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[1] In recent years, statistical theory has been used to compute the ensemble mean and 
variance of solute concentration in aquifer formations with second-order stationary 
velocity fie lds. The merit of accurately estimating the mean and variance of concentration, 
however, remains unclear without knowing the shape of the probability density function 
(pdt). In a setup where a conservative solute is continuously injected into a domain, the 
concentration is bounded between zero and the concentration value in the injected 
solution. At small travel distances close to the fringe of the plume, an observation point 
may fall into the plume or outside, so that the statistical concentration distribution 
clusters at the two limiting values. Obviously, this results in non-Gaussian pdf's of 
concentration. With increasing travel distance, the lateral plume boundaries are smoothed, 
resulting in increased probability of intermediate concentrations. Likewise, averaging the 
concentration in a larger sampling volume, as typically done in field measurements, 
leads to higher probabilities of intermediate concentrations. We present semianalytical 
results of concentration pdf's for measurements with point-like or larger support volumes 
based on stochastic theory applied to stationary media. To this end, we employ a reversed 
auxiliary transport problem, in which we use analytical expressions for first and 
second central spatial lateral moments with an assumed Gaussian pdffor the uncertainty of 
the first lateral moment and Gauss-like shapes in individual cross sections. The resulting 
concentration pdf can be reasonably fitted by beta distributions. The results are 
compared to Monte Carlo simulations of flow and steady state transport in 3-D 
heterogeneous domains. In both methods the shape of the concentration pdf changes with 
distance to the contaminant source: Near the source, the distribution is multimodal, whereas 
it becomes a unimodal beta distribution far away from the contaminant source. The 
semianalytical and empirical pdf's differ slightly, which we contribute to the numerical 
artifacts in the Monte Carlo simulations but also to hard assumptions made in the 
semianalytical approach. Our results imply that geostatistical techniques for interpolation 
and other statistical inferences based on Gaussian distributions, such as kriging and 
cokriging, may be feasible only far away from the contaminant source. For calculations near 
the source, the beta-like distribution of concentration should be accounted for. 
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1. Introduction 
[2] It is well accepted that natural aquifers exhibit strong 

variability of hydraulic conductivity, leading to high vari-
ability of dependent quantities [e.g., Rubin, 2003]. In many 
studies, the variability of the hydraulic conductivity field 
has been mathematically modeled as a random field. Hence, 
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all dependent quantities are random variables too, namely, 
hydraulic heads, groundwater velocity, and concentrations 
of dissolved compounds. Statistical moments of heads and 
velocities have been derived by first-order methods in 
stationary fields [Bakr et al., 1978; Gutjahr et al., 1978] 
and in nonstationary fields [Li and McLaughlin, 1991, 
1995], by higher-order approximations [Neuman and Orr, 
1993; Zhang and Lu, 2004] and numerical simulations 
[Zhang, 1998; Lu and Zhang, 2004]. Nowak et al. [2008] 
investigated also the complete distribution of heads and 
velocities, showing significant non-Gaussian behavior of 
velocity. The latter authors argued that known bounds of 
distributions (e.g., upper and lower limit of hydraulic head 
in a source-free flow field with fixed head boundary 
conditions) should be considered when choosing parametric 
models for the pdf's of dependent quantities. 

[3] Traditional stochastic analysis of solute transport in 
heterogeneous aquifers has dealt with spatial moments of 
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the ensemble mean concentration [Dagan, 1984; Neuman et
al., 1987; Gelhar and Axness, 1983]. Assuming a particular
shape of the spatial distribution (usually a Gaussian one)
leads to the expected value of concentration at a particular
location in space and time. Kitanidis [1988] realized that the
second central spatial moments of the ensemble mean
concentration can be separated into two contributions: the
expected value of the second central spatial moments in
single realizations, and the uncertainty of the first spatial
moment. The rate of change of the first quantity can be
described by effective dispersion, while ensemble disper-
sion describes how the second central spatial moments of
the mean concentration increases. Dentz et al. [2000a,
2000b] derived closed form expressions of effective disper-
sion in stationary velocity fields using Eulerian methods.
Fiori and Dagan [2000] came to the same expressions
following a Lagrangian approach.
[4] Kapoor and Gelhar [1994] derived a transport equation

for the concentration variance using an Eulerian perturbation
approach. Unfortunately, the expression contained terms that
are difficult to evaluate by analytical means. Fiori and Dagan
[2000] computed the concentration variance from one- and
two-particle displacements using first-order analytical expres-
sions for the latter and assuming Gaussian distributions
in space. More accurate methods of computing the mean
concentration were presented by Neuman [1993] solving
integro-differential equations. Liu et al. [2007] used a polyno-
mial chaos expansion approach to achieve higher-order
approximations of the concentration mean and variance.
[5] Without information about the shape of the statistical

distribution, the worth of the concentration mean and
variance is limited in many applications. In risk analysis,
the exceedance probability of a given concentration may be
of interest, which cannot be computed without knowing (or
at least assuming) the shape of the concentration probability
density function (pdf). Recently, Cirpka and Valocchi
[2007] and De Simoni et al. [2007], among others, have
presented methods of mapping conservative tracer concen-
trations to those of reactive species. The relationship be-
tween these concentrations is fairly nonlinear. Hence, an
erroneous assumption about the pdf shape of conservative
compound concentrations will lead to a wrong shape of the
statistical distribution of a corresponding reactive species. It
may even lead to biased metrics such as the mean and
variance [Cirpka et al., 2008]. Finally, common geostatis-
tical methods of interpolation and inverse modeling, name-
ly, kriging and cokriging-like techniques, are based on
the implicit assumption of a Gaussian distribution [e.g.,
Kitanidis, 1995]. Strong deviations from a Gaussian distri-
bution complicates the use of concentration measurements
in statistical inference.
[6] To the best of our knowledge, Fiorotto and Caroni

[2002], Caroni and Fiorotto [2005], and Bellin and Tonina
[2007] present the only studies on the full pdf of solute
concentration in heterogeneous media. The former authors
estimated the pdf of point-like concentration measurements
using first-order approximations of the one- and two-
particle (co)variance of displacement [Fiori and Dagan,
2000] and assuming a Gaussian distribution of the displace-
ment. These estimates were compared to Monte Carlo
simulations using the particle-tracking random walk tech-
nique. The derived concentration pdf could be parameter-

ized quite well by beta distributions. Particularly at short
travel distances, the concentration pdf was bimodal, with
high probabilities of very low and very high concentrations.
Bellin and Tonina [2007] analytically derived the beta
distribution assuming that the local concentration can be
described by an Ito stochastic ordinary differential equation,
containing a term linearly dampening deviations from the
expected value of concentration, and a Wiener noise term
that is maximal at intermediate concentrations.
[7] In field measurements, concentrations are typically

not measured at points but in samples of a finite volume.
Some sampling protocols require exchanging a certain
number of well volumes before sampling, e.g., in order to
exclude bias of the samples due to contact to air (degassing,
oxidation). Beckie [1996], Graham et al. [1998], Andričević
[1998], and Rubin et al. [1999], for example, showed that
enlarging the sampling volume acts as smoothing mecha-
nism on the concentration fluctuations. Graphically spoken,
a sampling process with a nonzero support volume con-
stitutes a mixing process of its own. This sampling-induced
mixing, however, must not be confused with mixing within
the formation. By enlarging the sampling volume, solute
spreading, representing irregular plume shapes, becomes
inseparable from in situ solute mixing representing the
occurrence of local concentrations at intermediate values
[e.g., Cirpka and Kitanidis, 2000]. It is suggestive that
spatial averaging by sampling has similar effects on the
concentration pdf as enhanced pore-scale dispersion.
Namely, the pronounced bimodal shape should disappear
and eventually a more Gaussian-like distribution might be
obtained. The latter would make concentration measure-
ments better suitable for (co)kriging-like methods of statis-
tical inference, compared to what the strongly bimodal
concentrations found by Fiorotto and Caroni [2002] and
Caroni and Fiorotto [2005] would imply.
[8] In the present study, we analyze the effect of sampling

volume on the concentration probability density function.
We present a semianalytical approach of estimating the
concentration pdf based on first-order stochastic theory
applied to spatial moments which is conceptually similar
to that of Fiorotto and Caroni [2002] and Caroni and
Fiorotto [2005] but formulated in an Eulerian framework.
The semianalytical results are compared to those obtained
by extensive Monte Carlo simulations using Finite Element
methods (FEM). It may be worth noting that approaches of
computing full statistical distributions of concentration have
some tradition in turbulence research [e.g., Pope, 1985]. In
turbulent flows, however, the erratic fluctuations of flow vary
in time, so that the full statistical distributions of velocity,
pressure and concentration can be sampled by high-resolu-
tion measurements over a sufficiently long time period. This
is different in groundwater flow in heterogeneous formations.
Here, the fluctuations occur only in space, and the statistical
distribution of concentration mainly reflects the inability of
characterizing all details of the formation.
[9] The approach presented by Fiorotto and Caroni

[2002] and Caroni and Fiorotto [2005] is based on first-
order one- and two-particle statistics of displacement.
Within this framework considering an extended sampling
volume is cumbersome, because the approach requires
integrating the two-particle covariance of displacement over
all possible combinations of two points in the sampling
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volume. In our formulation these integrations are not
necessary.
[10] We restrict our analysis to steady state concentration

mimicking the situation of a plume originating from a
continuous source.

2. Governing Equation

[11] Steady state transport of a conservative, nonsorbing
solute with concentration c in groundwater can be described
by the advection-dispersion equation

= � vc D=cð Þ ¼ 0 on W ð1Þ

subject to the boundary conditions:

n � vc D=cð Þ ¼ n � vcin on Gin

n � D=cð Þ ¼ 0 on Gout [ Gno

ð2Þ

with the seepage velocity v, the local dispersion tensorD, and
the normal vector n. The domain is denoted by W with
boundary G = Gin [ Gout [ Gno, in which Gin is the boundary
for which we assume a given function of inflow concentra-
tion cin, Gout is a free outflow, and Gno a no-flow boundary. In
the examples given below, cinwill be unity within a rectangle
of size L2 � L3 centered about the origin, and zero outside.
[12] The seepage velocity v, appearing in the transport

equation (1) is given by:

v ¼ q

q
¼ K

q
=h ð3Þ

in which q is the specific discharge, q is the porosity, K is
the hydraulic conductivity, and h is the hydraulic head
meeting the steady state groundwater flow equation without
internal sources and sinks:

= � K=hð Þ ¼ 0 on W: ð4Þ
We set Dirichlet boundary conditions on the inflow and
outflow of the domain and no-flow Neumann conditions on
the other boundaries:

h ¼ hin on Gin

h ¼ hout on Gout

n � K=hð Þ ¼ 0 on Gno

ð5Þ

for given functions hin and hout.We assume that the log-
hydraulic conductivity is a second-order stationary field:

K xð Þ ¼ Kg exp Y 0 xð Þð Þ; ð6Þ
in which x is the vector of spatial coordinates, Kg is
the spatially uniform geometric mean of K(x), and Y0(x)
is a random Gaussian spatial variable with zero mean
and covariance function RY 0,Y 0(x, z) depending only on
the distance jx � zj:

RY 0;Y 0 x; zð Þ ¼ E Y 0 xð ÞY 0 zð Þ½ �

¼ RY 0 ;Y 0 jx zjð Þ 8x; z;
ð7Þ

in which E[�] denotes the expected value of the argument.

[13] Because K is a random space variable, all dependent
quantities i.e., h, v, and c are random, too. Only if the
relationship between ln(K) and the concentration was linear,
the pdf of c would be Gaussian. This, however, is not the
case because the governing equations, equations (1), (3),
and (4), involve products of the random variables. Englert et
al. [2006] and Nowak et al. [2008] showed that already the
velocity components deviate from Gaussian variables. Even
if v was Gaussian, as assumed in various stochastic
analytical approaches [e.g., Neuman, 1993; Fiori and
Dagan, 2000], the statistical distribution of concentration
c could not be Gaussian. The simplest proof of non-
Gaussian behavior is that the statistical distribution of c is
bounded, whereas the Gaussian distribution is not.

3. Approach and Methods

3.1. Sampling of Concentration Measurements

[14] Concentrations are seldom measured at ideal points.
Typically, samples are pumped from observationwells screened
over a certain depth range. As shown by Andričević [1998],
among others, the statistical moments of concentration
depend on the sampling volume (SV) because spreading
and plume meandering have a big effect on point-like
measurements but only a minor one on averages over larger
cross sections.
[15] In the current study, we consider measurements of

concentration in a cross-sectional layer, implying averaging
over a sampling area rather than a volume; that is, the
concentration is averaged in the two transverse directions but
not along the main flow direction. The averaging is done by
applying a rectangular filter function, that is, we compute the
arithmetic mean concentration in the sampling area [e.g., Fiori
et al., 2002]. Within the framework of steady state transport
considered in our study, variability of concentration along
the longitudinal direction is much smaller than along the
transverse directions, so that the restriction of sampling
volumes to cross-sectional areas is relatively insignificant.
[16] The concentration measurement may either be in

terms of the resident or flux concentration. The resident
concentration (denoted by superscript ‘‘r’’) observed in the
sampling area described by the sampling function c is given
by the arithmetic average of concentration:

crobs ¼
Z
W
c x2;3 xobs2;3

� �
d x1 xobs1

� �
c xjcin x0ð Þð Þ dx ð8Þ

in which d(�) is the Dirac delta function, and c(xjcin(x0))
expresses that the spatial concentration distribution in the
domain depends on the spatial distribution of the inflow
concentration in the injection plane. x0 denotes the spatial
coordinate within the injection plane and is explicitly
needed later on. Here and in the following we denote
elements of vectors with subscript numbers, e.g., x = (x1, x2,
x3) and we use two numbers as subscripts to define a new
vector with only these two entries, e.g., x2,3 = (x2, x3).
[17] In the present study, we consider sampling over a

rectangle with dimensions w2 � w3, implying for the
sampling function c:

c h2;3
� � ¼ 1

w2w3

if w2=2 � h2 � w2=2 and

w3=2 � h3 � w3=2

0 else

8>><>>: ð9Þ
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[18] The flux concentration (denoted by superscript ‘‘f’’)
observed in the sampling area is given by the flux-weighted
average concentration:

c
f
obs ¼

Z
W

v1 xð Þ
v
c
1 xobsð Þc x2;3 xobs2;3

� �
� d x1 xobs1

� �
c xjcin x0ð Þð Þ dx

ð10Þ

in which v1
c(xobs) is the mean longitudinal velocity in the

sampling area:

v
c
1 xobs
� � ¼ RW c x2;3 xobs2;3

� �
d x1 xobs1

� �
v1 xð Þ dxR

W c x2;3 xobs2;3

� �
d x1 xobs1

� �
dx

ð11Þ

The denominator of equation (11) is unity when the
sampling function c is chosen according to equation (9).

3.2. First-Order Semianalytical Approach to Estimate
the Concentration pdf

3.2.1. Concept
[19] In order to compute the cumulative distribution

function (cdf) of concentration averaged over a sampling
area, we apply a conceptual framework similar to that of
Fiorotto and Caroni [2002] and Caroni and Fiorotto
[2005]. Rather than applying a forward model, in which
an injected plume is tracked, we analyze where the solute
measured in the sampling area is coming from. This is a so-
called adjoint problem [e.g., Neupauer and Wilson, 1999].
For illustration, see Figure 1. In section 3.2.5, we briefly
discuss why approximations made in the following are less
restrictive in the adjoint framework than in the forward
model. The velocity field in the adjoint problem is inverted,
whereas the dispersion tensor remains the same. In transient
cases, the time arrow would also be inverted. The adjoint
steady state transport equations related to the measurements
of the resident and flux concentrations, respectively (see
equations (8) and (10)), differ in the source/sink term of the
adjoint transport equation. The adjoint transport equation
related to the flux concentration measurement is:

v � =y = � D=yð Þ ¼ c x2;3 xobs2;3

� �
� d x1 xobs1

� �
v1 xð Þ on W; ð12Þ

whereas the adjoint transport equation related to the resident
concentration measurement is:

v � =y = � D=yð Þ ¼ c x2;3 xobs2;3

� �
� d x1 xobs1

� �
v
c
1 xobs
� �

onW ð13Þ

Both adjoint transport equation, equations (12) and (13), are
subject to the same boundary conditions:

n � vy D=yð Þ ¼ 0 on Gout

n � D=yð Þ ¼ 0 on Gin [ Gno

ð14Þ

[20] In the adjoint equations, the sampling area c
becomes an injection area, and the adjoint concentration
y, denoted weighting function in the following, is advected
backward and smeared by dispersion. The weighting
function y has units of a cross-sectional density function.
Neglecting for a moment minor modifications by local
dispersion, the source-sink term in the adjoint equation for a
measurement of the flux concentration, equation (12), leads
to a distribution of y in the observation plane that is
identical to the sampling function c. In case of the adjoint
equation for a resident concentration measurement,
equation (13), by contrast, y fluctuates within the sampling

Figure 1. Example calculations of a forward and an
adjoint transport problem. (a) Particular realization of the log
conductivity field, (b) corresponding solution of the forward
transport equation, and (c) solution of the adjoint transport
equation. Green rectangle in Figures 1b and 1c indicates
source area, and red rectangle indicates sampling area.
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area. This is so because the left-hand side of equation (13) is
dominated by the divergence of the advective flux, v � y.
The normal component of the velocity v fluctuates within
the sampling area. In case of the adjoint pde for a flux-
weighted concentration measurement, equation (12), these
fluctuations are balanced by a fluctuating right-hand side,
whereas this is not the case in equation (13).
[21] The observed (flux or resident) concentration cobs

can now be computed by a weighted average of the inflow
concentration cin in the injection plane:

cobs ¼
Z
Gin

v1 x0ð Þ
v
c
1 xobsð Þy x0jc xobs

� �� �
cin x0ð Þ dx0 ð15Þ

In analogy to equations (8) and (10), y(x0jc(xobs)) expresses
that the weighting function depends on the location and size
of the sampling area. Equation (15) is an exact expression.
In Appendix A, we briefly review the derivation of these
equations by the continuous adjoint state method [Sun and
Yeh, 1990].
[22] In the following, we assume that the cross term of the

velocity ratio and ycin is negligible small. This implies that
we can approximate equation (15) by:

cobs �
Z
Gin

vrely x0jc xobs
� �� �

cin x0ð Þ dx0 ð16Þ

in which vrel is the ratio of the cross-sectional averaged
velocity in the injection plane to that in the sampling area:

vrel ¼
R
Gin

v1 x0ð Þc x02;3 xobs2;3

� �
dx0

v
c
1 xobsð Þ ð17Þ

[23] In contrast to equation (15), the simplification by
equation (16) leads to a uniform scaling factor caused by the
ratio of velocities. Equation (17) implies that we compare
the mean velocity in the sampling area to the mean velocity
in the projection of the sampling area onto the injection
plane. As will be shown in section 3.2.3, this approximation
simplifies the statistics of vrel.
[24] In the stochastic framework, the weighting function

y and the relative velocity vrel are random variables.
Because of symmetry of the original and adjoint problems,
the spatial moments of the local concentration c and the
weighting function y behave statistically identically. There-
fore, we can apply analytical results of first-order stochastic
theory derived for the forward problem to compute the
expected second central spatial moments in lateral direc-
tions of y in the injection plane as well as the expected
value and covariance of first lateral spatial moments. The
relative velocity vrel acts as a correction factor accounting
for plume expansion or contraction: A sampling area in a
low-velocity region covers a lower density of streamlines
than a sampling area of the same size in a region with about
mean velocity. Likewise, a sampling area in a high-velocity
region covers a higher density of streamlines. Therefore,
sampling in a high-velocity (low-velocity) region requires a
larger (smaller) influence area further upstream. In the
following, we will assume that plume expansion/contraction
is isotropic, that is, the entire spatial distribution of y in the
injection area is scaled by vrel

p
in both lateral directions.

[25] Assuming a particular shape of vrely for known first
and second central moments results in a particular observed
concentration cobs according to equation (16). Assuming
also a particular shape of the statistical distribution of first
moments in the injection plane, we can compute the
probability density of a certain combination of first
moments. With these ingredients, we arrive at the following
overall scheme, which will be discussed in detail in sections
3.2.2–3.2.4:
[26] 1. For given observation location xobs and sampling

function c, compute the expected first and second central
spatial moments and the covariance of first moments of the
weighting function y in the injection plane. Compute also
the variance of vrel for given sampling function c and
distance between injection plane and sampling area.
[27] 2. Assuming a shape of the pdf, generate a set of first

spatial moments of y and, independently, a set of vrel values.
[28] 3. For each realization, scale the expected spatial

second central moments of y in the injection plane by vrel.
Assuming a particular shape of the spatial distribution of
vrely in the injection plane and accounting for the first and
second central spatial moments, compute for each realiza-
tion the concentration cobs in the sampling area according to
equation (16).
[29] The scheme outlined above results in a set of cobs

values. With a sufficiently large number of realizations, we
can compute the entire cumulative distribution function
(cdf) of the concentration cobs observed in the sampling
area. Overall, rather than generating multiple realizations of
the hydraulic conductivity field and performing flow-and-
transport simulations using each of these realizations, we
directly generate multiple realizations of expanded/con-
tracted weighting functions vrely in the injection plane.
Because we rely on analytical expressions for the spatial
moments and the shape of vrely, all computational steps can
be performed rapidly (one million realizations within
approximately 1 min CPU time on a standard PC).
3.2.2. Spatial Moments
[30] Effective dispersion quantifies the expected growth rate

of second central spatial moments [Kitanidis, 1988]. In the
initial value problem of transient transport, the difference of
the expected value of second central spatial moments DX(t)
to the spatial moments at time zero can be computed by
[e.g., Kitanidis, 1988; Dentz et al., 2000a, 2000b]:

DX tð Þ ¼ 2

Z t

0

De tð Þ dt ð18Þ

with the effective dispersion tensor De which depends on
the initial distribution. The change of second central spatial
moments of the ensemble concentration DM2c(E[c(t)])
follows [e.g., Gelhar and Axness, 1983]:

DM2c E c tð Þ½ �ð Þ ¼ 2

Z t

0

D* tð Þ dt ð19Þ

with the ensemble dispersion tensor D*. In a stationary
velocity field, the expected value of the spatial first-moment
vector m1(t) is given by:

E m1 tð Þ½ � ¼ vt ð20Þ
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with the arithmetic mean velocity vector v. The associated
uncertainty is expressed by the covariance matrix Cm1m1

(t)
of first spatial moments:

Cm1m1
tð Þ ¼ E m1 tð Þð½ E m1 tð Þ½ �Þ

� m1 tð Þ E m1 tð Þ½ �ð Þ�

¼ DM2c E c tð Þ½ �ð Þ DX tð Þ

ð21Þ

[31] Dentz et al. [2000b] derived first-order expressions
for D* and De in second-order stationary velocity fields for
arbitrary initial distributions c(x):

D* ¼ Dþ
Z
Vy

Sv0v0T yð Þ

� d yð Þ a yð Þð Þ 1 exp d yð Þ þ a yð Þð Þtð Þð Þ
d yð Þ2 a yð Þ2 dy ð22Þ

De ¼ D*
Z
Vy

~c yð Þð Þ2Sv0v0T yð Þ d yð Þ þ a yð Þð Þ

� exp d yð Þ þ a yð Þð Þtð Þ exp 2d yð Þtð Þð Þ
d yð Þ2 a yð Þ2 dy ð23Þ

in which Sv 0v 0T is the power spectrum of the velocity
fluctuations (for first-order approximations see Gelhar and
Axness [1983]), y is the vector of frequencies, ~c(y) is the
Fourier transform of the initial distribution c(x), and a(y),
d(y) are given by

a yð Þ :¼ 2p i vTy

d yð Þ :¼ 4p2yTDy:
ð24Þ

[32] We assume that the initial distribution is centered
about the origin. It is a rectangle c(x2,3) with dimensions w2

and w3 in directions x2 and x3 and a Dirac delta function in
direction x1. The corresponding Fourier transform ~c(y) of
the three-dimensional sampling function c(x2,3)d(x1) is:

~c yð Þ ¼ sinc w2y2ð Þsinc w3y3ð Þ 8 y1; ð25Þ

in which sinc(x) is the normalized sinc function defined as
sinc(x) = sin(px)/px and sinc(0) = 1.
[33] Then, DX(t) and Cm1m1

(t) can be computed by
substituting equations (22), (23), and (25) into equations
(18) and (19):

Cm1m1
tð Þ ¼ 2

Z
Vy

sinc w2y2ð Þð Þ2 sinc w3y3ð Þð Þ2

� Sv0v0T yð Þ
"
1 exp d yð Þ þ a yð Þð Þtð Þ

d yð Þ2 a yð Þ2

þ d yð Þ þ a yð Þð Þ exp 2d yð Þtð Þ 1ð Þ
2d yð Þ d yð Þ2 a yð Þ2

� �
#
dy ð26Þ

and

DX tð Þ ¼ 2

"
Dt þ

Z
Vy

Sv0v0T yð Þ d yð Þ a yð Þð Þ2

�
"

d yð Þ þ a yð Þð Þt þ exp d yð Þ þ a yð Þð Þtð Þ 1ð Þ
a yð Þ2 a yð Þ2
� �2

sinc w2y2ð Þð Þ2 sinc w3y3ð Þð Þ2

�
"
1 exp d yð Þ þ a yð Þð Þtð Þ

d yð Þ2 a yð Þ2

þ d yð Þ þ a yð Þð Þ exp 2d yð Þtð Þ 1ð Þ
2d yð Þ d yð Þ2 a yð Þ2

� � dy

353535: ð27Þ

[34] These expressions are for transient transport of a
solute with a particular initial distribution. In steady state
transport, we are only interested in the spatial moments in
transverse directions as function of the longitudinal coordi-
nate x1, which we evaluate from the above expressions at
the mean travel time t = x1/v. In our implementation, we
evaluate equations (26) and (27) in the Fourier space
associated to an extended periodic spatial domain. Fourier
transformations are performed by the Fast Fourier Trans-
formation (FFT) implemented in Matlab.
3.2.3. Estimating the Distribution of Relative Velocity
[35] In our framework, the relative velocity vrel, appearing

in equation (16), acts as a correction factor to account for
expansion or contraction of the plume cross section. As
already discussed in section 3.2.1, we compare the mean
velocity in the sampling area to the mean velocity in the
projection of the sampling area onto the injection plane. In
principle, it would be possible to account for the lateral
displacement of y in the injection plane and its expansion
due to transverse effective dispersion.
[36] In a second-order stationary velocity field, we can

compute the variance of vrel using first order theory by:

s2
vrel

¼ 2

v21
Rv1v1 0ð Þ Rv1v1 xobs x0

� �� �
; ð28Þ

in which Rv1v1
(h) is the autocovariance function of the

longitudinal velocity component with distance vector h. In
the given framework, h equals [x1

obs, 0, 0]. For mean flow in
direction x1, the scaled covariance function Rv1v1

(h)/v1
2 of the

filtered longitudinal velocity component can be estimated in
first order by [e.g., Gelhar and Axness, 1983]:

Rv1v1 hð Þ
v21

¼
Z
1
~c yð Þ2 1

y21
y�y

� �2

SY 0Y 0 yð Þ exp 2pih�yð Þ dy ð29Þ

[37] We model vrel as random lognormally distributed
variable [see Nowak et al., 2008] with unit geometric mean
(implying that the statistics of vrel are identical to those of
vrel

1) and arithmetic variance svrel
2 . Thus the cdf of vrel is:

Fvrel vrelð Þ ¼ 1

2
þ 1

2
erf

ln vrelð Þ
2 ln 1

2
þ 1

4
þ s2

vrel

q� �r
0BB@

1CCA ð30Þ
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3.2.4. Computing the cdf of Concentration
[38] In the first step, we transfer the expressions for

lateral moments presented in section 3.2.2 to our adjoint
transport problem (see equation (12)). We consider a rect-
angular observation area centered about the point xobs. The
widths of the rectangle are w2 and w3 in the horizontal and
vertical transverse coordinate, respectively. The inflow
boundary is at x1 = 0. We denote the first transverse
moments of the weighting function y in the injection plane
by x2,3. The expected value of x2,3 equals the transverse
coordinates x2,3

obs of the observation point, whereas the
covariance matrix Cxx;2,3 equals Cm1m1;2,3

(xobs1 =v) as
computed by equation (26). The expected second central
transverse moments DX2,3 of the weighting function y are
given by equation (27). This covariance matrix depends on
the travel distance, x1

obs, the mean velocity, v, the local
dispersion tensor, D, and the size of the observation
rectangle, (w2, w3).
[39] In the second step, we consider the ensemble of

weighting functions y (0, x02, x
0
3) in the injection plane.

First-order analysis does not give the uncertainty of second
central spatial moments, but we consider the additional
random scaling factor vrel which produces variability of
second central spatial moments of vrely. For a point-like
observation, we assume a Gaussian spatial distribution in
the injection plane of vrely

p (x02,3jx2,3) (superscript ‘‘p’’
denotes point-like measurements) centered about the first
moments x2,3 (which are assumed to be given in this step)
with covariance matrix DX2,3 (x1

obs/v)/vrel:

vrelyp x02;3jx2;3
� �

¼ vrel

2p DX22DX33

p

� exp
1

2

X3
i 2

x0i xi
� �2
DXii=vrel

 ! !
; ð31Þ

in which we have dropped the argument xobs1/v of DX2,3

and made use of the fact that this matrix has zero off-
diagonal entries.
[40] For a rectangular sampling area with widths w2 and

w3, the corresponding weighting function times the
correction factor vrely

SV(x02,3jx2,3) (superscript ‘‘SV’’ de-
notes measurements over a larger sampling area) is an
integrated Gaussian distribution:

vrelySV x02;3jx2;3
� �

¼ vrel

4w2w3

�
Y3
i 2

erf
xi

1
2 vrel
p wi x0i
2DXii=vrel

p !"

erf
xi þ 1

2 vrel
p wi x0i

2DXii=vrel
p !#

ð32Þ

Both expressions depend on the sampling area via DX2,3.
[41] In the third step, we consider the concentration

in the inflow cin(x
0). For simplicity of the further

derivations, we set cin(x
0) to unity within a rectangle of

size L2 � L3 centered about the origin, and zero outside.
Substituting the weighting function times the relative
velocity vrely

p(x02,3jx2,3) and vrely
SV(x02,3jx2,3) into equation

(16) and considering equation (17) yields the observed
concentration cobs(x2,3, vrel) for given vector of first
moments x2,3 of the weighting function y in the injection

plane and relative velocity vrel, namely, for point-like
observations:

c
p
obs x2;3; vrel
� �
¼
Z þL2=2

�L2=2

Z þL3=2

�L3=2

vrelyp x02;3jx2;3
� �

dx03 dx02

¼ 1

4

Y3
i 2

erf

1

2
Li xi

2DXii=vrel
p

0B@
1CA erf

þ 1
2
Li xi

2DXii=vrel
p !0B@

1CA ð33Þ

and for observations over a rectangle:

cSVobs x2;3; vrel
� �
¼
Z þL2=2

�L2=2

Z þL3=2

�L3=2

vrelySV x02;3jx2;3
� �

dx03 dx
0
2

¼ vrel

4w2w3

Y3
i 2

���
þ 1

2
Li þ 1

2 vrel
p wi xi

� �

� erf
þ 1

2
Li þ 1

2 vrel
p wi xi

2DXii=vrel
p !

þ 2DXii

pvrel

s
exp

þ 1
2
Li þ 1

2 vrel
p wi xi

2DXii=vrel

 !!
�

þ 1

2
Li

1

2 vrel
p wi xi

� �

� erf
þ 1

2
Li

1
2 vrel
p wi xi

2DXii=vrel
p !

þ 2DXii

pvrel

s
exp

þ 1
2
Li

1
2 vrel
p wi xi

2DXii=vrel

 !!!
��

1

2
Li þ 1

2 vrel
p wi xi

� �

� erf

1
2
Li þ 1

2 vrel
p wi xi

2DXii=vrel
p !

þ 2DXii

pvrel

s
exp

1
2
Li þ 1

2 vrel
p wi xi

2DXii=vrel

 !!
�

1

2
Li

1

2 vrel
p wi xi

� �

� erf

1
2
Li

1
2 vrel
p wi xi

2DXii=vrel
p !

þ 2DXii

pvrel

s
exp

1
2
Li

1
2 vrel
p wi xi

2DXii=vrel

 !!!#
ð34Þ

[42] In the given framework, the observed concentration
according to equations (33) and (34) depends on the vector
of first moments x2,3 and on the relative velocity vrel. The
joint probability of x2,3 and vrel can thus be mapped to the
probability of cobs.
[43] We assume that the statistical distribution Fm1

(x2,3)
of the first-moment vector x2,3 is Gaussian:

Fm1
x2;3
� � 	 N xobs2;3 ;Cm1m1 ;2;3

xobs1

v

� �� �
: ð35Þ

[44] For the concentration observed in the sampling area
around the observation point xobs, we generate a set of 8 �
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106 realizations of x2,3 drawn from the distribution Fm1
(x2,3)

according to equation (35) and a set of vrel values drawn
from the lognormal distribution given in equation (30). For
illustration of the x2,3 values see Figure 2a. For each
realization, we compute cobs(x2,3,vrel) according to equa-
tions (33) and (34), which may be visualized by Figure 2b.
From the set of realizations, we compute the empirical
cumulative distribution function bFc

ana(cobs
tar ) for a given target

concentration cobs
tar by:

bFana

c ctarobs
� � ¼ number of realizationswith cobs � ctarobs

total number of realizations
ð36Þ

[45] With the outlined semianalytical approach, the con-
centration cdf can be computed quite rapidly for given
observation location, sampling volume, local dispersion
tensor, mean velocity, and statistical parameters of the log-
conductivity field.
3.2.5. Discussion of the Approach
[46] In the approach presented by Fiorotto and Caroni

[2002] and Caroni and Fiorotto [2005], considering an
extended sampling volume requires the integration of the
two-particle covariance function of displacement over all
combinations of two points within the sampling area, which
is cumbersome. The latter authors also did not consider the
expansion/contraction factor vrel. Given the first spatial
moments of displacement, the scaled weighting function
vrely

SV(x02,3jx2,3), computed in our approach, equals the
probability density that a particle found anywhere within
the sampling area originates from a particular point x0 in the
injection plane.
[47] The approach outlined above depends on a number

of assumptions that may be questioned. First, the amount of
lateral smearing, expressed by DX2,3/vrel, is set to the
expected value of second central spatial moments divided
by the correction factor. Numerical experiments, however,
indicate that mixing shows strong spatial fluctuations [e.g.,
Cirpka and Kitanidis, 2000], which might not be totally
covered by our approach [see alsoWerth et al., 2006]. Using
first-order stochastic theory, it is difficult to quantify the
uncertainty of DX2,3 [e.g., Eberhard, 2004]. The correction
factor vrel accounts only for a single mechanism (expansion
and contraction of plumes) causing uncertainty of DX2,3.
Second, we calculate the dispersion tensor only to first order
accuracy. Dentz et al. [2002] and Attinger et al. [2004]
showed that especially for large log-conductivity variances
this might be insufficient. Third, we assume a Gaussian
shape of the weighting function in the injection plane,
whereas in reality the weighting function for a given
realization of the log-conductivity field will have a more
irregular shape. The difference between the irregular shape
and the assumed Gaussian shape grows with the size of the
injection source. In the adjoint equations, the sampling area
and the injection source are interchanged. Thus, whenever
the sampling area is smaller than the injection source, the
adjoint approach will be less biased than a formulation
based on the forward equations. Furthermore we believe
that the assuming a particular adjoint plume shape is less
restrictive than the other two simplifications mentioned
above, because the exact shape of vrely(x

0
2,3jx2,3) is not too

relevant. The important quantity is the integral of
vrely(x

0
2,3jx2,3) over the injection area (see equations (33)

and (34)).

3.3. Monte Carlo Simulation Using Realizations
of Log-Conductivity Fields: Numerical Methods

[48] For comparison purpose, we perform numerical
Monte Carlo simulations of flow and transport using mul-
tiple random realizations of the log-conductivity field. The
ln(K) fields are generated by the spectral approach of
Dietrich and Newsam [1993]. Flow and transport are
simulated by the Finite Element Method (FEM) using
trilinear base functions on a structured, orthogonal grid. The
conductivity is defined element by element. For the
stabilization of transport, we use the streamline upwind
Petrov Galerkin (SUPG) method of Brooks and Hughes

Figure 2. Illustration of the semianalytical approach for
calculating the concentration cdf. (a) Large rectangle in the
front indicates solute source, cross indicates observation
point, small rectangle in the back indicates sampling area,
gray dots indicate realizations of first transverse moments as
given in equation (35), and dashed line indicates projection
of the observation point onto the inflow plane. (b)
Weighting function vrely in the injection plane according
to equation (32) for a particular realization of first transverse
moments with projection of the source area onto vrely
(white line); rear layer indicates inflow plane with boundary
of source area and contour lines of vrely.
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[1982] with slightly enhanced streamline diffusion if
necessary. The resulting systems of linear equations are
solved by a (bi)conjugate gradient method with algebraic
multigrid preconditioning [Stüben, 2001]. The sampling of
concentration is simulated by taking an arithmetic average
of concentration in the sampling area (resident concentra-
tion, see equation (8)). While resident and flux concentra-
tions are known to differ considerably in transient transport
(namely, in the time of breakthrough), we assume that these
differences are much less pronounced under conditions of
steady state transport. In order to obtain a good empirical
approximation of the concentration pdf, we found no less
than 10,000 realizations to be sufficient. The empirical
cumulative distribution function bFc

num(cobs
tar ) for a given

target concentration cobs
tar is computed by:

bFnum

c ctarobs
� � ¼ number of realizationswith csim � ctarobs

total number of realizations
ð37Þ

in which csim is the simulated concentration averaged over a
given sampling area in a single realization. Likewise the

empirical pdf bf h(c) is given by a histogram, that is, the
number of realizations falling into a defined range centered
about c, divided by the total number of realizations and the
step size h.

3.4. Fitting of Parametric Distributions

[49] We hypothesize that the semianalytical and empirical
distributions of steady state concentration can be described
sufficiently well by two-parametric statistical distributions.
Consequently, a data fitting procedure is needed. Some
parametric distributions, such as the Gaussian one, are
unbounded. Concentration, however, ranges between zero
and one, if normalized by the inflow concentration. In the
fitting procedure, it is mandatory to penalize the fractions
of the parametric distributions that are outside of the
physically possible range. For this purpose, we extend
the least-square fitting procedure such that probability
mass outside the unit interval is considered in the good-
ness of the fitting curve. The resulting extended error norm
for the distance between a stepwise constant empirical (or

semianalytical) pdf bf h(c) within the unit domain and a
continuous parametric pdf f is:

e2 bfh; f� �
¼
Xm
i 1

hi bfh cið Þ f cið Þ
� �2

þ
Z 0

�1
f 2 xð Þ dxþ

Z 1

1

f 2 xð Þ dx; ð38Þ

in which the latter two terms penalize the sections of f
falling outside the unit domain.
[50] We fit the empirical results to two parametric dis-

tributions: the Gaussian distribution and the beta distribu-
tion given by:

fB a;bð Þ xð Þ ¼
G aþ bð Þ
G að ÞG bð Þ x

a�1 1 xð Þb�1 8x 2 0; 1½ �
0 otherwise

8<: ð39Þ

in which G(z) =
R1
0

tz 1exp(�t) dt denotes the well-known
Gamma function and a, b > 0 are the nonnegative
parameters of the beta distribution. The beta distribution
was already used by Fiorotto and Caroni [2002], Caroni
and Fiorotto [2005], and Bellin and Tonina [2007].
[51] We perform the fitting of parametric distributions to

the concentration pdf’s of both the semianalytical and the
numerical Monte Carlo methods.

4. Application to a Hypothetical Test Problem

4.1. Description of the Test Problem

[52] We consider an orthogonal domain of the size 200 m�
50 m � 25 m. For the generation of conductivity fields we
assume an exponential model of the covariance function (see
equation (7)), characterized by the variance s2Y and the vector
of correlation lengths l = [l1, l2, l3]:

RY 0 ;Y 0 jx zjð Þ ¼ s2
Y exp

X3
i 1

xi zi

li

� �2

vuut0@ 1A: ð40Þ

[53] Flow is in direction x1 with mean velocity v = 1.157 �
10 5 m/s(=1 m/d). The size of the rectangular injection area
is 10 m � 5 m. As illustrated in Figure 3, we consider a path
of observation points oriented in x1 direction. The path starts
at the center of the bottom edge of the plume. The vector of
correlation lengths is l = [10, 5, 2.5] [m], and the variance
sY
2 of ln(K) is unity unless otherwise noted. The transport

parameters are chosen for two test cases differing in their
transverse Péclet numbers:

Pei ¼ vli

Di

ð41Þ

[54] In test case 1, Pe2 = 250 and Pe3 = 125, whereas in
test case 2 the values are Pe2 = 25,000 and Pe3 = 12,500.
The resolution of the FEM grid is 2 m in the longitudinal
direction and 1/3 m in both transverse directions. The FEM
grid has 	1.1 � 106 nodes.
4.2. Individual Results of Both Methods

[55] Using the semianalytical method described in
section 3.2 to evaluate the cdf of concentration, we

Figure 3. Setting of the computational domain and
location of the observation path. The injection source is
10 m � 5 m (does not fit to the scale).
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obtain a reasonable match when fitting beta distributions
to the results. Figure 4 shows generated (dotted line)
and fitted (solid line) cdf’s for selected points along the
observation path and for selected sampling sizes. The
difference between the two curves is small. The biggest
difference is observed for relatively small travel distan-
ces at small concentration values.
[56] Figure 5 shows the impact of increasing the sampling

volume on the concentration pdf at two points along the
observation path. Enlarging the sampling volume changes
the shape of the distribution. For point-like observations at
short travel distance, the concentration pdf is bimodal,
reflecting pseudobinary behavior (the observation points
lies either within the plume or outside). Slightly enlarging
the sampling volume leads to a multimodal pdf with an
additional peak at intermediate concentrations. Considering
very large sampling volumes, finally, the pdf becomes
unimodal with a single peak at intermediate concentrations.
Figure 6 shows the effect of travel distance on the concen-
tration pdf for both point-like observations and sampling
over a large sampling area. Increasing the travel distance
has a similar effect on the shape of the concentration pdf as
increasing the sampling volume. The point from which
onward the beta fitted concentration pdf is unimodal, is at
43 m for the point-like measurements, at 35 m for a
sampling area of 2 m � 2 m, and for sampling areas larger
than 3.33 m � 3.33 m the shape of the beta fitted pdf’s is
unimodal within the complete domain.
[57] Figures 7–9 show the results of our Monte Carlo

simulations. Figures 7 and 8 show the empirical pdf’s of
concentration as function of travel distance. The plots differ
in the transverse Péclet numbers and the size of the
sampling area. The numerical results confirm the transition
from a bimodal to a unimodal distribution for increasing
travel distance, transverse dispersion, or sampling volume.
The point from which onward the beta fitted concentration
pdf is unimodal, is at 36 m for the point-like measurements

and for sampling areas larger than 1 m � 1 m the shape of
the beta fitted pdf’s is unimodal within the complete
domain. Figure 9 shows plots of the fitting error e according
to equation (38) for the numerical Monte Carlo simulation.
With increasing distance to the solute source we observe,
that the concentration pdf obtained from the numerical
Monte Carlo simulations can also be fitted by a Gaussian
pdf. From a certain distance on, the error norms of the beta
and Gaussian fits are in the same range. Increasing the
sampling volume decreases the distance to the contaminant
source for which a (quasi-)Gaussian distribution is not yet
observed. In the numerical Monte Carlo simulations the
multimodal shape of the concentration pdf (three probability
peaks, two at the extreme values and one at an intermediate
concentration) can be observed only in a narrow range of
travel distance. The probability peaks are also not as distinct
as in the semianalytical results.
[58] All results shown so far refer to the observation

points along a path starting at the center of the bottom edge

Figure 5. Development of the semianalytical concentra-
tion pdf along the observation path with increasing
sampling volume. Line a indicates point-like observation,
line b indicates observation over 2.67 m � 2.67 m, line c
indicates observation over 5.33 m � 5.33 m, and line d
indicates observation over 8 m � 8 m. (a) Distance x1

obs =
2l1 and (b) distance x1

obs = 10l1.

Figure 4. Cumulative distribution function (cdf) of
concentration in the semianalytical approach. Dashed line
indicates semianalytical cdf, and solid line indicates fitted
beta distribution. Line a indicates travel distance x1 = l1 and
sampling volume 4 m � 4 m, line b indicates travel distance
x1 = 2l1 for a point measurement, and line c indicates x1 =
16l1 for sampling volume 8 m � 8 m.
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of the plume. We have also considered other observation
paths starting at other edges of the plume and in the
plume center. These results are not shown explicitly. As
may be expected, the observed pdf following the center
line of the plume did not show the bimodal shape. The
observation paths along different edges of the plume are
qualitatively similar to the discussed observation path.
Furthermore, we performed numerical Monte Carlo
simulations for different values of log conductivity
variance, namely, sY

2 = 0.05, sY
2 = 1/3, and sY

2 = 3. Here
we observed that increasing the variance leads to a faster
transition from a bimodal concentration pdf to a quasi-
Gaussian one. We are careful in overinterpreting these
findings because numerical artifacts, such as numerical
dispersion and oscillations, may have affected the results.

4.3. Comparison of the Methods

[59] For comparison of the semianalytical and numerical
approaches, we use the settings described in section 4.1.
The log-conductivity variance is set to eithersY

2 = 0.05 or sY
2 =

1 and the numerical results with small Péclet numbers,
namely, Pe2 = 250 and Pe3 = 125, are used.

[60] For comparison of the statistical distributions
obtained by the semianalytical and numerical approaches,
we use the same error norm e as used in the evaluation of
fitting parametric distributions, namely, the root-mean-
square error as defined in equation (38). Figure 10 shows
e as a function of distance x1 from the injection plane for sY

2 =
0.05 and sY

2 = 1. Quite obviously, decreasing the variance of
log-conductivity also decreases the mean square error e
between the statistical distributions obtained by the
semianalytical and the numerical approaches. We conjecture
that the two statistical distributions become identical at the
small-variance limit.
[61] In Figure 11 the pdf’s of the semianalytical (black

line) and the numerical (gray line) approaches are shown
for different travel distances along the observation path.
Figure 11a shows the results for point-like measurements,
Figure 11b for a medium-sized sampling area, and Figure 11c
for a large sampling area.

Figure 6. Development of the semianalytical concentra-
tion pdf along the observation path with increasing distance
to the contaminant source (see labels). (a) Point-like
measurement and (b) sampling area 4 m � 4 m.

Figure 7. Steady state concentration pdf according to
numerical Monte Carlo simulations. Development along
the observation path from 20 m to 200 m distance to the
solute source. Large transverse Péclet numbers (Pe2 =
25,000 and Pe3 = 12,500). (a) Point-like measurements
and (b) sampling area 5.33 m � 5.33 m.
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[62] Generally, the pdf’s of both methods agree reason-
ably. We conclude that the semianalytical approach approx-
imates the distribution of concentration quite well.
Nonetheless, we observe a few basic differences. It seems
that the peaks of the concentration pdf at the extreme values
are systematically lower in the numerical results than in
the semianalytical ones. Consequently, the peaks at inter-
mediate concentration values are more pronounced in
the numerical simulations than in the semianalytical
approach. In cases where the concentration pdf is unimodal,
the peak of the semianalytical approach tends to be
shifted toward smaller concentrations in comparison to the
numerical results. As mentioned above, multimodal pdf’s,
exhibiting three peaks, are seldom observed in the numer-
ical calculations.
[63] With exception of the point-like observation (see

Figure 11a), the difference between the two approaches is
larger for small travel distance (x1 = 2l1) than for large

travel distance (x1 = 16l1). The reasons for this discrepancy
are manifold. Dagan [1989] and Rubin [2003] report, that
even the (ensemble) mean concentration does not have a
Gaussian shape along cross sections at small travel
distances in cases where the log conductivity variance sY

2

exceeds values of 0.05. To the best of our knowledge, there
are no studies on the shape of individual plumes in cross
sections, but it seems reasonable to assume that they even
less resemble Gaussian distributions. Another reason might
be that we calculate the dispersion tensor only to first order
accuracy, which may be insufficient for the transverse
components [Dentz et al., 2002; Attinger et al., 2004]. For
example, flow focussing in high-conductivity areas en-
hances solute mixing [Werth et al., 2006], which is a higher-
order effect. Furthermore, we cannot exclude that numerical
dispersion affects the results of the numerical Monte Carlo
simulations.
[64] For larger travel distances, the results of the two

methods become similar (see Figure 11), except for the
above described shifting of the peak in the semianalytical

Figure 8. Steady state concentration pdf according to
numerical Monte Carlo simulations. Development along
the observation path from 20 m to 200 m distance to the
solute source. Small transverse Péclet numbers (Pe2 = 250
and Pe3 = 125). (a) Point-like measurements and (b) sampling
area 5.33 m � 5.33 m.

Figure 9. Fitting error e according to equation (38) of the
Gaussian fit (black line) and the beta fit (gray line)
compared to the numerical results as function of travel
distance. Diamonds indicate point-like measurements,
and crosses indicate sampling area 5.33 m � 5.33 m.
(a) Large transverse Péclet numbers (Pe2 = 25,000 and Pe3 =
12,500) and (b) small transverse Péclet numbers (Pe2 = 250
and Pe3 = 125).
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concentration pdf’s toward lower concentration values. This
may mean that the assumptions of the semianalytical
approach are less restrictive for larger travel distances.
The distance needed for the two methods to approach
similar pdf’s decreases with increasing sampling volume.
The smoother the concentration distribution, the better the
two approaches agree. Smoothing can be achieved either by
increasing the sampling volume, or by letting dispersion act
over a longer travel time.

5. Conclusions

[65] In this study, we have analyzed how increasing the
sampling volume affects the probability density function of
steady state concentration in heterogeneous formations.
Fiorotto and Caroni [2002] and Caroni and Fiorotto
[2005] had already shown that point-like concentration
measurements exhibit a bimodal pdf at short travel distance.
With increasing travel distance, the measurement device
samples a larger fraction of the inflow plane which leads to
a decrease in concentration variance and a unimodal pdf of
concentration. Increasing the sampling area has a similar
effect. The larger the sampling area, the shorter is the travel
distance over which multimodal behavior can be observed.
[66] We have presented a semianalytical approach of

computing the full statistical distribution of concentrations
sampled over a rectangular area in second-order stationary
velocity fields. Application to other source and sampling
volume geometries is straightforward. Relying on first-order
stochastic theory of effective dispersion, our approach
cannot take into account higher-order effects, such as
enhanced transverse mixing due to flow focusing [Werth
et al., 2006]. Conversely, the evaluation of the concentration
pdf by numerical Monte Carlo simulations used for
comparison is computationally demanding and may be
compromised by numerical dispersion.
[67] The shape of the concentration pdf is of significance

in risk assessment, in the transfer to reactive transport
[Cirpka et al., 2008], and in statistical inference [Michalak

and Kitanidis, 2003]. Our results confirm that quasi-
Gaussian statistical distributions are obtained either after
passing long travel distances or by averaging over large
sampling volumes. If the expected value and variance of

Figure 10. Root-mean-square error e between the semi-
analytical and the numerical approaches for point-like
measurements and log conductivity variance sY

2 = 0.05
and sY

2 = 1, respectively. The errors are given along the
observation path with different distances (x1) to the
contaminant source.

Figure 11. Comparison of the semianalytical (black line)
and numerical (gray line) concentration pdf’s for log
conductivity variance sY

2 = 1. (a) Point-like measurement,
(b) sampling area 4m� 4m, and (c) sampling area 8m� 8m.
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concentration are the only available information, we
recommend assuming a beta distribution for the concentra-
tion pdf rather than relying on low-order perturbation
approaches in propagating uncertainty from log-conductiv-
ity or velocity to concentrations, which implicitly assume
Gaussian distributions.

Appendix A: Derivation of Equation (15)

[68] For the derivation of equation (15), we start with
the weak form of equation (1) subject to the boundary
conditions given in equation (2). Multiplying equation (1)
with a test function y and integrating over the spatial
domain yields: Z

W
y= � vc D=cð Þ dx ¼ 0; ðA1Þ

subject to the boundary conditions:R
Gin

n � yvc yD=cð Þ dx ¼ R
Gin

n � yvcin dxR
Gout[Gno

n � yD=cð Þ dx ¼ 0:
ðA2Þ

[69] Applying Green’s theorem to equation (A1) results
inR
W =y � v = � D=yð Þð Þc dx

þ RG n � yvc yD=cþ = � yDcð Þð Þ dx ¼ 0:
ðA3Þ

[70] Multiplying the observation equations, equations (8)
and (10), for resident and flux concentration, respectively,
with v1

c(xobs) and subtracting the result from equation (A3)
leads to:

R
W

�
=y � v = � D=yð Þ

c x2;3 xobs2;3

� �
d x1 xobs1

� �bv�c dx
þ R

G n � yvc|{z}
1

yD=c|fflffl{zfflffl}
2

þ cD=y|fflffl{zfflffl}
3

0@ 1A dx ¼ v
c
1 c

r=f
obs;

ðA4Þ

in which bv equals v1c for the measurement of resident
concentration, and v1 for that of flux concentration. In
equation (A4) we have dropped the argument xobs in
v1
c(xobs) for convenience.
[71] If y meets equations (13) and (12) for resident and

flux concentration, respectively, subject to equation (14) we
obtain the observation equation, equation (15), using the
weighting function y. In detail: Meeting equation (13) and
equation (12), respectively, eliminates the integral over the
domain W. The integral over the boundary G = Gin[Gout[Gno

can be considered separately. The integral of 1, 2, and 3
over Gno vanishes because of equations (14) and (A2). The
integrals of 2 and 3 over Gout and Gin vanish because of
equations (A2) and (14), respectively. 1 + 3 integrated over
Gout vanishes because of equation (14). So finally because
of equation (A2) the integral of 1 + 2 over Gin is

R
Gin

n �
yvcindx by using n = (�1, 0, 0)T on Gin we obtain equation
(15).

Notation

c concentration.
Cm1m1

(t) covariance matrix of first spatial
moments.

Cm1m1;2,3
(�) covariance matrix of first spatial

moments in the transverse directions.
cobs concentration observed by the semi-

analytical method.
c pobs(x2,3,vrel)

and cSVobs(x2,3,vrel)
observed concentration for point-
like measurements and larger sam-
pling volume, respectively.

cobs
r , cobs

f observed resident and flux concen-
tration, respectively.

cobs
tar target concentration for cdf thresh-

old.
csim concentration simulated by the nu-

merical MC method.
D dispersion tensor.
D* ensemble dispersion tensor.
De effective dispersion tensor.
E(�) expected value.

f continuous pdf of a parametric
distribution.bFc

ana(cobs
tar ) empirical cumulative distribution

function for a given target concen-
tration cobs

tar of the semianalytical
results.

fB(a,b)(x) pdf of the beta distribution.bf h(c) empirical pdf of a empirical cdf as
histogram.bFc

num(cobs
tar ) empirical cumulative distribution

function for a given target concen-
tration cobs

tar of the numerical MC
results.

Fvrel
(vrel) cdf of vrel.

h hydraulic heads.
i imaginary unit.

K, Y hydraulic conductivity, hydraulic
log-conductivity.

m1(t) first spatial moment.
Pe2, Pe3 Péclet number in transverse direc-

tions.
Rv1v1

(h) autocovariance function of the
longitudinal velocity component
with distance vector h.

RY 0,Y 0(jx � zj) covariance function of the log-
conductivity field for an exponen-
tial model.

Sv0,v0T power spectrum of the velocity
fluctuations.

sinc(�) normalized sinc function.
SY 0,Y 0T power spectrum of the log-

conductivity fluctuations.
t,t time variables.

v = (v1, v2, v3)
T seepage velocity.

v = (v1, v2, v3)
T mean value of seepage velocity.

vrel relative velocity (see equation (17)).
vrely

p(x02,3jx2,3)
and vrely

SV(x02,3jx2,3)
distribution of relative velocity
times weighting function for point-
like and for larger sampling areas,
respectively.

Vy domain of the Fourier space.
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v1
c(xobs) mean longitudinal velocity in the

sampling area (see equation (11)).
w2, w3 width in x2 and x3 direction,

respectively.
x = (x1, x2, x3)

T spatial coordinate vector.
x0 = (x01, x

0
2, x

0
3)
T spatial coordinate vector in the

inflow plane.
x2,3 = (x2, x3)

T transverse spatial coordinate vector.
xobs spatial coordinate vector.

y = (y1, y2, y3)
T spectral coordinate.

G = @W boundary of the spatial domain.
G(z) Gamma function.

DM2c(E[c(t)]) change of second central spatial
moments of the ensemble concen-
tration.

DX(t) difference of the expected value of
second central spatial moments.

DXij(t) element i,j of matrix DX(t).
e2(bf h, f) error measure for the distance be-

tween a stepwise constant empirical
pdf bf h(c) within the unit domain and
a continuous parametric pdf f(c).

l = (l1, l2, l3)
T vector of correlation length.

x2,3 = (x2, x3)
T first transverse moments of the

weighting function y in the injec-
tion plane.

svrel
2 variance of vrel.

sY
2 variance of the log-conductivity

field.
c(x) ~c(y) and sampling function and its

Fourier transform.
y weighting function (adjoint concen-

tration).
W spatial domain.

� � � tensor product.
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