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Abstract. The general microbial quality of drinking water is normally monitored by heterotrophic plate counts
(HPC). This method has been used for more than 100 years and is recommended in drinking water guidelines.
However, the HPC method is handicapped because it is time-consuming and restricted to culturable bacteria.
Recently, rapid and accurate detection methods have emerged, such as adenosine tri-phosphate (ATP) mea-
surements to assess microbial activity in drinking water, and flow cytometry (FCM) to determine the total
cell concentration (TCC). It is necessary and important for drinking water quality control to understand the
relationships among the conventional and new methods. In the current study, all three methods were applied
to 200 drinking water samples obtained from two local buildings connected to the same distribution system.
Samples were taken both on normal working days and weekends, and the correlations between the different mi-
crobiological parameters were determined. TCC in the samples ranged from 0.37–5.61×105 cells/ml, and two
clusters, the so-called high (HNA) and low (LNA) nucleic acid bacterial groups, were clearly distinguished.
The results showed that the rapid determination methods (i.e., FCM and ATP) correlated well (R2=0.69), but
only a weak correlation (R2=0.31) was observed between the rapid methods and conventional HPC data. With
respect to drinking water monitoring, both FCM and ATP measurements were confirmed to be useful and
complimentary parameters for rapid assessing of drinking water microbial quality.

1 Introduction

For more than 100 years, microbial characterization of drink-
ing water has relied on heterotrophic plate counts (HPC)
(Sartory, 2004). This method is used world-wide for mon-
itoring drinking water quality in the distribution network
and for assessing the efficacy of treatment steps (Allen et
al., 2004; Reasoner and Geldreich, 1985). In Switzer-
land the statutory limit of HPC bacteria has been set to
20 colony forming units per ml (CFU/ml) after treatment,
and to 300 CFU/ml within the distribution system (HyV,
2006; SLMB, 2000), which concurs with world-wide ac-
cepted guidelines (WHO, 2006). Despite the common us-
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age of HPC, it is reported that HPC concentrations can vary
widely in drinking water distribution networks (Allen et al.,
2004; Pepper et al., 2004). It has been discussed previously
that HPC results are influenced by various factors such as
cultivation media, incubation temperature and the selective
culturability of natural bacteria (Hammes et al., 2008; Sar-
tory, 2004). Moreover, the HPC method is time-consuming,
requiring usually 3–7 days before results are available. There
is thus a niche for the development of rapid, easy and accu-
rate methods to quantify bacteria in drinking water.

The development of fluorescent staining methods facili-
tated the accurate measurement of the total cell concentra-
tion (TCC) with epi-fluorescence microscopy, laser-scanning
microscopy and flow cytometry (Rinta-Kanto et al., 2004;
Hammes et al., 2008). The ability to enumerate the com-
plete bacterial cell concentration has revealed a huge dis-
crepancy between concentrations of cells detected with
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Figure 1. A 2-dimensional flow cytometry dot-plot of green fluorescence (520 nm) and sideward 

scattered light (SSC), distinguishing so-called high nucleic acid (HNA) and low nucleic acid 

(LNA) content bacteria.  
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Figure 1. A 2-dimensional flow cytometry dot-plot of green fluo-
rescence (520 nm) and sideward scattered light (SSC), distinguish-
ing so-called high nucleic acid (HNA) and low nucleic acid (LNA)
content bacteria.

conventional HPC and with TCC methods in aquatic environ-
ments (Hammes et al., 2008). TCC measurement with flow
cytometry has clear benefits: it is fast, highly reproducible
and it detects all bacteria irrespective of their culturability.
We have also previously demonstrated the value of this pa-
rameter when describing microbial events that occur during
drinking water treatment (Hammes et al., 2008). An alterna-
tive method gaining prominence is adenosine tri-phosphate
(ATP) measurements. It is a rapid and easy method for the
detection of viable bacteria in drinking water (Hammes et
al., 2008) and has previously been correlated to conventional
HPC data (Deininger and Lee, 2001; Delahaye et al., 2003).
However, ATP is not yet widely used in the drinking water
industry, due to a lack of knowledge on average ATP con-
centrations in natural bacteria. There is a need to understand
ATP measurements and to correlate ATP data to biomass.
For new methods to gain acceptance amongst practitioners,
it is essential to understand the relationship (if there is any)
among the various methods.

In this study, flow cytometric TCC measurements were
compared with total ATP measurements and HPC data on
tap water that does not contain disinfectant residuals. All
three methods were applied on a local drinking water distri-
bution system in two separate office buildings during a nor-
mal working day and a weekend day. Their correlations were
determined and evaluated.

2 Materials and methods

2.1 Sampling

Drinking water samples were collected from two buildings at
our research facility (Eawag, Dübendorf, Switzerland). Sam-
pling from both buildings took place on two separate days,
one working day (Wednesday) and one weekend day (Sun-
day) to observe the effect of regular and non-regular usage.
Samples were taken from 8 a.m. to 5 p.m. at one hour inter-
vals and at 8 a.m. on the following morning to account for
temporal changes during a day. Tap water from 10 sepa-
rate floors in both buildings was sampled directly into sterile
15 ml Falcon tubes without any prior water flushing. Sam-
ples were processed directly after sampling.

2.2 Flow cytometric total cell counts measurements

To measure the total cell concentration (TCC), 900 µl of the
water sample was stained with 9 µl of SYBR® Green I nu-
cleic acid stain (1:100 diluted in filtered DMSO; Invitro-
gen™, Oregon, USA) and incubated in the dark for 10 min
before measuring with a Partec CyFlow® Space flow cy-
tometer (Partec GmbH, Münster, Germany). Flow cyto-
metric measurements were performed as described previ-
ously (Hammes et al., 2008). The Partec CyFlow® Space is
equipped with a volumetric counting hardware with a mea-
sured quantification limit of <1000 cells/ml (Hammes et al.,
2008). TCC was also determined separately for two spe-
cific FCM clusters, namely the so-called low (LNA) and
high (HNA) nucleic acid content bacteria, as described by
Lebaron et al. (2001) and Gasol et al. (1999) (see also Fig. 1).

2.3 Total ATP concentration

Total ATP concentration was determined as described in
Berney et al. (2006) using the Promega Bac Titer-Glo™Mi-
crobial Cell Viability Assay (Promega Corporation, Madi-
son, WI, USA). All samples were measured in triplicate.
A standard curve with dilutions of a known rATP standard
(Promega Corporation) was completed before the experi-
ments and the total ATP concentration was calculated based
on the standard curve. Free ATP was measured in selected
samples by filtering the samples through 0.1 µm sterile fil-
ters (Millipore, USA). ATP-per-cell was calculated from to-
tal ATP measurements and flow cytometry measurements as
follows:

ATP-per-cell (g/cell) =
total ATP concentration (g/L)
cell concentration (cells/L)

(1)
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2.4 Heterotrophic plate counts (HPC)

HPC was performed according to the Swiss guidelines for
drinking water (SLMB, 2000). In short, PCA agar plates
(BBL Standard Methods Agar, MD, USA) were prepared
following instructions provided by the manufacturer. Serial
dilutions of the water samples were done in decimal steps in
sterile 0.9% NaCl solution. 100 µl of the sample were spread-
plated from two dilutions (100 and 10−1), each in triplicate,
to assess methodological variation. The plates were incu-
bated at 30◦C for 72 h. Colony forming units (CFU) were
counted with an automatic plate reader (aCOLyte, SYNBIO-
SIS, Cambridge, UK).

3 Results and discussion

3.1 Overview of the measurements with different
methods

Flow cytometric (FCM) measurements have been used effec-
tively before to characterize bacteria in drinking water (Hoe-
fel et al., 2003; Hammes et al., 2008). In our study, a to-
tal of 200 samples were collected and analyzed from two
buildings over four separate days. For all data below, the
range, average and standard deviation (n=200) are given. To-
tal cell concentrations (TCC) from the drinking water sam-
ples varied in the range of 0.37–5.61×105 cells/ml. The aver-
age TCC was 1.49 (±0.91)×105 cells/ml, which concurs with
previous data reported for Swiss drinking water (Hammes
et al., 2008). In general, if a tap was used frequently, TCC
numbers were low, but slight changes in bacterial concentra-
tions could still be detected. In all samples analyzed, two
specific bacterial clusters were observed on two-dimensional
FCM dot-plots, distinguished by size (as measured with side-
ward scattered (SSC) light) and green fluorescence intensity
(520 nm) (Fig. 1). These two clusters represent the so-called
low (LNA) and high (HNA) nucleic acid content bacteria,
which have been commonly observed in seawater and fresh-
water with flow cytometry (Gasol et al., 1999; Lebaron et al.,
2001). The concentrations of LNA and HNA bacteria in each
sample were also counted separately. HNA bacteria, which
previously have been related to microbial activity (Lebaron
et al., 2001), represented usually about 60% of the TCC (data
not shown) and throughout the study the HNA/LNA ratio re-
mained constant, irrespective of the tap location, sampling
time or TCC variation. The standard deviation on triplicate
FCM measurements was always below 5%, which is similar
to former studies and underlines the high reproducibility of
flow cytometric TCC measurements (Hammes et al., 2008;
Hammes and Egli, 2005).

An alternative method for the characterization of bacte-
ria in drinking water is adenosine tri-phosphate (ATP) mea-
surements (Deininger and Lee, 2001; Delahaye et al., 2003;
Hammes et al., 2008). This method is rapid and easy to per-
form and its instrumentation is rather affordable. The total

ATP concentration for all samples was in the range of 0.005–
0.094 nM ATP and the average ATP concentration was 0.023
(±0.017) nM ATP. Based on the TCC from flow cytometric
measurements, the average cellular ATP content was calcu-
lated (Eq. 1) and the results varied from 0.05–2.09×10−16 g
ATP/cell with an average of 6.87 (± 1.42)×10−17 g ATP/cell,
which is comparable to previously reported values for natu-
ral communities in drinking water (Frundzhyan and Ugarova,
2007; Hammes et al., 2008; Velten et al., 2007). The ad-
vantage of having an average ATP-per-cell value is that it
can be used for converting ATP data to bacterial concentra-
tions. However, it is noted that the value reported in this
study makes the broad assumption that all the cells detected
with FCM were alive and containing a similar ATP concen-
tration. Differences in species, physiological state and cell
size can all affect the ATP-per-cell concentrations. With re-
spect to reproducibility, the average standard deviation of all
the ATP data was 13%, which is close to deviation values in
other studies (Hammes et al., 2008; Velten et al., 2007). The
free ATP concentration was always below 5% in the selected
samples that were tested, and thus not considered an issue
in this case. However, free ATP can have a large impact on
ATP measurements, and should be considered when different
water samples are analysed (Hammes et al., 2008).

Conventional heterotrophic plate counts (HPC) results
were on average two orders of magnitude lower than the TCC
from flow cytometric measurements. No more than 8.6%
(average 1.6%) of the TCC were detected with HPC. The av-
erage concentration of HPC was 2.28±0.317×103 CFU/ml.
Heterotrophic bacteria usually form a fraction below 1% of
total cell counts (van der Kooij, 2003; Hammes et al., 2008).
Based on this value and referring to the Swiss guidelines of
300 CFU/ml for drinking water (HyV, 2006; SLMB, 2000),
the obtained values were about 10-times higher in this par-
ticular distribution system than expected. The finished water
from the treatment plant that supplies this system has a typ-
ical HPC concentration of <20 CFU/ml (unpublished data).
The reason for such an increase might be regrowth; both
planktonic and biofilm bacteria within the building’s distri-
bution system and also individual taps might affect the water
quality (Pepper et al., 2004; van der Kooij, 2003). The av-
erage standard deviation of 14% is reasonable, but consider-
ably higher compared to a constant error below 5% in flow
cytometric TCC measurements.

It should be considered that these measurements were all
done on water originating from the same treatment plant
and the same distribution network (with separation on build-
ing level), and therefore should not necessarily be seen as
representative of all water types and conditions. For ex-
ample, chlorinated water samples might contain dead cells
that are still intact (thus measured with TCC), but without
ATP. In addition, cell volume certainly has an influence on
cellular ATP content. Therefore, the combination of flow
cytometry with viability staining (Hoefel et al., 2003), as
well as FCM biomass/biovolume estimation (Felip et al.,
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Figure 2. Daily changes of total cell counts (TCC), colony forming units (CFU) and total 

adenosine tri-phosphate (ATP) concentration for one representative drinking water tap, sampled 

on a normal working day. Error bars indicate the standard deviation on triplicate measurements. 
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Figure 2. Daily changes of total cell counts (TCC), colony forming units (CFU) and total adenosine tri-phosphate (ATP) concentration for
one representative drinking water tap, sampled on a normal working day. Error bars indicate the standard deviation on triplicate measure-
ments.
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Figure 3. Correlation between total ATP concentrations and total cell concentrations of all 

samples (n = 200). All data points represent average values of triplicate measurements. 

Figure 3. Correlation between total ATP concentrations and total
cell concentrations of all samples (n=200). All data points represent
average values of triplicate measurements.

2007), can be considered as further alternatives to improve
these rapid methods (specifically in relation to ATP measure-
ments). Nonetheless, the advantage of sampling the same
distribution network on a large scale is that the methods can
be assessed without the influences of factors such as source
water or disinfectant residuals.

3.2 Data from one representative tap

The changes and relationships among all three parameters
from one representative tap of Building 1 during a normal
working day are shown in Fig. 2. A rapid decrease in TCC
and HPC along with the total ATP concentration was ob-

served. It is evident that all three methods rendered the high-
est values at 8 a.m., which is attributed to regrowth during
overnight stagnation in the tap. All values decreased until
10 a.m., linked to regular use of the taps before stabilizing
during the day and again increasing overnight. In this ex-
ample, the HPC did not increase as much overnight as the
other parameters. All three methods from this specific tap
showed a very similar pattern and significant correlations as
well. The best correlation was between the TCC and ATP
concentrations (R2=0.96; n=11), while correlations between
HPC and TCC (R2=0.72) and HPC and ATP (R2=0.56) were
also recorded. These results showed that both rapid methods
(TCC and ATP) can detect the similar pattern as the conven-
tional HPC method, but with the clear advantage of being
fast, accurate and reproducible. Additionally, we observed
that small changes in HPC data were also detected by flow
cytometry even though there were two orders of magnitude
difference in the actual values (Fig. 2). However, it should
be pointed out that Fig. 2 exemplifies an ideal course of data
points. Results from other floors had often more variations
in daily changes, and amongst the various parameters.

3.3 Overall correlations among the three different param-
eters

Despite of the above-mentioned differences between the dif-
ferent buildings, floors and sampling days, the overall TCC
and ATP data correlated very well with each other (R2=0.69)
and had a high statistical significance (p�0.001; n=200)
when all data were considered (Fig. 3). However, there is
also an apparent difference between the TCC and ATP mea-
surements. This may lead to a general question such as: why
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Table 1. Linear regression analysis of different measurement parameters. R2-values were calculated from different buildings, on different
days and all data summarized (n=200).

TCC vs. ATP TCC vs. HPC HPC vs. ATP HNA vs. ATP

Building 1 0.71 0.25 0.31 0.76
Building 2 0.63 0.45 0.29 0.56

Wednesday 0.66 0.34 0.17 0.63
Sunday 0.63 0.44 0.29 0.60

all data 0.69 0.36 0.31 0.67

would ATP correlate or not correlate with TCC? Most likely,
ATP would correlate well with TCC if most of the cells are
alive and contain similar amounts of ATP, expecting a cor-
relation coefficient close to 1. Evidently this is not the case
and can be explained with various reasons. The uncertainty
of ATP measurements (R2=0.69,1) towards TCC is proba-
bly not related to the error of either method, but occurs be-
cause different bacterial species and different viability states
of bacterial cells could influence individual cellular ATP con-
centrations. In fact, in a separate study we have shown that an
even better correlation is found between ATP and the fraction
of esterase-positive (CFDA-stained) cells in drinking water1.
Nevertheless, the combination of the TCC and ATP meth-
ods gives a complementary overall picture of the microbial
quality in the drinking water distribution system.

Furthermore, we have also observed a similar overall cor-
relation between HNA bacteria and ATP (R2=0.67) (Table 1).
It has been suggested that the HNA fraction gives a repre-
sentation of the active bacterial population in a water sam-
ple (Gasol et al., 1999; Lebaron et al., 2001). The fact that
the correlation with ATP has not improved when compared
to HNA (opposed to TCC), contradicts this opinion to some
extent, and suggests that a mere HNA/LNA flow cytometric
separation might be inadequate to interpret bacterial viability
and activity in a drinking water sample. In addition, the con-
sistent presence of LNA bacteria at high cell concentrations
(40% of TCC) in the drinking water distribution system, in-
dicates that this group of bacteria may also contribute to the
bacterial activity.

In comparison to the strong correlation between TCC
and ATP, correlation coefficients between HPC vs. ATP
(R2=0.31) and HPC vs. TCC (R2=0.36) were considerably
lower, also when the data were separated to track possible
distinctive changes day-wise and/or building-wise (Table 1).
The correlation between ATP and HPC (R2=0.31; Fig. 4) is
similar to that reported by Delahaye et al. (2003) even though
different cultivation methods were used in the latter study.
Both the studies of Delahaye et al. (2003) and Deininger
and Lee (2001) concluded that rapid ATP measurement is a

1Berney et al., unpublished data

 16

Heterotrophic plate counts (CFU/ml x 103)

0 2 4 6 8 10 12 14 16

T
ot

al
 A

T
P 

co
nc

en
tr

at
io

n 
(n

M
) 

0.00

0.02

0.04

0.06

0.08

0.10  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Correlation between total ATP concentrations heterotrophic plate counts (HPC) of all 

samples (n = 200). All data points represent average values of triplicate measurements. 

Figure 4. Correlation between total ATP concentrations het-
erotrophic plate counts (HPC) of all samples (n=200). All data
points represent average values of triplicate measurements.

valuable drinking water parameter, based on the correlation
thereof to conventional HPC data. Though our study comes
to the same conclusion about ATP measurements, the data
presented in Figs. 3 and 4 and Table 1 clearly suggest that
ATP correlates more accurately to TCC than to HPC. We be-
lieve that this is a direct result of the selective nature of the
HPC method, where only a small percentage of the viable
(and thus ATP-containing) bacteria in a water sample can
be cultivated on synthetic media under selective laboratory-
defined conditions (Hammes et al., 2008).

4 Conclusions

Rapid enumeration methods are crucial for drinking water
quality monitoring. Flow cytometry and total ATP measure-
ments are both sensitive and rapid methods that can be per-
formed easily without the handicap of a selective trait such
as culturability. In comparison, the enumeration of cultur-
able heterotrophic bacteria is obviously more time and labour
consuming. We have found that there is a strong correlation
between TCC and ATP data. Therefore, application of both

www.drink-water-eng-sci.net/1/1/2008/ Drink. Water Eng. Sci., 1, 1–6, 2008
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methods simultaneously forms a powerful combination of
rapid and accurate microbial characterization of drinking wa-
ter. It is clear that both methods, similar to HPC, are not di-
rect indicators for hygienic quality, but should rather be used
for the assessment of the general quality of drinking water
and biological stability of drinking water. Ongoing assess-
ments of different water types and distribution conditions,
in comparison with conventional HPC measurements, could
provide the data with which to challenge existing guidelines
and regulations.
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