., 1995,
Miralles Wilhelm et al., 1997; Cirpka et al., 1999b]. Bimo-
lecular reactive transport experiments, conducted by Raje
and Kapoor [2000] and Gramling et al. [2002], demon-
strated that even in nearly homogeneous porous media
the reaction rates were overestimated by mean advective-
dispersive-reactive transport models with transport parame-
ters fitted from average concentration breakthrough curves
(BTCs) of conservative tracers.

[3] As an alternative to spatial advection-dispersion equa-
tions, characterization of mixing in terms of traveltimes may
allow transport descriptions independent of specific mixing
mechanisms. As a form of black-box analysis, stochastic-
convective models using traveltime distributions are well
suited to simulate BTCs at observation points and in control
planes. The main advantage of simulating transport in the
traveltime domain is that transport becomes one-dimension-
al with a uniform “velocity” whereas traditional spatial
models describe transport in a multidimensional domain
with potentially highly variable velocity [Simmons et al.,
1995; Crane and Blunt, 1999; Cirpka and Kitanidis, 2001].
Traveltime-based models are capable of simulating transport
in highly nonuniform flow fields or highly heterogeneous
media, where highly spatially variable velocity fields can
cause anomalous transport and highly asymmetric BTCs,
which may not be described well by traditional advective-
dispersive transport with uniform velocity and dispersion
coefficients [e.g., Selroos and Cvetkovic, 1992; Berkowitz
and Scher, 1997, 1998; Berkowitz et al., 2000; Di Donato et
al., 2003; Di Donato and Blunt, 2004; Berkowitz et al.,
20006; Fiori et al., 2006]. Finally, the traveltime distributions
needed for the approach may be conveniently evaluated
through conservative-tracer tests; the aquifer heterogeneity
does not need to be characterized in a spatially explicit form
[Simmons, 1982; Simmons et al., 1995]. This advantage is
particularly useful for a long-term groundwater remediation
project because it is questionable that initial spatial charac-
terizations are applicable in a long-term groundwater reme-
diation project because many factors may alter subsurface
conditions, such as biomass accumulation, gas production,
and solids precipitation, etc. [Luo et al., 2007]. By contrast,
traveltime distributions, which can be conveniently updated
by tracer tests, are more flexible to simulate such a long-
term reactive system.

[4] In applications to mixing-controlled reactive trans-
port, the traveltime formulation can be modified to distin-
guish between mixing on the scale of reaction, and
spreading, which is a strictly macroscopic phenomenon.
In this methodology, longitudinal mixing is described by
mixing mechanisms associated with traveltimes, and
spreading is expressed by the distribution of advective
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traveltimes. In the advective-dispersive stFeaaVi’ﬁﬂl%%zggp-
proach [Cirpka and Kitanidis, 2000a, 2000b], local BTCs,
obtained from point-like measurements of conservative
compounds, are used to infer apparent, mixing-relevant
longitudinal dispersivities. Cirpka and Kitanidis [2000b]
represented heterogeneous advection by a parametric trav-
eltime distribution, which they estimated from the local
mixing parameters and from spatially integrated BTCs,
measured at outflow boundaries and/or control planes.
Rubin et al. [1997] and Rubin and Ezzedine [1997] sug-
gested to parameterize transport by a stochastic-convective
model with mass transfer, estimating traveltime distribu-
tions from local measurements, especially from concentra-
tion peaks of local BTCs, and accounting for mixing by
kinetic mass transfer. Robinson and Viswanathan [2003]
used the maximum mixing state for describing reactive
transport, which stemmed from the micro-mixing theory
developed in chemical engineering [Nauman and Buffham,
1983]. However, the maximum mixing state cannot be
related to specific physical mixing mechanisms.

[5] All traveltime-based models mentioned above are
associated with two key issues: the conceptualization and
quantification of effective mixing mechanisms and the
estimation of the traveltime distribution. The original sto-
chastic-convective model (or complete segregation in chem-
ical engineering) neglects local mixing altogether. Thus it
cannot be used to simulate transport of compounds that
react upon mixing. The advective-dispersive streamtube
model uses apparent local longitudinal dispersion to char-
acterize mixing and completely neglects mass transfer
mechanisms. When the traveltime distribution is estimated
by a standard two-parametric model, as done by Cirpka and
Kitanidis [2000a, 2000b], it cannot be applied to systems
where the true traveltime distribution is multimodal, or
exhibits other non-traditional features such as long tails.
In contrast to the advective-dispersive streamtube model,
the stochastic-convective model with mass transfer accounts
for exchange with an immobile phase, which generates local
mixing, but completely neglects local dispersion. If in this
approach the mass transfer model is used to describe mixing
effects resulting from various mixing mechanisms, it can no
more reflect the actual inter-phase mass transfer behavior.
Thus mass transfer information inferred from core samples
may not be used. Furthermore, it is challenging to estimate
the traveltime distribution based on local BTCs alone
because characterizing multimodal, asymmetric traveltime
distributions based on point estimates requires an extremely
large number of measurement points.

[6] In the present study, we present a general formulation
of traveltime-based description of transport, which extends
the advective-dispersive streamtube model by incorporating
kinetic mass transfer between mobile and immobile phases.
In addition, and more importantly, we focus on the two key
issues associated with the traveltime framework, i.e., iden-
tifying appropriate mixing parameters and estimating trav-
eltime distributions from spatially integrated BTCs. We seek
to investigate the questions: (1) how should we choose
effective mixing parameters and estimate traveltime distri-
butions and (2) which traveltime model predicts reactive
transport best?

[7] The present study is different from the studies men-
tioned above in the following points:
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[8] 1. The procedure proposed here to set up a traveltime-
based model is opposite to the models proposed by Rubin et
al. [1997], in which traveltime distributions were deter-
mined followed by mass transfer parameters. By contrast,
we prefer to estimate mixing parameters first and then
traveltime distributions.

[9] 2. Transport and mixing processes considered include
local dispersion and kinetic mass transfer in heterogeneous
media.

[10] 3. The model setup procedure allows applying non-
parametric methods of estimating traveltime distributions
which enables identifying non-traditional features of the
traveltime distributions, such as multiple peaks, which
would remain undiscovered when a parametric model of
the distribution was used.

[11] 4. We compare the performances of different trav-
eltime-based models in simulating reactive transport be-
cause flexibilities in combining mixing descriptions and
traveltime distributions may generate similar results for
conservative tracer data, but different results for reactive
systems. We restrict our analysis to problems with uniform
mixing parameters, that is, kinetic mass transfer and local
dispersivity are assumed uniform even though the velocity
field may be heterogeneous.

[12] The article is organized as follows: section 2 sum-
marizes the traveltime-based models mentioned above.
Section 3 recapitulates the governing equations of solute
transport undergoing kinetic mass transfer using spatial
coordinates and discusses the effects of various processes
on mixing in heterogeneous media. Section 4 presents the
traveltime-based descriptions of transport used in this study.
Section 5 outlines the approaches to estimate traveltime
distributions. Section 6 presents numerical test cases, in
which two-dimensional transport of a compound undergo-
ing kinetic mass transfer in a heterogeneous domain is used
to simulate the presumably true concentration distribution,
and the various traveltime-based models are subsequently
applied to analyze BTCs generated by the spatially explicit
model, and to simulate reactive transport of a kinetic dual
Michaelis-Menten problem. Finally, in section 7 we draw
conclusions.

2. Background

[13] The stochastic-convective representation is the sim-
plest approach for transport simulation using traveltime
distributions. Solutes are assumed to be advected through
discrete, non-interacting streamtubes [van der Zee and van
Riemsdijk, 1987; Shapiro and Cvetkovic, 1988; Simmons et
al., 1995]. Then, the BTC of a conservative compound
corresponding to a unit impulse injection is identical to the
probability density function (pdf) of traveltime. Advective-
reactive transport is simulated in the traveltime domain, and
predictions at particular observation planes are obtained by
weighting the concentration computed at each traveltime
with the probability density of that traveltime in the obser-
vation plane and integration over the entire range of
traveltimes [Simmons et al., 1995; Ginn et al., 1995; Cirpka
and Kitanidis, 2001]. The pdf of traveltime may be directly
taken from a conservative-tracer experiment or parameter-
ized by appropriate distribution functions.

[14] The advective-dispersion streamtube model of
Cirpka and Kitanidis [2000a] may be seen as an extension
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of the stochastic-convective approach. H&%Wﬁ?nog%%inal
dispersive mixing is accounted for. To distinguish between
dispersive mixing from solute spreading, point-like mea-
sured BTCs of conservative tracers are analyzed. Cirpka
[2002] demonstrated that effective dispersion coefficients
for point-like injection, derived from first-order stochastic
theory [Dentz et al., 2000; Fiori and Dagan, 2000] may
be used as mixing-related dispersion coefficients. The
approach has been successfully applied to bioreactive
transport by Janssen et al. [2006]. Ginn [2001] presented
a similar approach allowing longitudinal dispersion in
a single streamtube, which was applied to simulate an
intermediate-scale biodegradation experiment [Ginn et al.,
2001]. Unlike the advective-reactive transport in the
stochastic-convective framework, the approaches of Cirpka
and Kitanidis [2000b] and Ginn [2001] solve advective-
dispersive-reactive transport in each streamtube. In the
advective-dispersion streamtube model, the BTC of a con-
servative tracer observed in an observation plane cannot be
directly considered as the traveltime pdf because it reflects
both advection and dispersion. Instead, a corrected travel-
time pdf reflecting the impact of advection alone on the
BTC, denoted advective traveltime pdf, is used. Cirpka
and Kitanidis [2000b] assumed an inverse-Gaussian distri-
bution to describe the advective traveltime pdf, and
applied the method of temporal moments to approximate
it. Gaussian, lognormal and gamma distributions have
also been employed to characterize the traveltime pdf
[Simmons, 1982; Shapiro and Cvetkovic, 1990; Rubin and
Dagan, 1992; Simic and Destouni, 1999; Loaiciga, 2004,
Luo et al., 2006]. In addition, particle tracking schemes
have been applied to derive traveltime statistics [e.g.,
Bellin et al., 1994; Selroos and Cvetkovic, 1992; Selroos,
1995; Hassan et al., 2001].

[15] The stochastic-convective model with kinetic mass
transfer assumes advective-reactive transport in the mobile
phase interacting with an immobile phase by kinetic mass
transfer. This model is well suited to describe transport of
sorbing compounds and transport in mobile-immobile aqui-
fers. The traveltime pdf of a compound, subject to both
transport in the mobile phase and retention in the immobile
phase, can be expressed as a function of the traveltime pdf
resulting from transport only in the mobile phase, also
called as transition-time pdf [Cvetkovic and Haggerty,
2002], in the Laplace domain [Villermaux, 1987; Sardin et
al., 1991]. This concept has been applied to study anoma-
lous transport [Dentz and Berkowitz, 2003; Margolin et al.,
2003], to characterize breakthrough tailing [Cvetkovic and
Haggerty, 2002], to describe transport coupled to sorption/
desorption [Cvetkovic et al., 1998; Lawrence et al., 2002;
Dentz and Berkowitz, 2003], and to simulate geochemical
reactive transport [Rubin et al., 1997]. First-order, diffusive,
and multirate models, among others, are available to de-
scribe the mass exchange between the mobile and immobile
phases [e.g., Chen and Wagenet, 1995; Haggerty and
Gorelick, 1995, 1998]. In addition, the model has been
extended to include spatial variability of hydraulic conduc-
tivity and geochemical parameters [Cvetkovic and Dagan,
1994; Cvetkovic et al., 1998]. A restriction of the model is
that it assumes that all spatial parameters can be associated
with traveltimes, thus it requires correlations between trav-
eltime and reactive parameters. If reactive parameters and
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traveltimes cannot be mapped to each other, the entire joint
pdf of traveltime and reactive parameters must be sampled
to predict the concentration of a reactive compound at a
desired observation point. The stochastic-convective model
with mass transfer neglects local dispersion, but uses the
mass exchange between the mobile and immobile phase to
account for mixing resulting from both local dispersion and
kinetic mass transfer [Simic and Destouni, 1999]. Thus the
general procedure to build such a model is to first approx-
imate the advective traveltime pdf, and then to determine the
mass transfer model and parameters [Rubin and Ezzedine,
1997; Bellin and Rubin, 2004]. Similar to the advective-
dispersive streamtube model, local BTCs need to be mea-
sured to estimate the advective traveltime pdf. However,
while in the advective-dispersive streamtube model the
local BTCs are used to estimate apparent local mixing
parameters, the stochastic-convective model with mass
transfer uses the local information to directly parameterize
the advective traveltime pdf [Rubin and Ezzedine, 1997,
Woodbury and Rubin, 2000].

[16] The traveltime-based models discussed above are
convenient to simulate BTCs measured at certain observa-
tion points and control planes where tracer concentration
BTCs are measured. In order to make predictions at points
where tracer measurements are not available, spatial distri-
butions of traveltimes must be estimated, which may be
attained by the streamline-method of Crane and Blunt
[1999], among others. The streamline method also trans-
forms multidimensional spatial coordinates to one-dimen-
sional traveltime coordinates. However, in contrast to the
traveltime methods discussed above, the streamline method
aims to simulate the actual spatial distribution of concen-
tration and thus requires determining the distribution of
streamlines and computing the traveltime distribution along
each of them. Obi and Blunt [2004] also extended the
streamline-method to model diffusion and dispersion in
solute transport problems using an operator splitting tech-
nique where dispersive transport is solved on an underlying
spatial grid. Spatial aquifer characterizations may be asso-
ciated with traveltimes to estimate spatial distributions of
traveltimes [e.g., Datta Gupta et al., 2002]. Interpolating
traveltime distributions between observation points requires
an excellent spatial coverage of the domain. This is equiv-
alent to calibrating a spatially explicit model. If main
features of the domain are not identified, the predicted
traveltime distributions will be biased. For the prediction
of BTCs of reactive compounds from those of conservative
components at a given observation point, by contrast, the
spatial coverage is not necessary.

3. Transport Model in Spatial Coordinates
3.1.

[17] We consider multidimensional advective-dispersive
transport of a compound undergoing first-order kinetic mass
transfer between the mobile and a single immobile domain
in an initially tracer-free heterogencous media [e.g., Coats
and Smith, 1964]:

Governing Equations

Qmaai;" +q-Ve, V-(0,DVey) =ale o) (1)
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=alen <) (2)

with the mobile and immobile porosities 6,, and 6,
respectively, the specific discharge vector q, the first-order
rate coefficient v of mass transfer between the mobile and
immobile domain, and the dispersion tensor D:

D_M(/{[

0,D = Tl ki) + (ki |lqll + 0,De) (3)
in which &k, and k, are the longitudinal and transverse
dispersivities of the porous medium, respectively, q ® q
denotes the matrix product of vector q with itself, I is the
identity matrix, and D, is the pore-diffusion coefficient of
the transported compound.We specify initial concentrations
of zero within the domain:

c(x,t=0) = cin(x,6=0) = 0. (4)

[18] A uniform tracer pulse is instantancously injected
into the domain over the inflow boundary I';,:

Mmip

0 6(t)n-vonTy, (5)

n-(ve DVe)=

where m;, is the mass of the injected solute, and Q is the
total discharge crossing the inflow boundary I';,. At all
other parts of the boundary, denoted I'\I';,, the dispersive
flux normal the boundary is zero:

n- (DVe) =0 on I\, (6)
Laplace transformation of equations (1) and (2) yields:

Hmsém +q- VZ'm V- (emDvém) = Oé(E‘,' EM) (7)

9,‘5‘6’,‘ = Of((i‘m E,) (8)

in which s is the complex coordinate in the Laplace domain,
and quantities with a tilde are Laplace transforms of the
corresponding time functions. Rearranging equation (8)
yields:

G- ¢ 9)

= C,
Taas + 1 "

in which 7, is the characteristic time of sorption, defined
by:

b:

Tad = —
«

(10)

Substituting equation (9) into equation (7) and rearranging
terms gives [e.g., Sardin et al., 1991]:

qQ-Vén V- (0,DVE,) = (M+1)s0,c (11)

4 of 16



W09407

with the memory function M:

- R
7TadS+1

(12)

and the capacity term k:

0:

0, (13)

K =

[19] For other linear kinetic mass transfer models, such as
that based on diffusion into spheres, the memory function
differs from equation (12), whereas equation (11) is identi-
cal [e.g., Sardin et al., 1991].

3.2. Effects of Processes Considered

[20] Hydraulic heterogeneity of the formation leads to a
spatially varying specific-discharge field q(x) and thus to
nonuniform advection. As a result, a solute cloud introduced
into the domain becomes increasingly irregular in shape.
The parts of the plume that are in high-velocity regions over
a certain period of time are sheared off from the parts in
low-velocity regions. As a consequence, the plume bound-
ary, exhibiting sharp concentration gradients, increases in
size. Classical stochastic subsurface theory has analyzed the
spatial moments of extended plumes and matched them with
macrodispersion equations, which are Fickian in the large-
time limit (see the textbooks of Dagan [1989], Gelhar
[1993], and Rubin [2003]). The amount of spreading expe-
rienced by a plume undergoing strictly advective transport
in a heterogeneous domain depends on the size of the plume
[e.g., Kitanidis, 1988]. At the limit of point-like injection,
no spreading would occur at all, that is, the plume would
remain a Dirac pulse [e.g., Dentz et al., 2000]. In such a
situation, however, the exact travel distance passed by the
point-like plume would depend on the exact starting loca-
tion, and the uncertainty of locating the plume position
could be expressed by macrodispersion expressions [e.g.,
Fiori and Dagan, 2000].

[21] If we consider two adjacent extended solute plumes
undergoing advection in a heterogeneous formation, the
spatially variable velocity field would make the interface
between the two plumes increasingly irregular, and its
surface area would increase. The two plumes, however,
would not mix. That is, although the macroscopic descrip-
tion of solute transport by macrodispersion may be ade-
quate, the unresolved variations of the concentration
distributions would result in strict separation of the plumes.
This has serious implications for upscaling of transport
when compounds are considered that react with each other
[Kapoor et al., 1997].

[22] Local longitudinal dispersion smears the concentra-
tion distribution along individual streamlines. If we consider
two solute clouds introduced into the domain one after the
other, they start to overlap at the interface. Overall, how-
ever, the effect of local longitudinal dispersion on macro-
scopic transport in heterogeneous domains is of minor
importance. Local transverse dispersion, by contrast, sig-
nificantly contributes to solute mixing in heterogeneous
formations. The new interfacial area, created by heteroge-
neity, is mainly aligned with the direction of flow, facilitat-
ing enhanced transverse exchange. As visual example,
transverse dispersion transfers solute mass from the tips of
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advancing plume fringes to the surrounding,'z%’?goqﬁ%g 1free,
region [e.g., Janssen et al., 2006, Figure 1]. In the replace-
ment setup mentioned above, this may lead to macroscopi-
cally longitudinal mixing of the two solute clouds, which is
stronger than the mixing caused by local longitudinal
dispersion, although the local transverse dispersivities are
typically assumed to be about an order of magnitude smaller
than the longitudinal counterparts.

[23] In the analysis of point-like observations of solute
breakthrough, longitudinal dispersion does not alter the
mean breakthrough time at any location, whereas transverse
dispersion balances differences of mean breakthrough time
between adjacent streamtubes in heterogencous formations.
Both processes lead to wider local BTCs. Thus a particular
set of point-like measured BTCs within an observation
plane may be interpreted as caused by transport with
transverse dispersion in a highly variable velocity field or
by transport with enhanced longitudinal dispersion rather
than transverse exchange, but in a less variable velocity
field. This ambiguity is used in the advective-dispersive
streamtube approach [Cirpka and Kitanidis, 2000a, 2000b;
Cirpka, 2002; Janssen et al., 20006].

[24] Like local longitudinal dispersion, kinetic mass
transfer leads to mixing along individual streamlines. In
fact, kinetic mass transfer models have been used as an
alternative parameterization of longitudinal dispersion [e.g.,
Brusseau, 1992]. The two-domain model, listed above, can
lead to BTCs that are similar to those obtained by one-
dimensional advective-dispersive transport in cases where
the characteristic time 7,; of sorption is considerably
smaller than the mean breakthrough time. Large values of
Tqq lead to strong tailing. A concentration spike may occur
at the advective traveltime when local dispersion is small
and the characteristic time 7, of sorption is large. In this
regime, the development of two peaks is possible [Quinodoz
and Valocchi, 1993; Michalak and Kitanidis, 2000]. Kinetic
mass transfer can be an efficient longitudinal mixing mech-
anism. It contributes to transverse mixing only in case of
transient flow [Cirpka, 2005]. In the replacement setup
mentioned above, remnants of the receding solution still
exists in the immobile domain at times when the invading
solution is already in the mobile domain.

4. Streamline Representation
4.1.

[25] In the following approximations, transverse disper-
sion is not accounted for explicitly. Conceptually, transport
is restricted to the longitudinal direction, that is, along
independent streamlines. In this framework, the expected
concentration obtained in an extended observation plane is
computed by integrating the solute flux of all streamlines
crossing the observation plane (see below). The effect of
local transverse dispersion on longitudinal transport must be
accounted for by modifying the remaining coefficients (i.e.,
decrease of variability in ¢, increase of either D, or x and
Taq» OF @ combination of those modifications). The transport
equation along an individual streamline is now:

Transport Along Individual Streamlines

ol

dey, de, 0
2 gy 2 (g, —ale; cn) (14
0 o + q(xr) ox, O (49 ¢ sz) alei cn)  (14)
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Table 1. Characteristics of Simplified Streamline Transport Models
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Memory Inverse Peclet Solution in
Model Function Number Laplace Domain Solution in Time Domain
Advective-dispersive M 0 >0 Cm  eXp %3 o Numerical inverse Laplace
mn 14++/1447es .
streamtube approach transformation
Stochastic-convective transport with M(s) / 0 e 0 e exp( s(1+M)7)
mass transfer
Stochastic-convective transport M 0 s 0 ¢n exp( sT) cy O T

without mass transfer

in which x, is the streamline coordinate, and D, is the
effective longitudinal dispersion coefficient.

[26] We may change from the longitudinal spatial coor-
dinate x, to advective traveltime 7:

/x Hmdx/;
T =
o q(xe)

If we also approximate that the effective dispersion
coefficient D, is uniform, we arrive at:

(15)

den
ot

e

or

e K

-
or?

(16)

in which ¢ is the inverse Peclet number:

qx¢

£ =

(17)

[27] It should be worth noting that stochastic transport
theory clearly results in effective dispersion coefficients
increasing with travel distance until an asymptotic value is
reached at late times for mean uniform flow in an infinite
domain [e.g., Dentz et al., 2000], whereas equation (16) is
based on uniform longitudinal dispersion. Thus the inverse
Peclet number ¢ used in this equation is an apparent
variable, expressing how an observed point-related BTC
resulting from multidimensional transport in a heteroge-
neous domain can be described as if caused by one-
dimensional transport with uniform coefficients [e.g.,
Cirpka and Kitanidis, 2000a]. Obviously, € determined for
a certain travel distance must not be applied to other travel
distances.

[28] Laplace transformation of equation (16) and consid-
eration of equation (9) yields:

dc,,
dr

2~
Td Cm
dr?

= (M + 1)sé, (18)

which is a one-dimensional steady-state transport equation
with first-order source/sink term. Considering a unit-pulse
input of ¢,,,(x = 0, 1) = §(¢) as boundary condition in the time
domain, the Laplace-domain solution becomes [e.g., Sardin
et al., 1991]:

Cn = exp(

[290] To obtain the time domain BTC c,(7, ) of
an individual streamline with advective traveltime T,

25(1 + M) T) (19)

1+ /1 +4res(l + M)

equation (19) needs to be transformed back into the time
domain, which is done most easily by numerical methods.

4.2. Ensemble of Streamlines

[30] We now consider the BTC obtained at an extended
observation plane. We denote this BTC as an integrated one,
in contrast to local ones that would be observed at idealized
points. The integrated BTC is the weighted average con-
centration of all streamlines crossing the observation plane,
or ending in the well. In the formulation given above, the
only difference between the various streamlines connecting
the injection and observation area lies in the advective
traveltime 7. All other transport parameters are assumed
to be identical. Then, the weight that is given to the BTC
with a particular advective traveltime 7 is identical to the
probability density of the traveltime, which equals the
volumetric fraction of water with advective traveltime 7 in
the mixture of contributions with various values of 7. The
expected concentration C(L, f) at an observation time ¢ is
given by integrating the weighted concentrations of all
streamtubes over the traveltime:

C(L,t)= /000 em (T, t)p(T)dT (20)

where p(7) is the traveltime pdf. C aims to represent the
flux-integrated BTC.

4.3. Simplified Streamline Transport

[31] The model is composed of equations (19) and (20)
can be conveniently simplified to the models summarized in
Table 1. For the advective-dispersive streamtube approach
in which only a mobile domain is considered, spreading of
local BTCs is assigned to apparent longitudinal dispersion
exclusively. This model cannot reproduce local BTCs with
strong tailing. For the stochastic-convective model, no
longitudinal dispersion is considered. When it is combined
with a two-domain model, the effects of transverse mixing
on local BTCs is attributed to mobile-immobile exchange.
Thus direct measurements of x and 7,, at the local scale,
e.g., by core studies, cannot be applied to macroscopic
transport. Also, BTCs computed for individual streamlines
¢u(T, 1) exhibit a distinct spike at ¢ = 7 if 7,4, > 7. Such
spikes may not be observed in measurements. When kinetic
mass transfer is also neglected, C is interpreted as proba-
bility density function of advective traveltimes p(7). The
latter model does not allow for any mixing.

4.4. Parameters Describing Local Mixing

[32] For the mixing models based on traveltimes pro-
posed in this study, we have two groups of parameters to
be estimated: those describing mixing processes, namely
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Table 2. Mixing Parameters as a Function of Temporal Moments of Local Breakthrough Curves
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Apparent Inverse
Peclet Number, (¢)

Model

Apparent Characteristic

Apparent Capacity, (x) Timescale, (7,4

Advective-dispersive streamtube approach ) <%
Stochastic-convective transport with mass transfer 0 '
Advective-dispersive streamtube with mass transfer () <

—~

momy,
me

0 2 0
< oM 1mae
r <h> <2mlm3(»73m§‘> <Tad> <3 mz‘>
KTqd Mo K ¢ T
K+1 m1> ad

kinetic mass transfer, x and 7, and dispersive mixing, &;
and the traveltime distribution p(7). The spread and tailing
of local BTCs are considered to primarily result from the
mixing processes, while the integrated BTC is influenced by
both mixing processes and spreading caused by heteroge-
neous advection, which is represented here by p(7). Thus
we suggest the following procedure for parameter estima-
tion: (1) estimating the mixing parameters from core sam-
ples or local BTCs; and (2) determining the traveltime
distribution from the integrated BTC and the estimated
mixing parameters. With respect to different traveltime-
based models, different mixing parameters and traveltime
distributions should be applied. The mixing parameters can
be expressed as functions of the temporal moments of local
BTCs.

[33] Raw temporal moments of concentration BTCs are
defined by:

my(x) = ./O.OO e (x, 1)dt (21)

and central moments by:

00 k
e (x) = / (r ﬂ) (X, £)dt (22)
0 mo
which can be computed from raw moments by:
m m m 2
my _m (;) (23)
mo moy mo
m m nmom m 3
Mo T 32y a(M) 4)
my Mo (mo) m

[34] Analytical expressions for temporal moments as
functions of the mixing parameters are given by Kreft and
Zuber [1978], Valocchi [1989], Cunningham and Roberts
[1998], among others. Table 2 summarizes the equations to
evaluate the mixing parameters for the traveltime-based
models. Angle brackets denote mean values of expressions
evaluated from moments of local BTCs. For the advective-
dispersive streamtube approach with mass transfer, one may
describe the mixing caused by transverse dispersion either
by longitudinal dispersion or by kinetic mass transfer. Here
we assume the correct description of mixing caused by
kinetic mass transfer, which may be obtained by core-
sample experiments, and the effect of transverse mixing
across streamlines are parameterized by longitudinal disper-
sion. As an alternative, one can surely assume apparent
mass transfer parameters and true local longitudinal disper-

sion. For small local dispersion coefficients, the latter will
be similar to the case in which dispersion is completely
neglected, i.e., the stochastic-convective transport model
with mass transfer. Estimating both apparent dispersion
and mass transfer parameters from local BTCs will require
even higher-order moments which are highly unreliable in
practice. Note that the three models represent three different
characterizations of mixing although all are based on
temporal moments of local BTCs: the advective-dispersive
streamtube approach describes mixing completely by lon-
gitudinal dispersion; the stochastic-convective transport
model with mass transfer by kinetic mass transfer; and the
final one can be considered as a combination of the first
two.

5. Inference of Advective Travel-Time
Distribution

[35] The critical point for designing a traveltime-based
model is to estimate the traveltime distribution. As already
mentioned, Cirpka and Kitanidis [2000b] assumed an
inverse-Gaussian distribution to describe the advective
traveltime pdf p(7), and applied the method of temporal
moments to approximate it. A major drawback of evaluating
the parameters of a parametric function for p(7) is that the
shape of p(7) is predefined. For instance, the best distribu-
tion may exhibit multiple peaks, but the parametric model
may be unimodal. In that case it would by construction be
impossible to obtain a multimodal distribution. Such limi-
tations can be overcome when we allow p(7) to adapt freely
to the needs of the problem. We do this by estimating a set
p(7;) of probability densities of discrete advective travel-
times 7; from the measured integrated BTC C(L, f) using
minimal prior information. The approach is a modification
of that of Cirpka et al. [2007], derived for deconvolution of
time series.

[36] Discretizing time ¢ and advective traveltime 7 in
equation (20) yields:

C(L,t;) ~ Zcm (Tj, Z,-)p(Tj) AT (25)
Jj o
C=Xp (26)
with
X = Arcy, (7,-, ti) (27)

in which ¢,,(7;, t;), and thus X, depends on the transport and
mass transfer parameters ¢, «, and 7,4, which are assumed
to be uniform and identical along all streamlines.
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[37] For regularization, we assume that p(7) is a second-
order intrinsic autocorrelated time function with multi-
Gaussian prior probability density function and a linear
variogram:

p(r)=B+p(1) (28)
Ep'(1)] = 0vr (29)
ERGGah) PR =m=0  (0)

in which 3 is the (unknown) mean value of p(7), p'(7) is the
deviation from the mean, (/) is the semi-variogram, and 6
is the slope of the linear variogram function.Then, the
vector p of discrete values of p(7) has the following prior
statistics:

(1)

Ep ®pl=a Ty (32)
in which u is a vector of unit entries, I'y, is the
semivariogram matrix, and « is a constant.

[38] We assume that the likelihood of the vector C of
measured concentration values follows a Gaussian distribu-
tion, and that the error of the individual measurements is
uncorrelated, resulting in a quadratic expression of the log

likelihood L(C|p’, B):

(C_X(p'+up))-(C

2
Jep

X(p' +up))

L(Clp', 0) = (33)

in which ogp is variance of the measurements expressing
epistemic error. The epistemic error includes the error of the
measurement procedure and the error resulting from apply-
ing a potentially wrong model.

[39] In order to infer the parameters p’ and 3, we use
Bayes’ theorem, yielding for the posterior log likelihood of
p’ and 3 given C:

L(p', BIC) = L(Clp/, B) + L(p,B) L(C) =
_ (€ X(p'+ub) (C X(p'+ub) oy
- o2 p PPP

-+ const.
(34)

[40] In our estimation we minimize L(p’, 3|C), which
results in a smooth distribution of p’. Since p(7) is a
probability density, it must not become negative. Also, the
integral of p(7) in the bounds of 7 = 0 to the maximum
advective traveltime 7., considered must not become
larger than unity. These two conditions lead to the following
constraints:

p=p +ui>0 (35)
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p-ulAr =p uAT+n,AT3< 1 (36)

[41] Equation (35) is an inequality constraint. Only when
a certain element of p becomes negative in the estimation
procedure, the constraint has to be activated. We may
express this by:

H(p' +uB) =0 (37)
in which H is a n,, X n, selection matrix with »n,, being the
number of active constraints:

] Lif p; is affected by the ¢  th constraint (38)
Y1 0 otherwise

[42] Likewise, equation (36) has to be activated when
p - uA7 becomes larger than unity without the con-
straint. Accounting for the constraints can be achieved
by the method of Lagrange multipliers [e.g., Vogel,
2002, Chapter 9]. Then, the constrained minimization of
L(p’, B|C) consists of solving the following system of linear
equations:

1

1
—X'X Ty —X'Xu H' Aru ,
Uep Gep P
1 1
— u’X7X — u'X'Xu ! AT h
Uep O'gp v
H u, 0 0 "
Aru” n; AT 0 0
1
—X'c
oz,
1
= > UTXTC (39)
o,
0

in which v is the n,, X 1 vector of Lagrange multipliers, and
u, is a n, x 1 vector of unit entries. Activation and
deactivation of the constraints depend on the behavior of
the solution. The following rules apply for the non-negativ-
ity constraints:

[43] p; <0 — add constraint for element j

[44] v; < 0 — keep constraint i

[45] v; > 0 — remove constraint jand for the integral
constraint:

n:
AT Z pi > 1 — activate the integral constraint (40)
i1

1 > 0 — keep the integral constraint;

(41)

1t < 0 — remove the integral constraint (42)
in which removing the integral constraints consists of
removing the last row and column in the left-hand side
matrix, the variable i, and the last element of the right-hand
side vector in equation (39).
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[46] The epistemic error, assumed identical for all
measurements, can be estimated by enforcing that the
sum of squared residuals, weighted by their variance
gﬁp, meets its expected value (see study by Press et al.
[1992], equation 15.1.6)):

» _ (€ X(p'+upf)-(C X(p'+up))

g =
K4 ng nr+n,+mn, 1

(43)

in which n, — n, + n, + n, — 1 corresponds to the degrees
of freedom in estimating p from C, subject to n,, active non-
negativity constraints and 7, integral constraints. This
approach is well accepted in optimization of overdetermined
problems.

[47] The estimation of p has to be repeated until the
Lagrange multipliers don’t differ any more from one itera-
tion to the next. In this case, all necessary constraints have
been identified. In each iteration, the epistemic error o7, is
evaluated after updating p.

[48] Cirpka et al. [2007] also demonstrated how the slope
0 of the variogram can be estimated from the data. Such
analysis, however, is beyond the scope of the present study.

6. Reactive Transport

[49] In the previous sections, we have only considered
transport of a conservative tracer. Here we extend the
analysis to multicomponent reactive transport coupled to
mobile-immobile mass transfer. Denoting the mobile- and
immobile-phase concentrations of compound j by A and ¥
respectively, the reactive transport equation for that com-
pound reads in spatial coordinates:

o) ) . ; . .
Lo Vel . 0 = (R (i)
O ot +q-Ve) V <9mDch ) a(c, c ) +r)
(44)
acY) o .
i B 0N W ()
0; T a(cm ¢ > +7 (45)

in which 7 and /¥ are reaction rates in the mobile and
immobile phases depending on the concentrations of all
compounds in the particular phase at a given time and
location.

[50] In the traveltime domain, equation (44) is replaced
by the reactive analogue to equation (16):

8c%)
ot

acY)

320%) K
or -

()
’ 87'2 Tad (Ci

whereas the governing equation for the concentration in the
immobile phase, equation (45), is not altered. In addition to
the assumptions made for formulating conservative-tracer
transport in traveltime coordinates, it must be permissible to
map reaction rates from the spatial domain to the traveltime
domain, i.e., "Y(x, 1) = *9(r(x), ) and rP(x, 1) = *(7(x), 1).
The latter condition is met in most self-organizing reactive
systems, where reaction rates depend on concentration but
not on material properties that vary independent off the
reaction in space [e.g., Cirpka and Kitanidis, 2001; Janssen
et al., 2006].

cfj?) +9 (46)
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[51] In general, solving equations (45) Ea?lv&a%)gfgfqor a
particular set of mixing-related coefficients, ¢, x, and 7,4,
applying a particular reaction model, cannot be simplified by
transformation into the Laplace domain, as done for conser-
vative-tracer transport. That is, equations (45) and (46) must
be solved numerically using standard discretization method
in time and traveltime.

[52] The flux-averaged concentration CY(L, ¢) of reactive
i in the outflow is computed from the concen-

compound ]
trations ¢")(r, #) of the reactive compound depending on

J
m
time and traveltime according to:

c¥ (L,t) = /0°° cg) (1, 0)p(T)dT (47)

which is equivalent to equation (20) in conservative-tracer
transport. CY(L, 7) depends on reactive parameters, the
mixing-related coefficients, ¢, x, and 7, and on the
advective traveltime distribution p(7) in the outflow. In
the transfer from conservative to reactive transport, we
estimate the mixing-related coefficients from local BTCs of
the conservative tracer and the traveltime distribution p(7)
from the integrated BTC of the conservative tracer subject to
the particular set of mixing-related coefficients. The reactive
parameters, determining chemical transformation rates, must
be identified by independent studies, e.g., in the lab.

7. Two-Dimensional Test Cases
7.1. Numerical Methods

[53] We consider a two-dimensional test case representing
transport in a periodic heterogeneous aquifer in which mean
flow is in direction x;. The length and width of the domain
are 10m and 5m, respectively. We consider a single reali-
zation of log hydraulic conductivity following an anisotrop-
ic, non-separable exponential covariance model. The
geometric mean of hydraulic conductivity and variance of
the log conductivity are 1 x 10 *m/s and 2, respectively.
The integral scale is 0.8m in the longitudinal and 0.1 in the
transverse direction. All parameters are listed in Table 3.
The distribution of log conductivities is generated using the
spectral method of Dykaar and Kitanidis [1992] on a
rectangular 1000 x 500 cell grid (Figure 1a). The steady-
state flow field is solved for a mean hydraulic gradient of
0.01 along x;. A streamline-oriented grid for transport with
grid resolution identical to that of the rectangular grid is
generated using the streamline method of Cirpka et al.
[1999¢] (flow net shown in Figure 1b). The flow rate in
each streamtube is identical. The dispersivities are 0.01m
and 0.001m in the longitudinal and transverse direction,
respectively. Kinetic mass transfer is described by a first-
order mass transfer model with a constant mass transfer
coefficient of 3 x 10 /s and a uniform porosity of 0.2 for
both the mobile and immobile regions. The numerical
schemes for solving the transport problem have been
presented elsewhere [Cirpka et al., 1999a].

[s4] Figure 2 shows the local and integrated BTCs at the
outflow boundary for a conservative tracer with a Dirac
delta input throughout the inflow boundary. The local BTCs
are sampled from individual streamtubes, and the integrated
BTC is the flux-averaged concentration of all streamtubes.
Mean temporal moments of the local BTCs are listed in
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Table 3. Parameters of the Two Dimensional Test Case

Parameter Symbol Values
Dimension of domain Ly x L, 10m x 5m
Discretization Ax; X Ax, 0.01m x 0.01m
Covariance model exponential
Correlation lengths Al X A 0.8m x 0.1m
Variance of log conductivity O K 2
Geometric mean of conductivity K, 1 x 10 * m/s
Mean hydraulic gradient J 0.01
Mobile porosity 0.2
Immobile porosity 0.2
Rate coefficient of mass transfer 3% 10 7Is

Dispersivities
Pore diffusion coefficient
Derived parameters of mass transfer

Capacity term

0,

6[

a

Ky x k
D

K

0.01m x 0.001m

1 x 10 °m?/s

1

Characteristic time of mass transfer Tad 6.67 x 10°s
Moments of local and integrated BTCs in the outflow

Mean local first moment (m™) 232 x 10%
Mean second raw moment (my™) 1.09 x 10"
Mean local second central moment (mac™) 5.47 x 10'%?
Mean local third central moment (ms.™) 5.83 x 10'%*

Table 3. The concentration peaks of the local BTCs spread
out as a result of the heterogeneous conductivity field, while
the peak of the integrated BTC appears at the time at which
the majority of local breakthrough peaks. Long tails are
observed at local BTCs because of the kinetic mass transfer.
The long tail of the integrated BTC may result from both
kinetic mass transfer and distributed traveltimes caused by
heterogeneous advection.

7.2. Advective Travel-Time Distributions

[s5] For the stochastic-convective model, the integrated
BTC is directly considered as the advective traveltime

log, 0(K} [Kin m/s]
= -2

4
E 3 K
=2 4
1B -5
0 -6

5g

y [m]

o = N W b

Figure 1. Two-dimensional heterogeneous hydraulic con-
ductivity field used in the example calculation and resulting
flow net.
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Figure 2. Integrated and local BTCs of a conservative

tracer at the outflow boundary.

distribution, implying zero local mixing. For other travel-
time-based models, Table 4 lists the mixing parameters
estimated by the temporal moments of the local BTCs.
The apparent mixing parameters are evaluated using the
mean moments rather than the moments of mean concen-
trations, consistent to the approach for evaluating effective
dispersion coefficients in heterogeneous media [Cirpka and
Kitanidis, 2000b; Dentz et al., 2000; Cirpka, 2002].

[s6] Figure 3 shows the forward simulation results of the
outflow BTCs for three cases, including (1) pure advection;
(2) advection and local dispersion; and (3) advection, local
dispersion, and mass transfer. It demonstrates that the pure
advective traveltime distribution exhibits multimodal be-
havior, which is smoothed by dispersion and mass transfer.
Thus, when the mixing mechanisms are separated from the
integrated BTC, one may expect a multimodal advective
traveltime distribution.

[57] Figure 4 shows the fitted advective traveltime dis-
tributions by the nonparametric method presented above.
For the advective-dispersive streamtube approach, a multi-
modal traveltime pdf is obtained with early peaks to
characterize the peak of the integrated BTC and late peaks
to characterize the breakthrough tail (Figure 3a). For the
stochastic-convective model with mass transfer, spiky local
BTCs are calculated because local dispersion is neglected,
which may lead to a very spiky advective traveltime
distribution. Here we adopt a small value of (¢) to avoid
this computational shortcoming (Figure 3b). A smoother
traveltime distribution is obtained because part of the

Table 4. Mixing Parameters as a Function of Temporal Moments
of Local Breakthrough Curves

Apparent
Apparent Apparent Characteristic
Inverse Peclet Capacity, Timescale,
Model Number, (¢) (k) (Taq)
Advective-dispersive 0.229 0 0
streamtube approach
Stochastic-convective 0.001 1.778 8.077 x 10%s
transport with
mass transfer
Advective-dispersive 0.0758 1 6.667 x 10°s

streamtube with
mass transfer
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Figure 3. Numerical results of traveltimes simulated by
the spatial transport model for the cases: advection alone,
advection and local dispersion, and advection, local
dispersion, and mass transfer.

dispersion effects are included in the traveltime distribution.
Figure 3¢ shows the advective traveltime distribution for the
advective-dispersive streamtube model with mass transfer,
which is multimodal with earlier peaks than Figure 3a
because the breakthrough tail is described by mass transfer.
Because the model predicts fairly smooth local BTCs, the
traveltime distribution does not need to be smooth in order
to meet the integrated BTC. The non-negativity constraint
leads to a multimodal traveltime pdf.

[s8] Figure 5 shows the fits of the integrated BTC.
Particularly, satisfactory fitting of the BTC tail is obtained
within the current timeframe of 100 days. For the advective-
dispersive streamtube approach, a later peak of the trav-
eltime pdf is needed to characterize the tailing of the
integrated BTC, while the other two models describe the
tailing by mass transfer. This result demonstrates that there
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is freedom for the combinations of mixing I%)aa\li{gﬂl%?&%'l and
traveltime pdf's to fit the BTC and describe the tailing.

7.3. Reactive Transport

[s9] The results of conservative tracers cannot be used to
justify which traveltime model is better in approximating
the transport process because all of them can reproduce the
integrated BTC. To examine the performance of traveltime-
based models, we consider reactive transport of compounds
undergoing a dual Michaelis-Menten problem with 1:1:1
stoichiometry:

A+B—C

The hydraulic conductivity field and the transport para-
meters are the same as those presented in the previous
section. We assume the domain is initially filled with
compound B at concentration one. A solution of compound
A with concentration one is continuously injected at the
inflow boundary. The transport parameters for all com-
pounds are identical. The reaction rates of the dual
Michaelis-Menten problem are given by:

(4) (B)
(A) — (B) — (C) — Cm Cm (48)
rt) =p = = r
" ' " MK+ Ky D

in which #?, 42, and S are the reaction rates of species

A, B, and C, respectively; DB and O are mobile-
phase concentrations; 7.x 1S the maximum reaction rate;
and K, and Kz are the half saturation coefficients. The
reaction rates in the immobile phase are considered zero.
Equation (48) is often employed to describe bioreactive
transport in the mobile phase under non-growth conditions.
The reaction parameters are chosen as: K, = Kz = 0.1 X ¢,
and 1. = 1/day, in which ¢ is the unit initial and injection
concentration, respectively.

[60] Figure 6 compares the simulation results of the
integrated BTCs of the reactive species A and B, and the
product C at the outflow boundary simulated by the 2-D
spatial transport model and the three traveltime-based mod-

0.5 : 0.18 : 0.9 :
(A) (B) (©)
0.16} 0.8
0.41 0.14} 0.7
0.12} 0.6}
—03 — —
IE. I.'E. 0.1f I."_J. 0.5
%o.zf L o.08 Toa4
0.06} 0.3}
0.1} | o004 0.2
0.02} 0.1
% 50 100 % 50 100 % 50 100
7[d] 7[d] T [d]

Figure 4. Advective traveltime pdfs estimated by the traveltime-based models. (a) Advective-dispersive
model. (b) Stochastic-convective model with mass transfer. (¢c) Advective-dispersive model with mass

transfer.
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Figure 5. Fit of the integrated BTC by traveltime-based models (solid lines) in comparison to spatially

explicit 2D simulation (circles). (a) Advective-dispersive model. (b) Stochastic-convective model with
mass transfer. (¢) Advective-dispersive model with mass transfer.

els based on the local and integrated conservative-tracer
BTCs analyzed above. The results of the stochastic-convec-
tive model are not plotted because it neglects all mixing
which would result in forming no product whatsoever. The

advective-dispersive streamtube model gives the worst
prediction of the BTC. Both the advective-dispersive model
with and without mass transfer underpredict the mass of the
reaction product. The best prediction is given by the

0 0
Time [d] Time [d] Time [d]

Figure 6. Integrated BTCs of the reactive species A

and B and the reaction product C at the outflow

boundary simulated by traveltime-based models using dual Michaelis-Menten kinetics. Symbols are
numerical results from 2D simulations, and lines are results predicted by the traveltime-based models.
(a) Advective-dispersive model. (b) Stochastic-convective model with mass transfer. (c) Advective-

dispersive model with mass transfer.
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Figure 7. Apparent parameters, expressing mixing by mass transfer processes, as determined from
temporal moments of the conservative tracer in the outflow. Crosses: estimated from local BTCs; plus:
mean of parameters estimated from local BTCs; circle: estimated from integrated BTC; asterisk: true local

values used in the 2D simulation.

stochastic-convective model with apparent mass transfer.
This is the only model in which kinetic mass transfer
coefficients are estimated from local BTCs; in all other
models these coefficients are either set to zero or to the true
local values. This implies, that approximating the effects of
mixing introduced by transverse dispersion in a traveltime-
based model is better done by using apparent kinetic mass
transfer rather than apparent longitudinal dispersion coef-
ficients. The result is different from that presented by
Cirpka and Kitanidis [2000b], in which mixing mechanisms
considered in theoretical analyses and numerical studies
include only longitudinal and transverse dispersion, but no
mass transfer between mobile and immobile water. The test
case in the study by Cirpka and Kitanidis [2000b] was
based on multidimensional advective-dispersive transport in
a mildly heterogeneous medium. In that case, the advective-
dispersive streamtube approach worked very well. The
present research shows that in the presence of such mass
transfer, the advective-dispersive streamtube method (in
which mixing is parameterized by intra-streamtube disper-
sion only) may not be appropriate for simulating mixing-
controlled reactive transport. If intraparticle diffusion has to
be added, or if the system is so heterogeneous that a
parameterization by assuming stagnant water zones becomes
appropriate, the advective-dispersive streamtube model is
too restrictive in the range of possible shapes of local BTCs.
Thus, to obtain more skewed local BTCs streamtube trans-
port beyond advection and dispersion is needed. In addition,
Cirpka and Kitanidis [2000b] used a parametric function in
the estimation of the traveltime distribution, implying that
the actual shape of the flux-averaged BTC is not fully
exploited. However, both studies share the same character-
istics, that is, the models with mixing parameters that are all
estimated from local BTCs give the best simulation results.
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7.4. Uncertainty Analysis

[61] The approach outlined above involves several steps
subject to uncertainty. Conceptual uncertainty arises from
the choice of parameterizing mixing. This has been dem-
onstrated in the previous section. Parametric uncertainty is
caused by (1) determining the mixing-related coefficients ¢,
k and 7,,; from local BTCs of a conservative tracer and
(2) evaluating the advective traveltime distribution p(7) for
given mixing coefficients. In the context of deconvolution,
Cirpka et al. [2007] addressed the latter uncertainty by
generating conditional realizations of traveltime distribu-
tions. Interestingly, the associated uncertainty bounds were
comparably narrow. We conjecture that in practical appli-
cations the most critical point with respect to parametric
uncertainty in our traveltime approaches lies in estimating
the mixing-related coefficients. This is so, because these
coefficients are estimated from a local breakthrough curves,
which typically are available only in small numbers. Thus,
if the few local BTCs available are not representative in
their mixing characteristics the entire prediction of reactive
transport integrated over the control plane is erroneous.

[62] In our numerical example, we have access to 500
local BTCs of a conservative tracer, and we have used
mixing-related coefficients averaged over all local BTCs in
the analyses above. Figure 7 shows the apparent mass
transfer parameters, s and 7,4, determined from the temporal
moments of all local BTCs using the stochastic-convective
model with mass transfer. Figure 7 also includes the
erroneous parameters that were determined from the inte-
grated BTC. The set of local values gives us the opportunity
of quantifying the uncertainty in predicting macroscopic
reactive transport caused by the choice of the local observa-
tion points, at which the mixing-related coefficients are
estimated from local BTCs of the conservative tracer.
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Figure 8. Statistical bounds of integrated BTCs of the reactive species A and B and the reaction
product C. Solid lines: mean BTCs; gray band: 16 to 84 percentiles; dotted lines: 95% confidence interval.

[63] For each pair of locally determined - and 7,4
values, we go through the procedure outlined above. That
is, we obtain 500 advective-traveltime distributions p(7),
each associated to a particular set of - and 7,4-values. For
each of these 500 parameter sets, we compute the integrated
BTCs of the reactive compounds in the outflow according
to equation (47). Finally, for each time ¢ we arrive at 500
different predictions of the reactive-species concentrations
Cy(), Cp(1), and C(f), averaged over the control plane.
This brute-force sampling procedure guarantees that the
uncertainty of reactive-species concentrations, caused by
choosing particular local observation points of the conser-
vative tracer, is adequately described by the full statistical
distributions of C4(#), Cp(f), and C(?). Figure 8 presents
metrics of these statistical distributions. The black lines are
the mean reactive-species BTCs predicted from the ensem-
ble of 500 parameter sets. The gray bands denote the 16 to
84 percentiles, which would correspond to + one standard
deviation, if the distributions were Gaussian, whereas the
dotted lines represent the 2.5 to 97.5 percentiles, covering
the 95% confidence interval. Figure 8 indicates that the
uncertainty introduced by choosing only a few local BTCs
of the conservative tracer for the assessment of mixing-
related parameters is not too big, at least not in the given
example. Of course, as indicated in Figure 7, a few outliers
of apparent mass transfer coefficients determined from local
conservative-tracer BTCs exist. However, these points are
outside the 95% confidence interval.

8. Conclusions

[64] The advantages of traveltime-based models for de-
scribing transport-controlled reactive mixing include (1) no

thorough characterizations of aquifer heterogeneities and
transport mechanisms are required; (2) computation efforts
are minimized by transforming three-dimensional problems
in spatial coordinates to one-dimensional problems in the
traveltime domain; (3) mixing and spreading may be
distinguished by transport models and advective traveltime
distributions; and (4) traveltime distributions may be con-
veniently updated by tracer tests for simulating long-term
groundwater remediation transport cases. Traveltime-based
reactive transport models are well suited to predict reactive
species concentrations at points where conservative tracer
BTCs are available, that is, traveltime distributions can be
conveniently evaluated. In order to make reactive transport
predictions at locations where conservative tracer concen-
trations are not available, either conservative tracer test data
should be collected at these locations or spatial data needs to
be incorporated to evaluate the spatial distribution of
traveltimes [e.g., Crane and Blunt, 1999; Cirpka and
Kitanidis, 2001].

[65] Two key issues are associated with traveltime-based
models. One is the description of mixing, and the other is
the estimation of traveltime distribution. Longitudinal dis-
persion and kinetic mass transfer can be incorporated into
traveltime-based models to characterize mixing. However,
unlike the spatial models in which parameters for dispersion
and kinetic mass transfer can be interpreted as the true
values, traveltime-based models use fictitious or apparent
parameters because (1) transverse dispersion cannot be
explicitly described and (2) traveltime is unidirectional,
whereas the actual traveling path is three-dimensional. A
determined traveltime distribution holds only for the mixing
description used in the determination procedure. In heter-
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ogenous fields, traveltime distributions are likely to be
multimodal curves with long tails. It may be challenging
to describe these curves by parametric distributions. Such
limitations can be overcome by nonparametric approaches
allowing traveltime distributions to adapt freely to the needs
of the problem.

[66] Both local and integrated BTCs are required to
establish a traveltime-based model. We propose to use the
local BTCs to estimate the mixing parameters, and then
apply the nonparametric approach to estimate the
corresponding traveltime distribution. However, conserva-
tive tracer BTCs only may not be sufficient to determine
which traveltime-based model is more appropriate for reac-
tive-transport simulations because the nonparametric ap-
proach allows good fitting of the integrated BTC for
variable mixing models, e.g., there is freedom for the
combinations of mixing parameters and traveltime pdf's to
fit conservative BTCs. The reactive-transport case con-
ducted in this research indicates that the mixing introduced
by local dispersion and mass transfer, which is neglected by
original traveltime-based models, are best described by the
apparent mean mass transfer, and may not be described as
well by apparent longitudinal dispersion.
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