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[1] Monitoring of salt tracer experiments by electrical resistivity tomography (ERT) has 
been shown to be a valuable tool for characterizing the hydraulics of an aquifer, but 
efficient approaches of determining the spatial hydraulic conductivity distribution from 
ERT data are still missing. Standard inversion ofERT data obtained during salt tracer tests 
may even lead to estimates of the concentration distribution that are in contradiction to 
flow and transport of conservative compounds in porous media. In order to avoid 
nonphysical behavior, we consider the governing equations of groundwater flow, solute 
transport, and geoelectrics as a coupled system. While the tracer passes through the part 
of the domain that is sensitive for a particular electrode configuration, the measured 
electrical potential differences are perturbed. We characterize these perturbations by their 
temporal moments and relate them to the temporal moments of concentration, which 
themselves depend on hydraulic conductivity. We present temporal moment-generating 
equations leading from the hydraulic conductivity field via heads and velocities to the 
temporal moments of concentration and electrical potential perturbations. The approach 
makes use of a linearized version of the Poisson equation. On the basis of this system of 
coupled steady state equations, we compute the sensitivity of electrical potential 
perturbations with respect to the log hydraulic conductivity distribution by the continuous 
adjoint state method for coupled systems. For demonstration, we simulate salt tracer 
experiments in a virtual quasi-two-dimensional sandbox, monitored by ERT. We show that 
the ratio of the first over the zeroth temporal moment of potential perturbation is less 
affected by the linearization of the Poisson equation than the zeroth and first moments 
themselves. Thus, it appears recommendable to use the ratio of first to zeroth moments 
also as data in inversion. We compare sensitivity patterns resulting from different electrode 
configurations. The methods of forward simulations and sensitivity calculations presented 
in this paper can be combined with any inverse kernel to develop a complete inverse 
model. Altogether, using temporal moments of potential perturbation appears promising 
for fu lly coupled hydrogeophysical inversion of ERT surveys during salt tracer tests. 
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1. Introduction 
[2] The estimation of hydraulic conductivity in heteroge-

neous aquifers is a remaining challenge of subsurface 
hydrology. The variability of hydraulic conductivity has a 
major impact on solute transport, so that assessing an 
effective mean value in a formation is insufficient. Various 
field methods exist for estimating hydraulic conductivity, 
most of which require the installation of monitoring wells 
(e.g., pumping tests, flowmeter tests and monitoring of 
tracer tests in wells). The costs of installing monitoring 
wells limit the number of observation points, often leading 
to an insufficient resolution [e.g., Li et al., 2007, 2008]. In 
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hydrogeophysics, nonintrusive geophysical methods are 
applied to hydrological problems [see Rubin and Hubbard, 
2005]. Standard geophysical surveys lead to the distribution 
of seismic, gravimetric, electric, magnetic or electromag-
netic properties in the subsurface. This enables reconstruct-
ing the subsurface structure, but does not provide much 
information regarding its hydraulic properties. Recently, 
Slater [2007] presented a review on the integration of 
geophysical and hydrological measurements in hydrogeo-
logical contexts. Rather than using geophysical exploration 
techniques for the identification of the subsurface structure, 
they may also be used to monitor hydraulic experiments 
(e.g., infiltration experiments [Dai(y et al., 1992], pumping 
tests [Sloan et al., 2007; Rizzo et al., 2004], and tracer tests 
[Hinley et al., 1996]), where the geophysical signal reflects 
the response to the hydraulic stress applied in the experiment. 

[3] A particularly promising technique is the monitoring 
of salt tracer experiments by electrical resistivity tomogra-
phy (ERT), with which the values of electrical conductivity 
and subsequently of concentration can be inferred [Hinley et 
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al., 1996, 2002; Slater et al., 2000; Kemna et al., 2002;
Vanderborght et al., 2005; Singha and Gorelick, 2005].
Further processing the concentration distribution has been
suggested in order to identify the spatial distribution of
hydraulic properties [e.g., Kemna et al., 2002; Vanderborght
et al., 2005]. In the cited studies, the geoelectrical inversion
was performed by standard ERT inversion techniques,
mostly on the basis of Tikhonov regularization, and the
thus reconstructed images of electrical conductivity were
subsequently analyzed. Singha and Gorelick [2005], for
example, computed spatial moments of concentration from
ERT surveys, observing that only about 50% of the total
injected solute mass (described by the zeroth moment) was
recovered by the inversion. This nonphysical behavior
results from decoupled ERT inversion lacking constraints
from flow and transport.
[4] The ultimate goal of a tracer test is the identification

of the distribution of hydraulic conductivity, which is a
material property. Toward this goal, imaging a tracer plume
and analyzing its spatial moments could only be a first step.
In theory, the hydraulic conductivity distribution could be
inferred from taking the concentration images of multiple
ERT surveys performed at different times as point-like
measurements. Considering that a three-dimensional ERT
inversion results in tens of thousands of electrical conduc-
tivity values, and that a time series may be made of
hundreds of time points, the amount of data to be handled
appears overwhelming. Moreover, the concentration esti-
mates from ERT inversion are uncertain and correlated, so
that in subsequent analysis the point estimates of concen-
tration must not be treated as independent measurements.
Not very surprisingly, the actual estimation of hydraulic
conductivity from time-lapse ERT surveys during tracer
tests is still missing.
[5] In conclusion, there is a clear need for efficient

analysis tools for geoelectrical monitoring of salt tracer tests
in which flow, solute transport, and geoelectrical surveying
are considered as a coupled system. The development of
such methods consists of the following four components:
(1) an appropriate choice of what is treated as measurement
for inversion, (2) an efficient forward model predicting the
measured quantity from hydraulic conductivity, other mate-
rial properties, and boundary conditions, (3) an efficient
method of computing the sensitivity of the measured
quantities with respect to hydraulic conductivity, and
(4) an inverse kernel. This paper deals with the first three
points. The key of our approach is to consider the temporal
moments of electrical potential perturbations obtained dur-
ing time-lapse ERT surveying of salt tracer experiments. We
show how the temporal moments of the measured electrical
signals can directly be related to the temporal moments of
concentration throughout the domain. Temporal moments of
concentration measurements have already successfully been
used to infer the hydraulic conductivity distribution [Harvey
and Gorelick, 1995; Cirpka and Kitanidis, 2000; James et
al., 2000; Nowak and Cirpka, 2006]. Thus, we propose
extending these existing methods to include geoelectrical
observation by ERT.
[6] The current contribution differs from the recent stud-

ies of Singha et al. [2007] and Day Lewis and Singha
[2008] who also considered temporal moments of ERT
data. The latter authors considered formations exhibiting

dual-porosity behavior. They argued that temporal moments
observed by ERT reflect the moments of the total concen-
tration, that is, the solute mass in both the mobile and
immobile pore space per bulk volume. These moments were
compared to those obtained by measuring the solute con-
centration in samples, which are exclusively extracted from
the mobile pore space. In the present study, we do not
account for dual-porosity behavior although such extensions
would be possible. Also, we do not rely on independent
concentration measurements based on sampling. In contrast
to Singha et al. [2007] and Day Lewis and Singha [2008],
we relate the hydraulic conductivity field, rather than
parameters describing mobile-immobile mass transfer kinet-
ics, to the temporal moments of ERT data.
[7] This paper is organized as follows: In section 2, we

review the governing equations of groundwater flow, solute
transport, and direct current geoelectrics. In section 3, we
present the temporal moment-generating equations for con-
centration and electrical potential. In section 4, we show
how the sensitivity of electrical potential moments with
respect to hydraulic conductivity can be computed without
explicit evaluation of sensitivities involving intermediate
quantities. In section 6, we present an artificial two-dimen-
sional test case, which is motivated by a planned interme-
diate-scale sandbox experiment where electrodes extend
through the entire width of the box. We analyze the validity
of underlying assumptions and discuss the sensitivity of
different electrode arrays.

2. Governing Equations

[8] In this section, we review the governing equations
describing groundwater flow and transport, and the effect of
tracer injection on electrical conductivity and electrical
potential during geoelectrical surveying.
[9] We assume steady state groundwater flow without

internal sinks or sources, leading to

r � Krhð Þ ¼ 0 ð1Þ

subject to the boundary conditions

h ¼ h0 at GD ð2Þ

n � Krhð Þ ¼ q0 at GN ð3Þ

n � Krhð Þ ¼ l h href
� �

at GC ð4Þ

in which K is the hydraulic conductivity, here assumed
isotropic, h is the hydraulic head and n denotes the unit
vector normal to the boundary G. The latter is subdivided
into a Dirichlet boundary, GD, with fixed head h0, a
Neumann boundary, GN, with fixed normal flux q0 (in many
cases zero), and a Cauchy boundary, GC, with a normal flux
linearly depending on the head; the proportionality
coefficient l is known as leakage coefficient, and href is a
known reference head. The specific discharge q follows
Darcy’s law:

q ¼ Krh ð5Þ
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[10] The concentration of a tracer introduced into the
aquifer through an inflow boundary Gin is commonly
described by the advection-dispersion equation

q
@c

@t
þ q � rc r � qDrcð Þ ¼ 0 ð6Þ

subject to the initial and boundary conditions:

c ¼ 0 8 x at t ¼ 0 ð7Þ

c t; xð Þ ¼ c0 t; xð Þ at Gin ð8Þ

n � Drcð Þ ¼ 0 at Gno flow [ Gout8t ð9Þ

where q is the porosity, D is the dispersion tensor, c0(t, x) is a
known, time- and coordinate-dependent concentration along
the inflow boundary, and the boundary G = Gin [ Gno flow

[ Gout is now subdivided into an inflow, a no-flow, and an
outflow section. Unlike Singha et al. [2007], we assume
that solute storage in an immobile fraction of the pore space
can be neglected, or is sufficiently accounted for in the
dispersion term. Thus, we do not discriminate between
concentrations and associated contributions to bulk electrical
conductivity in mobile and immobile pore fractions. For the
hydrodynamic dispersion tensor, we assume the standard
linear dependence on velocity:

qD ¼ q� q

k q k al atð Þ þ I k q k at þ qDmð Þ ð10Þ

inwhich� denotes amatrix product,al andat are longitudinal
and transverse dispersivities, respectively, I is the identity
matrix, and Dm is the pore diffusion coefficient.
[11] The bulk electrical conductivity field s(t, x) in an

aquifer can be expressed as the sum of the background
conductivity s0, constant through time and independent of
concentration, and a concentration-dependent term:

s t; xð Þ ¼ s0 xð Þ þ kc t; xð Þ ð11Þ

where k is a proportionality constant which can be derived
from Archie’s law [Archie, 1942] and c(t, x) indicates the
concentration of the tracer. In the following we denote the
concentration-dependent term as the perturbation of electri-
cal conductivity s0:

s0 t; xð Þ ¼ kc t; xð Þ ð12Þ

which causes a perturbation of the electrical potential. We
consider a direct current geoelectrical survey, in which the
current I is injected into the subsurface at location xi and
extracted at location xo. The electrical potential 8 follows
the Poisson equation:

r � sr8ð Þ ¼ I d x xoð Þ d x xið Þð Þ ð13Þ

[12] The application presented in section 6 mimics a
quasi-two-dimensional sandbox experiment in which all

sides are electrically insulated, resulting in a no-current
boundary condition along the entire boundary:

n � r8 ¼ 0 at Gn:c: ð14Þ

in which d() is the Dirac delta function, and Gn.c. is the no-
current boundary.
[13] In a field experiment, the land surface acts as an

electrical insulator, whereas electrical currents extend be-
yond all other boundaries of the hydraulic domain. A
common way of coping with a semi-infinite medium in
simulations is to extend the domain used for geoelectrical
simulations far beyond the actual area of interest. Then,
applying a no-current boundary of the simulation would not
cause a major bias in the area of interest. As an alternative, a
mixed boundary condition may be applied, particularly at
the bottom boundary [Dey and Morrison, 1979]:

n � r8þ b8 ¼ g at Gmix ð15Þ

in which the coefficients b and g are chosen such that the
Poisson equation for uniform coefficients in a semi-infinite
domain is met at the boundary. In such a framework the
boundary of the domain is subdivided into the no-current
boundary Gn.c. and the mixed-condition boundary Gmix.
[14] In geoelectrical inversion, the electrical conductivity

s is inferred from measurements of electrical potential. In
general, we consider the potential difference D8 between
two measurement locations xm1

and xm2
:

D8 tð Þ ¼ 8 t; xm1
ð Þ 8 t; xm2

ð Þ
¼
Z
W

8 t; xð Þ d x xm1
ð Þ d x xm2

ð Þð Þdx ð16Þ

in which W is the entire domain. In the Poisson equation,
equation (13), the relationship between electrical potential 8
and electrical conductivity s is nonlinear. As we will see in
section 3, the derivation of temporal moment-generating
equations requires linear relationships. Thus, we linearize
the Poisson equation about the background electrical con-
ductivity s0. To this means, the potential 8 may be
expressed as the sum of the base potential 80, observed in
the absence of the tracer, and the potential perturbation 80,
induced by the presence of the tracer:

8 ¼ 80 þ 80 ð17Þ

[15] Substituting equation (17) into equation (13), sub-
tracting the Poisson equation in the absence of the tracer,
and dropping products of perturbations yields the Poisson
equation linearized about s0:

r � s0r80ð Þ ¼ r � s0r80ð Þ ð18Þ

subject to

n � r80 ¼ 0 at Gn:c: ð19Þ

n � r80 þ b80 ¼ 0 at Gmix ð20Þ
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Substituting equation (12) into equation (18) gives

r � s0r80ð Þ ¼ r � kcr80ð Þ ð21Þ

[16] Equation (21) approximately describes how the con-
centration distribution c(t, x) causes perturbations of elec-
trical potential 80. It depends on the location and strength of
current injection and extraction via the distribution of the
base potential 80. In the course of a tracer experiment, the
solute plume passes through the domain, causing measured
electrical potential differences D80(t) for a given electrode
configuration. In the initial state and in the large-time limit,
D80(t) is zero. Equation (21) is only an approximation
because it is based on the linearized Poisson equation of
equation (18), where the product of perturbations r �
(kcr80) has been dropped on the right-hand side. Strictly
speaking, this approximation is only valid for kc � s0,
which is in contrast to achieving a well detectable potential
signal caused by the presence of the tracer. In section 6.2,
we discuss the effects of linearization on measurable poten-
tial differences during a salt tracer test with realistic elec-
trical conductivity contrasts.

3. Temporal Moments

[17] We now introduce temporal moments of concentra-
tion c(t, x) and of electrical potential perturbations 80(t, x).
The kth raw temporal moment of concentration mk

c(x) is
defined as

mc
k xð Þ ¼

Z1
0

tkc t; xð Þdt ð22Þ

[18] For all temporal moments to be finite, the concen-
tration must drop at least exponentially in the large-time
limit [e.g., Harvey and Gorelick, 1995]. The latter condition
is met for typical cases of tracer injection over a finite time.
In case of continuous tracer injection with uniform inflow
concentration (step-input problem), it is possible to compute
truncated moments in which the upper bound of the integral
in equation (22) is finite. From the asymptotic large-time
value of the step input problem and the truncated moments
one can compute the corresponding moments for a pulse-
like injection [e.g., Jose and Cirpka, 2004; Li et al., 2005].
[19] The zeroth and first temporal moments of concen-

tration represent the integral of the breakthrough curve (total
mass of solute passing through the measurement volume
divided by the discharge) and the mean arrival time of the
solute times the zeroth moment. The second moment con-
tains information about the spread. Here we consider only
the zeroth and first moment, and the ratio of these quantities
(i.e., the mean arrival time).
[20] In the same way, we can compute the kth temporal

moment of the perturbations of electrical potential:

m
80
k xð Þ ¼

Z1
0

tk80 t; xð Þdt ð23Þ

[21] For the perturbation of potential differences D80(t) =
80(t, xm1

) � 80(t, xm2
), in which xm1

and xm2
are the two

locations of electrical potential measurements, the raw
temporal moments are defined as

m
D80
k ¼

Z1
0

tk 80 t; xm1
ð Þ 80 t; xm2

ð Þð Þdt ¼ m
80
k xm1
ð Þ m

80
k xm2
ð Þ

ð24Þ

[22] We multiply the advection-dispersion equation,
equation (6), the linearized Poisson equation, equation (21),
and their boundary conditions by tk, integrate over time and
apply integration by parts, to obtain the following temporal
moment-generating equations for concentration [Harvey
and Gorelick, 1995] and electrical potential perturbation,
respectively:

q � rmc
k r � qDrmc

k

� � ¼ kqmc
k�1 ð25Þ

subject to

mc
k ¼ mc0

k at Gin ð26Þ

n � Drmc
k

� � ¼ 0 at Gno flow [ Gout ð27Þ

and

r � s0rm
80
k

� �
¼ r � kmc

kr80

� � ð28Þ

subject to

n � rm
80
k ¼ 0 at Gn:c: ð29Þ

n � rm
80
k þ bm80

k ¼ 0 at Gmix ð30Þ

[23] The moment-generating equation for concentration,
equation (25), is formally identical to the advection-dispersion
equation in steady state, implying that temporal moments of
concentration can directly be computed without solving the
transient transport equation. The moment-generating equa-
tion for potential perturbation, equation (28), does not show
a time dependency either and can also be solved directly
without having to compute the potential perturbation at each
time step.

4. Sensitivities of Electrical Potential Moments
on Hydraulic Conductivity

[24] The sensitivity of a particular measurement on a
parameter of interest is the corresponding partial derivative.
Since hydraulic conductivity is a spatial variable, we are
interested in sensitivity fields, quantifying how the model
outcome of a particular measurement depends in the linear
limit on hydraulic conductivity throughout the domain.
Sensitivity analysis is an important step in model calibration
and experimental design. In our application, a measurement
is defined as a temporal moment of electrical potential
perturbation for given pairs of current and potential electro-
des. If such a measurement is not sensitive to hydraulic
conductivity in a certain part of the domain, it is impossible
to infer the value of the latter from the former. In an optimal
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experimental design, the sensitivity patterns of the various
measurements differ as much as possible, and hydraulic
conductivity at each location in the domain is sensitive to at
least one measurement.
[25] In the following, we consider that the log hydraulic

conductivity field Y(x) is discretized in subvolumes with
uniform value, leading to a parameter vector Y. The size of a
subvolume equals that of a Finite Element in the numerical
evaluation of the governing equations. Then, the sensitivity
matrix is the matrix of partial derivatives of all measure-
ments with respect to all parameters. The most simple
method to calculate sensitivities is by direct numerical
differentiation, where the forward problem is successively
repeated, each time with small variations of a single
parameter. The sensitivity matrix is then computed as the
ratio of the variation of all measured quantities over the
variation of each parameter. In an application with n
unknowns and m measurements, it is necessary to solve
n + 1 problems to compute the full sensitivity matrix. With
one parameter per Finite Element, this approach becomes
exceedingly costly for high spatial resolutions. Also, the
higher the spatial resolution of the log hydraulic conductivity
field, the smaller is the effect of varying its value in a single
element. Therefore, sensitivities obtained by direct numeri-
cal differentiation in highly resolved domains may strongly
be affected by slight inaccuracies of the numerical methods
used to solve the systems of partial differential equations.
[26] A more efficient method of computing sensitivities is

the continuous adjoint state method for coupled systems by
Sun and Yeh [1990], which we apply in the following. For
each observation, we have to solve a set of adjoint problems
similar to the forward problem, which in case of under-
determined problems provides a large gain in computational
costs compared to the calculation by direct numerical
differentiation. The procedure is practically identical to
the one used by Cirpka and Kitanidis [2000] and Nowak
and Cirpka [2006] to compute the sensitivities of the
moments of concentration with respect to the log hydraulic
conductivity, except for the addition of electrical potentials.
[27] For a given measurement, we denote the adjoint

states for hydraulic head, zeroth concentration moment,
first concentration moment and electrical potential by ah,
a0, a1 and a8, respectively. As a first step, we solve the
adjoint linearized Poisson equation to compute the adjoint
state of electrical potential:

r � s0ra8
� � ¼ d x xm2

ð Þ d x xm1
ð Þ ð31Þ

subject to

n � ra8 ¼ 0 at Gn:c: ð32Þ

n � ra8 þ ba8 ¼ 0 at Gmix ð33Þ

where xm1
and xm2

are the two measurement locations.
[28] For first-moment measurements, the equation for the

adjoint state of the first moment of concentration has to be
solved next:

q � ra1 r � qDra1ð Þ ¼ ra8 � r80k ð34Þ

subject to

a1 ¼ 0 at Gout ð35Þ

n � qDra1ð Þ ¼ 0 at Gin [ Gno flow ð36Þ

[29] In case of a first-moment measurement, the adjoint
state of the first concentration moment, a1, is needed to
calculate the adjoint state of the zeroth concentration
moment, a0, which is given by

q � ra0 r � qDra0ð Þ ¼ a1qdk1 ra8 � r80kdk0 ð37Þ
subject to

a0 ¼ 0 at Gout ð38Þ

n � qDra0ð Þ ¼ 0 at Gin [ Gno flow ð39Þ

where k = 0 for a zeroth-moment measurement and k = 1 for
a first-moment measurement. The Kronecker delta dij equals
one if both indices are identical and zero otherwise. In case
of a first-moment measurement, therefore, the adjoint state
of the first concentration moment, a1, appears on the right-
hand side of the partial differential equation for a0 as a
source-sink term. In case of a zeroth-moment measurement,
the adjoint state of the first moment is not needed, and only
the second source-sink term of equation (37) has to be
considered. From this equation it is clear that a0 is not the
same for measurements of the first and the zeroth moments.
[30] The last adjoint variable to be computed is the

adjoint state of the hydraulic head, ah, which follows the
adjoint groundwater flow equation:

r � Krahð Þ ¼ r � a1Krmc
1

� � r � a0Krmc
0

� � ð40Þ

subject to

ah ¼ 0 at GD ð41Þ

n � Krahð Þ ¼ a1n � rmc
1K a0n � rmc

0K at GN ð42Þ

n � Krahð Þ ¼ a1n � rmc
1K a0n � rmc

0K lah at GC ð43Þ

where, in case of a zeroth-moment measurement, the first
term on the right-hand side of equation (40) equals zero and
a0 is different for a zeroth- and first-moment measurement,
respectively.
[31] Finally, the sensitivity of the first temporal moment

of potential perturbation D80 with respect to a particular log
hydraulic conductivity value Yl is

@mD80
1

@Yl
¼

Z
Vl

rah � rhK þ a0Krh � rmc
0 þ a1Krh � rmc

1

� �
dV

ð44Þ

where Vl is a subvolume with uniform conductivity Yl.
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[32] Analogously, the sensitivity of the zeroth temporal
moment of potential perturbation with respect to log hy-
draulic conductivity becomes (this time using the adjoint
states obtained for zeroth-moment measurements)

@mD80
0

@Yl
¼

Z
Vl

rah � rhK þ a0Krh � rmc
0

� �
dV ð45Þ

[33] To obtain the sensitivity of the mean arrival time of
the potential perturbation with respect to log hydraulic
conductivity, we apply the chain rule of differentiation:

@

@Yl

m
D80
1

m
D80
0

 !
¼ 1

m
D80
0

@mD80
1

@Yl

m
D80
1

m
D80
0

� �2 @mD80
0

@Yl
ð46Þ

[34] As has already been pointed out by Sun and Yeh
[1990] and Cirpka and Kitanidis [2000], among others, the
continuous adjoint state approach does not require storing
intermediate sensitivities. To demonstrate the computational
advantage, we consider a domain discretized by 10,000
elements. For each electrode configuration, six adjoint states
must be computed (a8, a1 and twice a0 and ah). Together with

the six forward states (80, h, m0
c, m1

c, m0
80
, m1

80
), the demand of

computer memory is limited (12 vectors of 10,000 elements).

From this, the three sensitivity vectors
@mD80

0

@Y ,
@mD80

1

@Y ,
@ m

D80
1

=mD80
0

� �
@Y

are computed element by element. Using intermediate

sensitivities (
@mD80

k

@mc
k

,
@mc

k

@h ,
@mc

k

@Y ), by contrast, would require

evaluating and storing matrices of the size 10,000 �
10,000, without gaining accuracy.

5. Numerical Implementation and Computational
Effort

[35] All partial differential equations are solved by the
Finite Element Method (FEM) using bilinear, rectangular
elements. Hydraulic conductivity is defined as elementwise
constant values. For stabilization of advection-dominated
transport, we apply the streamline upwind Petrov-Galerkin
(SUPG) method [Brooks and Hughes, 1982]. Nowak [2005]
determined analytical expressions for the source terms in the
adjoint state equations of temporal moments. By using
these, a considerable computational speedup is achieved.
The resulting systems of linear equations are solved by a

conjugate gradient method with algebraic multigrid precon-
ditioning [Stüben, 2001].
[36] Four n � n matrices (with n being the number of

nodes) discretizing partial differential equations must be set
up: one for the groundwater flow equation, equation (1),
which is self-adjoint, two for solute transport (forward and
adjoint), equations (6) and (34), and one for the Poisson
equation, equation (18), which is also self-adjoint. In order
to evaluate right-hand side vectors from vectors of nodal
variables, four more n � n matrices must be set up,
according to equations (25) and (37), equation (28), equa-
tion (34), and equation (40), respectively. For a given
hydraulic conductivity field andmmeasurements, evaluating
the forward problem and the sensitivities, the groundwater
flow equation, equation (1), must be solved with 2m + 1
right-hand side vectors, the transport equation, equation (25),
with 3m + 2 right-hand side vectors, and the linearized
Poisson equation, equation (28), with 2m + 2 right-hand
side vectors, in which we have summed up the number of
forward and adjoint problems. For a large number of
measurements m, the same systems of linear equations must
be solved with multiple right-hand sides. It may thus be
recommendable to factorize the systems of equations and
use direct solvers instead of iterative ones. These imple-
mentational issues, however, are not covered here.

6. Artificial Test

[37] In this section we present an application of the theory
outlined in the previous sections to an artificial test case.
Although the equations hold also for three spatial dimen-
sions, we simulate a two-dimensional system, to keep
computing time and amount of data as low as possible.

6.1. Setup

[38] We simulate an intermediate-scale quasi-two-dimen-
sional sandbox of dimension Lx � Ly � Lz with homoge-
neous filling and therefore uniform hydraulic conductivity
K, shown schematically in Figure 1. The domain is dis-
cretized by nx � nz elements of size Dx � Dz. The
geometric parameters are listed in Table 1. The top and
bottom of the sandbox are no-flow boundaries; along the
right and left boundary, the hydraulic head is fixed. This
leads to a uniform hydraulic gradient @h/@x throughout the
sandbox. During a specified period of time, tinj, a solution
with known tracer concentration cin is injected through the
middle part of the boundary zin. Above and below, tracer-

Figure 1. Schematic setup of the sandbox. The circles indicate the location of the electrodes, numbered
1 to 60. The electrode configuration indicated here is the one used in section 6.2 to test the validity of the
linearization.
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free water is injected. The choice of the length of the
injection time is important: if a single pulse is injected,
the arrival time is very well defined, but the electrical signal
is too small to be accurately detected. If the tracer is injected
over a longer period of time, we obtain a large signal, but
the arrival time is not clearly defined because of the wide
spread. Our simulations are carried out for a total injection
time of 5 hours, ranging from �2.5 hours to 2.5 hours.
Choosing the injection time to be symmetric with respect to
time zero causes the first moment of concentration in the
inflow to equal zero.
[39] Two rows of electrodes extending through the whole

width of the sandbox are situated near the top and bottom
boundary. A current is injected and extracted using a pair of
electrodes, while the electrical potential is measured at the
other electrodes. The presence of the tracer causes a change in
electrical conductivity proportional to its concentration (see
equation (12)). This consequently causes a perturbation of the
electrical potential field in the sandbox (see equation (21)),
which is detected by the electrodes and measured at time
intervals Dt for a total period of tmeas. On the basis of an
assumed uniform hydraulic conductivity field throughout
the whole domain, we simulated the zeroth and first
temporal moments of concentration and of potential pertur-
bation resulting from the tracer injection. For the same setup
we computed the sensitivities of the mean arrival time of the
electrical signal with respect to the log hydraulic conduc-
tivity according to the scheme outlined in section 4. Table 1
lists all parameters for this test case.

6.2. Testing the Validity of Linearization

[40] The main critical assumption of our approach is the
validity of linearizing the relationship between perturbations

of electrical conductivity and potential (equation (21)). In
this section, we want to test under which conditions this
assumption is valid.
[41] As a starting point we consider the measured poten-

tial difference D8 for a given electrode configuration and a
uniform electrical conductivity s:

D8 ¼ aI
s

ð47Þ

where a is a proportionality constant. Consequently, if we
change the electrical potential uniformly throughout the
domain, we obtain the ratio of the measured potential
difference with respect to the initial one as

D8 sð Þ
D80

¼ s0

s
ð48Þ

[42] In the linearization of the Poisson equation, we wrote
the electrical potential as the sum of the base value plus the
variation about it (equation (17)), which can also be
expressed as

D8lin ¼ D80 þ
@D8

@s

����
s0

s s0ð Þ ð49Þ

[43] Substituting equation (47) into equation (49) we obtain

D8lin sð Þ
D80

¼ 2
s
s0

< 0 8 s > 2s0 ð50Þ

[44] For s = 2s0, therefore, the linearization leads to an
electrical potential of zero. Further increasing the electrical
conductivity would even lead to a negative electrical po-
tential or negative resistivity, which is physically impossi-
ble. In the course of a salt tracer test, the electrical
conductivity is not increased in a spatially uniform way,
so that the effect of linearization is less severe. Nonetheless,
linearization will always overestimate the reduction of a
potential difference in the time the tracer cloud passes the
vicinity of the electrodes.
[45] To show the effects of the linearization we calculated

the potential differences through time between two specific
electrodes for the linearized and exact cases without nor-
malizing the potentials. In the linearized calculation, the
potential perturbation is calculated directly at each time step
by equation (21). In the nonlinearized calculation, we have
to solve the Poisson equation, equation (13), at each time
step and subtract the base potential. The simulations were
done using different tracer concentrations, representing
different electrical conductivity contrasts with respect to
the base value.
[46] Figure 2 shows the change of potential difference

through time for a specific electrode configuration (shown
in Figure 1) and some selected concentrations (0.1, 0.4, 0.6
and 1 g/‘, corresponding to an electrical conductivity
contrast of 1.2, 1.8, 2.2 and 3). The smaller the concentra-
tion, the better the linearized and nonlinearized curves
agree. The problem of using a very low concentration,
however, is that the potential differences vary only slightly
over time and are therefore difficult to measure accurately.
For experimental design, we thus have to find a tradeoff

Table 1. Parameters Applied in the Test Case

Parameter Description Value

Geometric Parameters and Discretization
Lx � Ly � Lz length � width � height of domain 3 � 0.05 � 0.6 m
nx � nz number of cells in x and z directions 300 � 60
Dx � Dz grid spacings in x and z directions 0.01 � 0.01 m

Hydraulic Parameters
@h
@x

hydraulic gradient 0.01

K hydraulic conductivity 10 3 m/s

Transport Parameters
q porosity 0.4
al longitudinal dispersivity 0.01 m
at transverse dispersivity 0.001 m
Dm pore diffusion coefficient 10 9 m2/s

Geoelectrical Parameters
I current 2 mA
s0 base electrical conductivity 0.03 S/m
k linear dependence of electrical

conductivity on concentration
0.06 Sm2/kg

Boundary Conditions
cin concentration in inflow 0.4 g/‘
zin injection height 0.2 0.4 m

Time Parameters
tinj duration of injection 5 h
Dt time discretization in transient

calculation
6 min

tmeas duration of measurement 52 h
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between obtaining a sufficiently large signal (requiring high
concentrations) and introducing not too large errors by
linearization (requiring low concentrations). On the basis
of the results shown in Figure 2, we have chosen a
concentration of 0.4 g/‘ (electrical conductivity contrast of
1.8) for the following calculations.
[47] As discussed above, linearizing the Poisson equation

about the base electrical conductivity causes a larger devi-
ation of the potential difference from the base value and an
overestimation of the zeroth moment of potential perturba-
tion (i.e., the integral under the breakthrough curve), which
can be seen in Figure 2. Conversely, the maximum value
appears at the same time even for higher tracer concen-
trations. That is, the ratio of the first over the zeroth moment
of potential perturbation, indicating the mean breakthrough
time, is correct even in the linearized form of the Poisson
equation. The use of the ratio of the temporal moments
instead of the zeroth and first moments themselves in
further calculations is therefore advantageous, as it mini-
mizes the error due to the linearization. This is also
illustrated in Figure 3, which shows the relative error
between the linearized and nonlinearized calculation of
the moments of potential perturbation as a function of
electrical conductivity contrast using the same electrode
configuration as before. While the errors for the zeroth
and first moment increase approximately linearly with
increasing contrast, reaching nearly 60% for a contrast of
3, the linearization has very little effect on the mean arrival
time: the maximal error for the chosen concentrations is
about 1%.
[48] While Figures 2 and 3 illustrate that the ratio m1

D80
/m0

D80

for the tested electrode configuration is quite accurately
approximated by the linearized version of the Poisson
equation, these plots do not indicate whether the potential
perturbations obtained by the linearized Poisson equation
are affected by concentration at the same location as those
of the nonlinearized Poisson equation. The latter becomes

clearer from the pattern of the direct current streamlines.
Because the computation of streamlines is cumbersome in a
Finite Element simulation of potentials [e.g., Cordes and
Kinzelbach, 1992], we consider normalized electrical poten-
tials, 8norm(x, t) instead:

8norm x; tð Þ ¼ 8 x; tð Þ 8 xo; tð Þ
8 xi; tð Þ 8 xo; tð Þ ð51Þ

in which 8(xi, t) and 8(xo, t) are the computed electrical
potentials at the current injecting and extracting electrodes,
respectively. 8norm(x, t) ranges between zero and unity, and
contour lines of it are perpendicular to direct current
streamlines throughout the domain at all times.
[49] At each time step and for each node of the compu-

tational grid, the difference between the linearized and exact
normalized potential field was calculated. For each point,
we computed the maximum absolute difference over time,
emax
8norm(x):

e8normmax xð Þ ¼ k8lin
norm x; tð Þ 8norm x; tð Þk1 ð52Þ

in which the infinity or maximum norm is taken over the
time series.
[50] Figure 4 shows emax

8norm(x) as function of space for the
electrode configuration used in all computations so far.
Figure 4 also includes the base electrical potential field.
For the chosen current electrodes and an electrical conduc-
tivity contrast of 1.8, the maximum error in the normalized
potential field caused by the linearization is less than 1%.
That is, the distortion of the direct current streamlines by the
presence of the conductive tracer plume is fairly small. The
higher the electrical conductivity contrast, however, the more
significant becomes the error. For a contrast of 10, the
maximum error reaches already about 50%. That is, a high
tracer concentration causes a high electrical conductivity

Figure 2. Potential difference as a function of time for
different electrical conductivity contrasts, i.e., different
input concentrations. Solid line, solution of exact Poisson
equation; dashed line, solution of linearized Poisson
equation.

Figure 3. Relative error caused by linearization as a
function of electrical conductivity contrast for the zeroth
and first moment of potential perturbation and for the mean
arrival time of the perturbation; mlin represents the temporal
moment on the basis of the linearized Poisson equation.
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contrast and leads to strong distortions of the direct current
streamlines. These distortions are neglected in the linear-
ization. We conjecture that too high tracer concentrations
would lead to severe errors introduced by using the
linearized Poisson equation, implying that the linear
temporal moment-generating equations would become sig-
nificantly biased. The chosen tracer concentration leads to
an electrical conductivity contrast of about two which
appears to be a reasonable compromise between guarantee-
ing a well detectable signal and enabling the applicability of
the linearized Poisson equation.
[51] The limitations of linearized equations are of course

well known in hydrogeological inversion: The groundwater
flow equation, equation (1), is formally identical to the
Poisson equation, equation (13). A linearized version of the
groundwater flow equation can be used only if the variance
of log hydraulic conductivity is small; otherwise iterative
methods are necessary in the inference of the ln(K) field
from head measurements [Kitanidis, 1995]. While the
contrast in hydraulic conductivity is a given property of
the formation under investigation, we can manipulate the
contrast in electrical conductivity by choosing the tracer
concentration.
[52] The linearization was tested also for other electrode

configurations. These configurations are discussed in
section 6.4 in the context of sensitivity patterns. With the
chosen contrast of 1.8 in electrical conductivity, the lineari-
zation caused a relative error in the mean arrival time of the
electrical signal smaller than 3% for all tested configurations,
and also in an application with a random heterogeneous
hydraulic conductivity field.

6.3. Temporal Moments of Concentration
and Potential Perturbation

[53] We computed the zeroth and first temporal moments
of concentration and potential perturbation for the test case
using the moment-generating equations, equations (25) and
(28). The results for the moments of concentration, shown
in Figure 5, were normalized by the zeroth moment of
concentration at the inflow so that the latter equals unity.
[54] The zeroth temporal moment of concentration, m0

c

(Figure 5a) is almost binary: the maximum value is nearly
uniform and close to one within the plume, and zero
outside. Transverse dispersion slightly smoothes vertical

concentration gradients and decreases the maximum value
along the center line.
[55] The first moment of concentration, m1

c, is shown in
Figure 5b. Being the zeroth moment multiplied by the mean
arrival time, it logically increases with distance from the
inflow boundary within the plume. At the edge of the
plume, the first moment of concentration exhibits a strong
vertical gradient because the zeroth moment does. Outside
the plume, m1

c approaches zero. The ratio of the first over
the zeroth moment of concentration, plotted in Figure 5c,
also shows a horizontal gradient, with values (indicating
travel time in hours) increasing with distance from the
inflow boundary. Outside of the main plume, the computed
values of m1

c/m0
c have no practical relevance, as here the

ratio of two very small values is considered.
[56] Figure 6 shows the temporal moments of potential

perturbations for a given pair of current electrodes. The
spatial patterns of the zeroth (Figure 6a) and first (Figure 6b)
moments look rather similar. The largest effects are obtained
near the current electrodes, while a significant part of the
domain is hardly affected by the injected current, and thus
changes in electrical conductivity caused by the tracer test
have no effect either. Near the electrodes, the pattern of the
first moment of potential perturbation (Figure 6b) is slightly
shifted to the right in comparison to the zeroth moment
(Figure 6a). This is so because the first moment of concen-
tration increases with travel distance.
[57] Figure 6c shows the ratio of the first over the zeroth

moment of potential perturbations for the same current
electrode pair used before. We again observe an increase
with travel distance, but the pattern is deformed by the
location of the electrodes and by the area affected by the
tracer plume.

6.4. Sensitivities

[58] We computed the sensitivities of the temporal
moments of potential perturbation with respect to log
hydraulic conductivity as described in section 4. The
sensitivities quantify the effect of a slight increase or
decrease in hydraulic conductivity at a specific point of
the domain on the temporal moments of potential perturba-
tion. By this analysis, we can identify which parts of the
domain affect the measurements. Figure 7 shows the results
for the same electrode configuration used in section 6.2. As
shown in Figures 7a and 7b, the highest sensitivities for the
zeroth and first moment of potential perturbation with
respect to log hydraulic conductivity are found in the
regions with the highest concentration gradients (at the edge
of the tracer plume) and where the gradients of the electrical
potential or its adjoint state are highest (near the electrodes).
The high sensitivities in the zones of high gradients can be
explained by equation (40), where the gradient of the
temporal moments of concentration appears as a source-
sink term. Equation (34) shows the influence of the gra-
dients of electrical potential and its adjoint state on the
adjoint state of the first moment of concentration and
consequently also on the sensitivity with respect to the
hydraulic conductivity field. Because the gradients of elec-
trical potential are highest near the current electrodes, and
that of its adjoint state near the potential electrodes, varying
the electrode configuration changes the sensitivity patterns
(see below).

Figure 4. (top) Pattern of the base potential field 80 for a
pair of current electrodes and (bottom) maximum norm
emax
8norm of the differences between the linearized and non-
linearized normalized potential field through time.
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[59] In the present application, the hydraulic conductivity
distribution is assumed uniform throughout the sandbox. A
nonuniform hydraulic conductivity field would change the
velocity field and the spatial pattern of the temporal
moments of concentration. The latter would also influence
the sensitivity pattern. That is, the sensitivity fields of
electrical potential moments depend on the hydraulic con-
ductivity distribution in the domain. This implies that an
inverse model, in which the hydraulic conductivity field is
inferred from measurements of electrical potential moments,
must be iterative.
[60] Figure 7c shows the sensitivity of the ratio of the first

over the zeroth temporal moment (mean arrival time) of
potential perturbation with respect to log hydraulic conduc-

tivity. Here we notice a negative sensitivity in the tracer
plume upstream of the electrodes. This means that an
increase in the hydraulic conductivity in the region through
which the tracer is transported, leads to a decrease in the
ratio of the first over the zeroth temporal moment of
potential perturbation, which represents an earlier arrival
time of the tracer in the measurement area. This is to be
expected, as the flow is faster because of the increase of
hydraulic conductivity. Figure 8 shows the sensitivities of
m1
D80

/m0
D80

with respect to the log hydraulic conductivity for
the same current and potential electrode geometry, but
shifted in the longitudinal direction of the sandbox. The
high negative sensitivities clearly follow the tracer path, but
only to about the location of the electrodes. This type of

Figure 5. Normalized temporal moments of concentra-
tion: (a) zeroth moment, m0

c, (b) first moment, m1
c, and

(c) ratio of the two (arrival time in hours) for the given
example.

Figure 6. Temporal moments of potential perturbation:
(a) zeroth moment, m0

80
, (b) first temporal moment, m1

80
, and

(c) ratio of the two (arrival time in hours) for the given
example.

Figure 7. Sensitivities of (a) zeroth, (b) first, and (c) first
over zeroth moments of potential perturbation, m1

D80
/m0

D80
,

with respect to log hydraulic conductivity. Crosses,
positions of the current electrodes; circles, positions of the
potential electrodes.

Figure 8. Sensitivity of first over zeroth moment of
potential perturbation, m1

D80
/m0

D80
, for three different

electrode locations. Crosses, positions of the current
electrodes; circles, positions of the potential electrodes.
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sensitivity pattern is already known from direct point-like
measurements of concentrations analyzed by the mean
arrival time [Cirpka and Kitanidis, 2000; Nowak, 2005].
[61] The same calculations were also done for selected

other electrode configurations (i.e., different geometries), in
order to view the differences in the sensitivity pattern
caused by changing the relative position of the current
and potential electrodes. Figure 9 shows the sensitivities
of the electrical potential with respect to the tracer concen-
tration (which is proportional to the electrical conductivity)
and the sensitivities of the mean arrival time of the potential
perturbation with respect to the log hydraulic conductivity
for some selected electrode configurations. The sensitivity
density of the electrical potential with respect to concentra-
tion is identical to the source-sink term on the right-hand
side of equation (34). This quantity is shown in the left
column of Figure 9, and represents the source-sink term for
calculating the adjoint state of the first moment of potential
perturbation. It can be interpreted as the measurement
function of concentration. For a point-like measurement of
concentration, as obtained by an in situ probe, the sensitiv-
ity of the mean arrival time with respect to log hydraulic

conductivity is mainly a narrow stripe in upstream direction
[Cirpka and Kitanidis, 2000; Nowak, 2005]. With the ERT
survey, a spatially distributed measurement of concentration
is implemented. This results in a sensitivity pattern with
respect to log hydraulic conductivity that may be con-
structed by integrating the sensitivities of point-like mea-
surements weighted by the measurement function at a given
location. As the injection of the tracer was restricted to the
central part of the sandbox, the sensitivities of electrical
potential with respect to concentration outside the plume do
not influence the sensitivity pattern for the arrival time of
potential perturbation with respect to log hydraulic conduc-
tivity. In Figures 9a, 9b, 9c, 9d, and 9e, the approximate
boundary of the plume is indicated by a white line. For the
reason discussed above, the sensitivity patterns in Figures 9f,
9i and 9j differ only slightly. In all of these cases, the
sensitivity of the potential measurements with respect to
concentration is negative within the plume, leading to a
more or less uniform negative sensitivity of m1

D80
/m0

D80
with

respect to ln(K) within the plume upstream of the electrodes.
The only tested pattern which is significantly different from
the one shown in Figure 9f is the dipole-dipole configura-

Figure 9. (left) Sensitivity of electrical potential, D80, with respect to tracer concentration c for five
different electrode configurations. White lines, boundaries of the tracer plumes neglecting transverse
dispersion. (right) Sensitivity of first over zeroth moment of potential perturbation, m1

D80
/m0

D80
, with

respect to log hydraulic conductivity for the same electrode configurations as in the left plots. Crosses,
positions of the current electrodes; circles, positions of the potential electrodes.

W12416 POLLOCK AND CIRPKA: TEMPORAL MOMENTS IN GEOELECTRICAL MONITORING

11 of 13

W12416



tion (Figure 9h), which is sensitive only to electrical
conductivity at the top half of the domain. The change of
sign in the sensitivity of the electrical potential with respect
to concentration, in conjunction with the tracer being trans-
ported mainly along a certain corridor, leads to an intricate
sensitivity pattern of the arrival time of potential perturba-
tion with respect to log hydraulic conductivity. A larger
distance of the two dipoles would lead to a deeper penetra-
tion of the sensitivity of potentials with respect to concen-
tration which in turn would change the sensitivity pattern
with respect to log hydraulic conductivity.
[62] In an optimal experimental design, configurations are

chosen which are the least correlated to each other, so that
redundancy is minimized. For a limited number of config-
urations, we would suggest combining measurements that
are sensitive over the entire width of the plume, such as the
one chosen in Figure 9f, with those that are more sensitive
at one side, such as the one chosen in Figure 9h and its
symmetric counterpart, and moving these arrays along the
whole length of the domain.

7. Conclusions

[63] In the current study, we have shown that temporal
moments of electrical potential perturbations are suitable
condensates to be used in geoelectrical monitoring of salt
tracer tests. We have presented temporal moment-generating
equations, relating the measured quantities to hydraulic
conductivity in a rigorous fashion. The only approximation
lies in linearizing the Poisson equation about the base
conductivity. We could show that this approximation is
acceptable when the tracer concentration is carefully chosen
and when the ratio of first over zeroth temporal moment of
potential perturbation is taken as primary measurement.
[64] We have extended the approach of using temporal

moments of concentration measurements used in previous
studies by adding the measurement equations applicable for
geoelectrical monitoring. The advantages of using temporal
moments remain: (1) the amount of measured data is
condensed without losing too much information, (2) the
forward equations consist of a series of steady state equa-
tions, reducing the computational effort, and (3) sensitivities
can also be computed by a series of steady state adjoint
equations.
[65] We could show that the sensitivity patterns are

meaningful. Increasing the hydraulic conductivity within
the plume at a location upstream of the electrodes decreases
the time to pass until the signal is detected by geoelectrical
surveying. In comparison to point-like measurements of
concentration, the sensitivity pattern for ERT surveys is
much more spread, which results from the sensitivity of
potentials on concentration. This already implies limitations
of the method, because it will be difficult if not impossible
to identify fine-scale hydraulic features.
[66] As in all simulations of processes described by

partial differential equations, boundary conditions may have
a major impact on the solution. Our virtual test case was
aimed to mimic a sandbox experiment which is currently in
its design phase. This particular application is truly two
dimensional, and all boundaries are electrically insulated.
Tracer tests in the field would be three dimensional, and
electrical insulation would be guaranteed only at the land
surface. In order to minimize artifacts by erroneous boundary

conditions, it is thus important to differentiate between
boundaries for the flow-and-transport problem and for the
direct current (DC) problem. The domain for the DC problem
may be chosen larger, and the electrical properties of an
underlying aquitard must be accounted for in the simulation.
[67] We have presented all ingredients necessary for

hydrogeophysical inversion of salt tracer experiments in
groundwater, with the exception of the inverse kernel. We
plan to implement the presented approaches of calculating
the temporal moments of electrical potential perturbation
and their sensitivity with respect to hydraulic conductivity
in the quasi-linear geostatistical inverse method used for
hydraulic measurements [Kitanidis, 1995]. The approaches
presented in this paper, however, could also be combined
with any other inversion scheme for distributed parameter
fields.

[68] Acknowledgments. We thank Kamini Singha, two anonymous
reviewers, and the associate editor, Lee Slater, for their constructive
remarks in helping to improve the quality of the paper. This research is
part of the RECORD project of the Competence Center Environment and
Sustainability (CCES) within the ETH domain. Funding has been provided
by the Swiss National Science Foundation under grant 200021-113296.

References
Archie, G. E. (1942), The electrical resistivity log as an aid in determining
some reservoir characteristics, Tech. Rep. 1422, Am. Inst. Min. Metall.
Pet. Eng., New York.

Binley, A., S. Henry-Poulter, and B. Shaw (1996), Examination of solute
transport in an undisturbed soil column using electrical resistance tomo-
graphy, Water Resour. Res., 32(4), 763 769.

Binley, A., G. Cassiani, R. Middleton, and P. Winship (2002), Vadose zone
flow model parameterisation using cross-borehole radar and resistivity
imaging, J. Hydrol., 267(3 4), 147 159.

Brooks, A. N., and T. J. R. Hughes (1982), Streamline upwind/Petrov-
Galerkin formulations for convection dominated flows with particular
emphasis on the incompressible Navier-Stokes equations,Comput.Methods
Appl. Eng., 32(1 3), 199 259.

Cirpka, O. A., and P. K. Kitanidis (2000), Sensitivity of temporal moments
calculated by the adjoint-state method and joint inversing of head and
tracer data, Adv. Water Resour., 24(1), 89 103.

Cordes, C., and W. Kinzelbach (1992), Continuous groundwater velocity
fields and path lines in linear, bilinear, and trilinear finite elements,Water
Resour. Res., 28(11), 2903 2911.

Daily, W., A. Ramirez, D. LaBrecque, and J. Nitao (1992), Electrical
resistivity tomography of vadose water movements, Water Resour.
Res., 28(5), 1429 1442.

Day-Lewis, F. D., and K. Singha (2008), Geoelectrical inference of mass
transfer parameters using temporal moments, Water Resour. Res., 44,
W05201, doi:10.1029/2007WR006750.

Dey, A., and H. F. Morrison (1979), Resistivity modelling for arbitrarily
shaped two-dimensional structures, Geophys. Prospect., 27, 106 136.

Harvey, C. F., and S. M. Gorelick (1995), Temporal moment-generating
equations: Modeling transport and mass transfer in heterogeneous aqui-
fers, Water Resour. Res., 31(8), 1895 1911.

James, A. I., W. D. Graham, K. Hatfield, P. S. C. Rao, and M. D. Annable
(2000), Estimation of spatially variable residual nonaqueous phase liquid
saturations in nonuniform flow fields using partitioning tracer data,Water
Resour. Res., 36(4), 999 1012.

Jose, S. C., and O. A. Cirpka (2004), Measurement of mixing-controlled
reactive transport in homogeneous porous media and its prediction
from conservative tracer test data, Environ. Sci. Technol., 38(7), 2089
2096.

Kemna, A., J. Vanderborght, B. Kulessa, and H. Vereecken (2002), Imaging
and characterisation of subsurface solute transport using electrical resis-
tivity tomography (ERT) and equivalent transport models, J. Hydrol.,
267(3 4), 125 146.

Kitanidis, P. K. (1995), Quasi-linear geostatistical theory for inversing,
Water Resour. Res., 31(10), 2411 2419.

Li, W., W. Nowak, and O. A. Cirpka (2005), Geostatistical inverse model-
ing of transient pumping tests using temporal moments of drawdown,
Water Resour. Res., 41, W08403, doi:10.1029/2004WR003874.

12 of 13

W12416 POLLOCK AND CIRPKA: TEMPORAL MOMENTS IN GEOELECTRICAL MONITORING W12416



Li,W., A. Englert, O.A. Cirpka, J. Vanderborght, andH.Vereecken (2007), Two-
dimensional characterization of hydraulic heterogeneity bymultiple pump-
ing tests, Water Resour. Res., 43, W04433, doi:10.1029/2006WR005333.

Li, W., A. Englert, O. A. Cirpka, and H. Vereecken (2008), Three-dimensional
geostatistical inversion of flowmeter and pumping-test data, Ground Water,
46(2), 193 201, doi:10.1111/j.1745-6584.2007.00419.x.

Nowak, W. (2005), Geostatistical methods for the identification of flow and
transport parameters in the subsurface, Ph.D. thesis, Inst. fuer Wasserbau,
Univ. Stuttgart, Stuttgart, Germany.

Nowak, W., and O. A. Cirpka (2006), Geostatistical inference of hydraulic
conductivity and dispersivities from hydraulic heads and tracer data,
Water Resour. Res., 42, W08416, doi:10.1029/2005WR004832.

Rizzo, E., B. Suski, A. Revil, S. Straface, and S. Troisi (2004), Self-poten-
tial signals associated with pumping tests experiments, J. Geophys. Res.,
109, B10203, doi:10.1029/2004JB003049.

Rubin, Y., and S. S. Hubbard (2005), Hydrogeophysics, Water Sci. Technol.
Libr., vol. 50, Springer, Dordrecht, Netherlands.

Singha, K., and S. M. Gorelick (2005), Saline tracer visualized with three-
dimensional electrical resistivity tomography: Field-scale spatial moment
analysis, Water Resour. Res., 41, W05023, doi:10.1029/2004WR003460.

Singha, K., F. D. Day-Lewis, and J. W. Lane, Jr. (2007), Geoelectrical
evidence of bicontinuum transport in groundwater, Geophys. Res. Lett.,
34, L12401, doi:10.1029/2007GL030019.

Slater, L. (2007), Near surface electrical characterization of hydraulic
conductivity: From petrophysical properties to aquifer geometries A
review, Surv. Geophys., 28, 169 197, doi:10.1007/s10712-007-9022-y.

Slater, L., A. M. Binley, W. Daily, and R. Johnson (2000), Cross-hole elec-
trical imaging of a controlled saline tracer injection, J. Appl. Geophys.,
44(2 3), 85 102.

Sloan, S. D., G. P. Tsoflias, and D. W. Steeples (2007), Shallow seismic
AVO variations related to partial water saturation during a pumping test,
Geophys. Res. Lett., 34, L22405, doi:10.1029/2007GL031556.
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