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Abstract

While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been
thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of
climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and
biological responses to climate. However, the efficacy of the different indicators is affected by regional response to
climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or
combinations of indicators are more effective for different lake types and geographic regions. The extraction of
climate signals can be further complicated by the influence of other environmental changes, such as
eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land use influences.
In many cases, however, confounding factors can be addressed through analytical tools such as detrending or
filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to
change, and integrate information about changes in the catchment.

Currently, climate change is considered to be one of the
most severe threats to ecosystems around the globe (ACIA
2004; Rosenzweig et al. 2007). Monitoring and understand-
ing the effects of climate change pose challenges because of
the multitude of responses within an ecosystem and the
spatial variation within the landscape. A substantial body of
research demonstrates the sensitivity of lakes to climate and
shows that physical, chemical, and biological lake properties
respond rapidly to climate-related changes (ACIA 2004;
Rosenzweig et al. 2007). Fast turnover times from organis-
mal to ecosystem scales in lakes are prerequisite for detecting
such rapid changes. Previous studies have suggested that
lakes are good sentinels of global climate change because
they are sensitive to environmental changes and can
integrate changes in the surrounding landscape and atmo-
sphere (Carpenter et al. 2007; Pham et al. 2008; Williamson
et al. 2008). However, a more thorough analysis of the
potential for lakes to act as sentinels for the rapid rates of
current climate change is lacking.

Studies of lakes provided some of the early indications of
the effects of current climate change on ecosystem structure

and function (Schindler et al. 1996a; Magnuson et al. 2000;
Verburg et al. 2003) and the consequences for ecosystem
services (O’Reilly et al. 2003). Some climate-related signals
are highly visible and easily measurable in lakes. For
instance, climate-driven fluctuations in water level have
been observed on a broad scale in North America
(Williamson et al. 2009), and shifts in the timing of ice
formation and thawing reflect climate warming at a global
scale (Magnuson et al. 2000). Other signals may be more
complex and difficult to detect in lakes, but they may be
equally sensitive indicators of climate forcing or equally
informative regarding effects on ecosystem services. Avail-
able long-term historical records and reconstructions from
sediment cores have yielded insight into less visible climate-
related changes and provided us with an understanding of
the mechanisms that give rise to these changes. Paleolim-
nological records, in particular, have been crucial in
developing climate records over recent geologic timescales,
allowing us to interpret current climate change and predict
its effects (Smol 2008; Leavitt et al. 2009).

In many ways, lake ecosystems appear to be valid
sentinels for current climate change. Lake ecosystems act as
sentinels because they provide indicators of climate change
either directly or indirectly through the influence of climate* Corresponding author: adrian@igb berlin.de
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on the catchment. The indicators are measurable response
variables, such as water temperature, dissolved organic
carbon (DOC), or plankton composition. Specifically, lakes
are likely to serve as good sentinels for current climate
change because (1) lake ecosystems are well defined and are
studied in a sustained fashion; (2) lakes respond directly to
climate change and also incorporate the effects of climate-
driven changes occurring within the catchment; (3) lakes
integrate responses over time, which can filter out random
noise; and (4) lakes are distributed worldwide and, as such,
can act as sentinels in many different geographic locations
and climatic regions, capturing different aspects of climate
change (e.g., rising temperature, glacier retreats, permafrost
melting). However, the large range in lake morphology,
catchment characteristics, and geographic locations implies
that we should be cautious about making broad statements
about the ability of lakes to capture the effects of the
current, rapidly changing climate.

Here, we discuss three critical issues related to the use of
lakes as sentinels. The focus of this synthesis paper is to
identify limnological variables that respond to climate
forcing and to assess the complexity and difficulty
associated with using these variables as indicators of
climate change. Lake ecosystems are complex, they have
many internal feedbacks, and the influence of the
catchment can vary depending on geographic location,
regional climate, and land use. Do lakes contain accurate
indicators that are appropriate for current rates of change?
How broadly can these indicators be applied? Can we
detect climate-driven changes in the face of other environ-
mental change? First, we identified key properties of lakes
and the most appropriate variables that would indicate
effects of climate change. To do this, we conducted a review
analysis of studies of contemporary climate change and
assessed the suitability of a response variable based on its
relationship to primary climate drivers, possible confound-

Fig. 1. Long term behavior of monthly mean near surface temperatures since 1970 in January (TJan, A D) and July (TJuly, E P) in
various Northern Hemisphere lakes. (A) and (E) Lake Zürich (Switzerland); (B) and (F) Lake Constance (Germany, Switzerland,
Austria); (C) and (G) Lake Washington (Washington); (D) and (H) Lake Tahoe (California, Nevada); (I) Greifensee (Switzerland); (J)
Lake Vättern, Edeskvarva basin (Sweden); (K) Lake Mäleren, Görvaln basin (Sweden); (L) Stensjön (Sweden); (M) Müggelsee
(Germany); (N) Lake Baikal (Russia); (O) Lake Champlain (Vermont); (P) Blue Chalk Lake (Canada). Monthly means were obtained by
spline interpolating measured temperatures at daily intervals and averaging the results. For each lake, the significance level of the Mann
Kendall test for the existence of a monotonic trend is indicated by one, two, or three asterisks (p , 0.1, p , 0.05, and p , 0.01,
respectively) or a dash (no monotonic trend at the p , 0.1 level). The mean rate of change of TJan or TJuly is also given, and the long term
linear trend is illustrated.
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ing effects, and the basic utility (ease of measurement,
advantages, and disadvantages) of that indicator. Second,
we categorized the appropriateness of specific indicators
for different lake types within different climate regions.
Finally, we addressed the challenges associated with
extracting climate signals from confounding effects. For
the purpose of this paper, we excluded reservoirs because
their hydrology is largely anthropogenically controlled, and
thus their climate-related responses are influenced by
specific features of individual systems.

Key response variables and their suitability as indicators of
climate change Clearly, there is a diverse set of variables
responsive to climate that span a range of physical, chemical
and biological properties in lakes (ACIA 2004; Rosenzweig
et al. 2007). Some of the most effective indicators of climate
change are listed in Table 1. The criteria for choosing those
response variables were high synchronicity among lakes,
ease of measurement, and their known relevance for
ecosystem function. These response variables reflect either
a direct influence of climate on the lake or an indirect change
via the effect of climate on the catchment. It is beyond the
scope of this synthesis paper to address all observed climate-
driven changes in lakes around the globe; instead, our
purpose is to highlight the advantages and limitations of
effective indicators for key lake properties.

Water temperature: Surface and epilimnetic water
temperatures, which can be highly correlated with region-
al-scale air temperatures, exhibit a rapid and direct
response to climatic forcing, making epilimnetic tempera-
ture a useful indicator of climate change. In many (but no
means all) lakes, the epilimnion has undergone recent
warming (Fig. 1; Table 1). Epilimnetic temperatures are
easy to monitor and reflect warming trends in air
temperature in North America (Arhonditsis et al. 2004;
Coats et al. 2006), Eurasia (Livingstone 2003; Hampton et
al. 2008), and Africa (O’Reilly et al. 2003). In contrast,
hypolimnetic temperatures exhibit a much more complex
behavior, and they may undergo warming or cooling trends
depending on lake morphometry (Gerten and Adrian 2001)
and season (Robertson and Ragotzkie 1990; Livingstone
and Lotter 1998; Straile et al. 2003). By influencing the
density gradient in the water column, vertically heteroge-
neous changes in water temperature result in long-term
changes in the intensity and duration of vertical mixing and
stratification, thermal stability, and thermocline depth
(Table 1). Long-term changes in thermal structure might
in the future be responsible for mixing regimes shifting
from polymictic to dimictic, dimictic to monomictic, or
monomictic to oligomictic (Boehrer and Schultze 2008;
Livingstone 2008). Although long-term changes in thermal
structure and mixing regime may require detailed temper-
ature measurements in the water column for their
detection, they represent good indicators of climate change
because of the directness and sensitivity of their response to
climatic forcing. In addition, such long-term physical
changes would have severe consequences for nutrient and
oxygen concentrations, as well as for the vertical distribu-
tion and composition of the biota.

Water level: In nonregulated lakes, water level is a good
indicator of climate change because it reflects the dynamic
balance between water input (precipitation, runoff) and
water loss (evaporation), and the timing of the ice-free
season (ACIA 2004; Lenters et al. 2005; Van der Kamp et
al. 2008) on timescales ranging from hours to centuries
(Argyilan and Forman 2003; Ghanbari and Bravo 2008;
Van der Kamp et al. 2008). Measurements of water level
are especially useful in the case of closed-basin lakes, where
long-term fluctuations in water level can be related to
similar fluctuations in large-scale climate oscillations
(Rodionov 1994). Possible confounding effects include the
influence of groundwater level, along with changes in
vegetation and land use in the catchment (Webster et al.
2000; Table 1).

Ice phenology: Although the processes governing the
formation and thawing of lake ice depend on multiple
interacting meteorological and limnological factors (Gu
and Stefan 1990), air temperature is considered to be the
dominant variable driving lake-ice phenology (Williams
and Stefan 2006). Because individual physical lake prop-
erties influence freezing processes much more strongly than
thawing processes, the timing of ice-off makes a better
direct indicator of climate change than the timing of ice-on
(Šporka et al. 2006; Table 1). The use of satellite data to
study lake-ice phenology on large spatial scales enhances
the utility of the timing of ice-off as a large-scale indicator
of climate change (Wynne and Lillesand 1993; Latifovic
and Pouliot 2007). However, the relationship between the
timing of ice-off and air temperature is not necessarily
linear and differs distinctly between colder and warmer
geographical regions (Weyhenmeyer et al. 2004). Ice
duration can be an appropriate climate-change indicator
when ice cover is intermittent, for example, when ice cover
forms and thaws several times during a warm winter
(Livingstone and Adrian 2009).

Chemical variables: Many of a lake’s specific chemical
properties represent the terrestrial landscape, and changes
in these variables may serve as indicators of terrestrial
processes that are otherwise difficult to detect in the more
heterogeneous terrestrial ecosystem. Nutrient concentra-
tions and ratios in lakes are likely to be altered as a
consequence of changes in terrestrial export related to
climatic influences on weathering rates, precipitation, run-
off (Sommaruga-Wögrath et al. 1997; Rogora et al. 2003;
Bergström and Jansson 2006), fire frequency (Kelly et al.
2006; Westerling et al. 2006), or terrestrial primary
productivity (Boisvenue and Running 2006). Nutrient
concentrations can also be affected by internal processes
related to changes in thermal structure and/or primary
productivity (Jeppesen et al. 2005; Wilhelm and Adrian
2008). The pH, ionic strength, ionic composition, and
conductivity are very sensitive and easily measurable
indicators of changes in weathering rate, as well as water
balance. For many lakes, there can be challenges in
disentangling the roles of internal and catchment changes
with respect to water chemistry, which may be further
complicated by confounding factors such as eutrophica-
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tion, acidification, or atmospheric nitrogen deposition
(Hessen et al. 2009). This is more likely to be the case for
biologically reactive elements than for conservative ele-
ments (Na, Mg, and even Ca in lakes that do not experience
weathering events).

Dissolved organic carbon (DOC) concentrations can
also serve as an indicator, and they may be particularly
appropriate for detecting changes within the terrestrial
environment (Tranvik et al. 2009). DOC integrates multiple
responses within the lake, such as water transparency
(particularly in the ultraviolet range), heat absorption, and
lake metabolism (Williamson et al. 1999), as well as
changes observed in the catchment related to increased
run-off, permafrost melting, shifts in vegetation, and
changes in wetlands (Evans et al. 2006; Benoy et al. 2007;
Keller et al. 2008), and increased CO2 concentrations
(Freeman et al. 2004; Tables 1, 2). Allochthonous DOC
concentrations can be a key indicator of catchment
processes, particularly in boreal catchments, where DOC
is generally dominated by allochthonous material, and
increasing inputs associated with climate change are having
strong effects on lake ecosystems (Parker et al. 2008). The
disadvantages of DOC as an indicator of climate change
are that it can also be influenced by atmospheric deposition
(Monteith et al. 2007; Mladenov et al. 2008; Weyhenmeyer
2008a) and eutrophication (Nürnberg and Shaw 1998) and
that long-term measurements are scarce.

Oxygen concentrations in lakes can indicate climate
shifts because oxygen levels are strongly influenced by
temperature and thermal structure (Hanson et al. 2006;
Table 1). For example, the extremely warm European
summer of 2003 resulted in a long period of thermal
stratification and increased hypolimnetic oxygen depletion
in some Swiss lakes (Jankowski et al. 2006). When
applicable, hypolimnetic oxygen concentrations have added
value as indicators of climate change because they have
widespread consequences for internal nutrient loading
(Pettersson et al. 2003), habitat size, and refuge availability
(De Stasio et al. 1996; Jansen and Hesslein 2004).

Biota: Interactions between climate change and lake
biota are complex because other factors such as resource
availability, density dependence, and predation strongly
control the abundance, distribution, and size of the biota.
In addition, responses are often species-specific and vary
among ecosystems (Baines et al. 2000; Adrian et al. 2006).
Despite these difficulties in using organisms as indicators
for climate change, some widespread climate-related
responses of lake biota have emerged, and the mechanisms
involved in climate-related changes are becoming better
understood. Planktonic organisms have been used widely
as indicators of ecosystem change, and because these
relatively short-lived organisms respond rapidly to subtle
thermal changes, they are also useful indicators of climate
change. Phytoplankton and zooplankton communities in
many lakes have been relatively well-documented over
extended time periods, and these records are useful for
extracting climate-related responses.

Changes in spring and early summer phenology can
provide a good reflection of climatic shifts (Straile 2002;L
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Table 2. Summary of indicators of climate change for lakes of various types. Lakes are defined by characteristics of their (A) climate
and basin morphometry, and (B) location catchment characteristics. Arctic lakes are defined as those existing in regions with permafrost,
or at higher latitudes; boreal lakes are high latitude lakes with catchments composed mostly of coniferous forest; alpine lakes are those
located above the tree line; temperate lakes and tropical lakes are only defined by their climate zones; arid lakes include those in
Mediterranean and desert climates, or those located in grassland regions. Hypothesized or observed directions of changes in climate
related variables, indicators, and ecosystem services related to the response variables are indicated by + (positive) or (negative).
Indicators responding directly to the climate drivers are in line with those drivers. Indicators that are indirectly related to the climate
driver are listed below the directly affected indicator. Ecosystem services are in line with the relevant indicators. Abbreviations: OM,
organic matter; DOM, dissolved organic matter; strat, stratification; temp, temperature; TP, TN, total phosphorus and nitrogen,
respectively; pCO2, partial pressure of carbon dioxide; Chl, chlorophyll a; UV B, ultraviolet B radiation (280 315 nm).

Climate region
Catchment or
mixing state

External driving
variables Indicators Affected ecosystem services

Direct effects of climate across lake surface

Arctic+alpine+
boreal+temperate

+/ Snow fall +/ Snow pack Albedo, water storage
+Air temp +Ice free period +Productivity

Arctic Monomictic,
polymictic

+Air temp +Summer stability
Bottom O2 Habitat, +greenhouse gases

(+CH4)
Arctic+boreal+

temperate+arid
Polymictic +Air temp +Surface temp Habitat, +climate indicator

+Strat frequency period Productivity, +nutrient
retention

Boreal+temperate Dimictic +Winter air temp Winter ice period Recreation, +/ habitat
+Winter bottom O2 +Habitat

Spring PO4 Productivity
Boreal+temperate+

arid
Dimictic, monomictic +Air temp Timing of stratification Fish production

+Stability
+Cyanobacteria Water quality, recreation

Temperate+arid+
tropical

Dimictic,
monomictic,
oligomictic

+Air temp +Strat period, +stability
Surface TN, TP Productivity, +recreation
Bottom O2, +H2S Habitat

+Deep NH4, PO4 Nutrient storage
Arid+tropical Meromictic +Evaporation, inflow +Surface conductivity

Stability
+Deep water O2 +Habitat
+Surface H2S, CO2

emissions
Human health

Tropical +Air temp +Surface temp Habitat

Indirect effects of climate via catchment

Arctic Tundra Permafrost Water level Habitat, regional heat
capacity

+OM leaching from soil +pCO2 +Greenhouse gases
+Weathering of till +Chl +Productivity

Benthic PPR Habitat
Alpine Rock, meadow +Air temp +Ice free period +Productivity

+Annual UV B Habitat, productivity
DOM C storage

+Shifting tree line +DOM +Productivity
Glaciers UV B +Habitat

Arid Chaparral, desert,
grassland

Regional water
balance

Water level Water storage

+Conductivity, alkalinity Water quality
Nutrient inputs Chl, +water clarity Productivity, +water quality

Boreal+temperate Forested +Soil decomposition,
fire

+DOM Recreation, productivity,
+carbon storage

+/ Precipitation
(soil flushing)

+/ DOM +/ Recreation, +/ productivity,
+/ carbon storage

Temperate Urban, agricultural +/ Precipitation +/ Nutrients /+Water quality
+Air temp +Stability

+Cyanobacteria Water quality, recreation
Bottom O2 Habitat, +greenhouse gases

(N2O)
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Blenckner et al. 2007; Rusak et al. 2008; Table 1). For
zooplankton, phenological shifts are usually restricted to
fast-growing plankton (but see Winder and Schindler 2004a,
Seebens et al. 2007), whereas longer-lived plankton may
respond in more complex ways (Winder and Schindler 2004b;
Adrian et al. 2006). For longer-lived organisms with a
complex life cycle, climate warming can accelerate ontoge-
netic development, which can cause a shift in life history, as
has been shown for fish and copepod species (Schindler et al.
2005; Adrian et al. 2006; Winder et al. 2009). Spring
migrations for several anadromous fish species are happening
earlier, and this timing can also be used as an indicator of
climatic changes (Quinn and Adams 1996).

Growth rates, abundance, and species composition can
each be considered an indicator of climate change. Given
sufficient resource availability, increasing temperatures
generally accelerate growth and development rates of
individual organisms, although changes in absolute abun-
dances tend to be species-specific (Adrian et al. 2006; Reist et
al. 2006; Blenckner et al. 2007). Changes in species
composition have been used as a climate indicator on longer
geological timescales (Rühland et al. 2008), as well as in
contemporary studies. For example, at higher temperatures,
bloom-forming cyanobacteria have a competitive advantage
over other phytoplankton groups (Jöhnk et al. 2008; Wagner
and Adrian 2009b). Similarly, stronger vertical stratification
can cause shifts in phytoplankton species composition
(Verburg et al. 2003; Strecker et al. 2004; Winder and Hunter
2008). Shifts in phytoplankton species composition, especial-
ly among those taxonomic groups that are sensitive to
temperature and mixing, such as cyanobacteria, diatoms, and
flagellates, can be considered indicators of climate-induced
enhancements in thermally stratified conditions (Table 1).
Changes in fish-species distributions, abundance, and com-
munity structure are also indicative of climate effects,
particularly as available habitat for cold-water species
contracts (Gunn 2002; Reist et al. 2006).

Other climate-related responses of lake biota may be
effective indicators for particular systems. These include
responses such as changes in primary productivity (O’Reil-
ly et al. 2003; Michelutti et al. 2005), zooplankton body size
(Moore et al. 1996), increased bacterial cell densities (Rae
and Vincent 1998), and benthic net photosynthesis and
dark respiration rates (Baulch et al. 2005). Finally, climate
may also affect species diversity and composition through
the invasion of non-native species that expand their
geographical range as water temperatures warm (Rahel
and Olden 2008). Detailed knowledge of invasive species’
life-history requirements would be important for evaluating
their efficacy as a climate indicator (Table 1). However, all
of these responses are often lake-specific and can be
difficult to predict on larger scales.

Geographic variation in the use of lakes as sentinels
Climate-driven changes will have different effects on lakes
depending on geographic location, elevation, morphome-
try, climate, vegetation, and land use. For example, in
forested lakes in temperate and boreal zones, DOC
concentrations may best reflect climate-mediated changes
in soil processes such as soil decomposition rates and the

flushing of soil organic matter. In agricultural catchments,
however, changes in precipitation and decomposition may
primarily alter the import of nutrients into water bodies. In
Arctic ponds, cation concentrations (and strontium iso-
topes) are sensitive indicators of melting permafrost, which
exposes previously unweathered glacial till in the catchment
to weathering (Hobbie et al. 1999; Prowse et al. 2006). The
water levels of Arctic lakes have also proven to be a
sensitive indicator of the northern extent of permafrost
(Smith et al. 2005; Marsh et al. 2009). In contrast, lakes in
arid and tropical environments experience shifts in water
level and conductivity related to swings in water balance
and evapo-concentration (Awange et al. 2008; Croley and
Lewis 2008; Van der Kamp et al. 2008).

The utility of a specific indicator depends on the
characteristics of the lake in which it is measured (Table 2).
At the simplest level, characteristics of the lake and the
catchment influence both the sensitivity of the indicator
variable to climate change and the amount of background
variability to which the indicator is subject. For example, in
very small lakes with low heat capacity, surface-water
temperature responds quickly to radiative and evaporative
heat exchange and solar irradiance (Gerten and Adrian
2001). While high sensitivity is a useful characteristic for an
indicator, it also leads to more of the same high-frequency
‘‘noise’’ that masks long-term trends in climate data. One
may postulate, therefore, that there is a lake size for which the
combination of noise reduction and sensitivity is optimal. A
similar line of argument could be constructed for an optimal
hydrologic residence time when using water chemistry to
detect climate-mediated changes that result from alterations
in catchment inputs. Certainly there appears to be an optimal
combination of landscape position and residence time when
choosing lakes to use for assessing the effect of climate on
groundwater flows in response to drought (Webster et al.
1996; Baines et al. 2000).

A lake’s internal physical structure, morphometry,
hydrological setting, and biota can alter the primary
mechanisms by which climate affects a given indicator
variable. As a result, a variable that shows one response to
climate change in one lake may exhibit a very different
response in another (Weyhenmeyer 2008b). For example, in
short-residence-time boreal lakes, DOC may most closely
reflect variations in inputs related to the production of
DOC in catchment soils and its subsequent export to
streams or groundwater. Melting permafrost, longer
growing seasons, increased soil temperatures, and greater
precipitation in boreal regions might lead to increases in
DOC for such lakes. In lakes with longer residence times,
loss processes such as bacterial degradation (Tranvik 1992),
photo-oxidation (Lindell et al. 1995; Bertilsson and
Tranvik 2000), aggregation, and sedimentation (Von
Wachenfeldt et al. 2008) become more important. To the
extent that water temperature and the duration of the ice-
free period affect these loss processes (Sommaruga et al.
1999; Reche et al. 2000), the expected increase in DOC with
climate change may be dampened or even reversed in these
longer-residence-time lakes. Trends in mineral nutrient
levels may also be expected to differ among lakes based on
the processes driving them. In stratified lakes, warming is
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likely to decrease productivity by increasing the intensity,
extent, or frequency of stratification and thereby reducing
internal loading (O’Reilly et al. 2003; Coats et al. 2006). In
other lakes, the effects of climate change may result in the
delivery of new nutrients from the catchment or enhanced
internal recycling (McKee et al. 2003; Wilhelm and Adrian
2008; Wagner and Adrian 2009b).

Differences among lakes, as outlined in Table 2, provide
both complications and opportunities with respect to the use
of lakes as sentinels of climate change. At one level, the
effective use of indicator variables will depend critically on
identifying the lake variable combinations that are most
sensitive and least affected by other confounding processes.
This identification depends to some extent on a sound
quantitative knowledge of the mechanistic linkages between
climate variables and lake response variables and suggests
that multiple indicator variables may be necessary (Table 2).
Linking changes in climate to changes in variables such as
DOC, nutrient concentrations, and algal productivity may be
demonstrable, but the relationship is not always well
understood for some lakes. In these situations, the existence
of variability among lakes represents a significant opportu-
nity to understand the linkages between climate and these
indicator variables, as well as the ways in which these linkages
are altered by catchment and basin characteristics. Compar-
isons of a single indicator variable across a spectrum of
different lake types affected by a common climate signal can
clarify the sensitivity of an indicator variable to climate and
highlight contextual variables that influence that sensitivity
(Baines et al. 2000; Webster et al. 2000; Pace and Cole 2002).

Attributing changes to climate effects Lakes are com-
monly affected by multiple interacting stressors (Christen-
sen et al. 2006; Yan et al. 2008), which could confound the
signals from climate change. Even lake surface tempera-
ture, which is usually tightly linked to air temperatures,
may not always reflect the direct effects of climate warming
(Fig. 1). For example, reduced wind speed as a conse-
quence of tree planting combined with an increase in DOC
concentration due to deacidification resulted in a decrease
in the whole-lake temperature of Clearwater Lake, Ontario,
despite a regional increase in air temperatures (Tanentzap
et al. 2008). In many relatively small lakes, air temperatures
alone often explain only a relatively small portion of the
observed variation in lake surface temperatures (Fee et al.
1996; Keller 2007). The problem of confounding factors
increases when considering chemical or biological response
variables. Lakes in various regions around the globe have
been subject to changes in land-use patterns (Pham et al.
2008), nutrient inputs (eutrophication and oligotrophica-
tion; Jeppesen et al. 2005; Van Donk et al. 2008), and the
deposition of sulfur and nitrogen oxides (acidification and
deacidification; Schindler et al. 1996b). These processes
may interact in a nonlinear fashion with climate change or
may neutralize climate effects (Wagner and Adrian 2009a).

Eutrophication: The effects of eutrophication and
oligotrophication on lakes will diminish their utility as
sentinels of climate change. Both the direct and indirect
effects of warmer water temperatures and increased

nutrient availability due to eutrophication may enhance
process rates and complicate the use of oxygen concentra-
tions (Matzinger et al. 2007), phytoplankton phenology
(Thackeray et al. 2008), phytoplankton community com-
position (Paerl and Huisman 2008), zooplankton commu-
nity composition (Straile 2005), and overall community
composition as indicators of climate change. Additive
effects of eutrophication with climate can be highly
complex when food-web interactions are involved (Seebens
et al. 2007; Van Donk et al. 2008), and the processes
involved in responses to climate change and eutrophication
are intertwined. For example, changes in phytoplankton
density due to eutrophication and oligotrophication will
alter water transparency, thereby modifying the thermal
structure of lakes (Jones et al. 2005). Furthermore, the
effects of climate change may be partially based on
processes similar to those associated with eutrophication
because warming might increase phosphorus concentra-
tions through increased internal loading (Jensen and
Andersen 1992), especially in concert with extended anoxic
conditions (Wilhelm and Adrian 2008).

Acidification: Climate change also interacts with acidi-
fication and recovery from acidification (Sommaruga-
Wögrath et al. 1997). Acidification reduces DOC concen-
trations in lakes (Schindler et al. 1996b; Yan et al. 1996),
thereby altering transparency of the water column. Hence,
acidification (or deacidification) will affect thermal struc-
ture, especially in small lakes (Fee et al. 1996), through
changes in the depth of the mixed layer (Yan 1983;
Mazumder and Taylor 1994) and changes in thermal
gradients, which affect the stability of the water column
(Gunn et al. 2001; Persson and Jones 2008). In addition,
changes in DOC concentration due to changes in acidifi-
cation status will have an important effect on ultraviolet
(UV) penetration (Schindler et al. 1996b; Yan et al. 1996).
Hence, acidification and deacidification may interfere with
the use of physical, chemical, as well as biological variables
as indicators of climatic change. In particular, in regions
affected by historically high acid deposition, the recovery of
lakes from acidification will need to be considered in
assessments of climate-change effects (Keller et al. 2005;
Monteith et al. 2007).

Dealing with confounding factors Confounding factors
such as eutrophication, acidification, nitrification, and the
equivalent reverse phenomena generally fluctuate less
rapidly than climatic variables. This difference in behavior
can be utilized to distinguish between climatic forcing and
confounding factors by removing trends and low-frequency
fluctuations from relevant time series by detrending or
high-pass filtering, and analyzing only the remaining,
higher-frequency fluctuations that are driven mainly by
external physical forcing. A detrending approach has been
used successfully in studying the influence of climate on the
population dynamics of a calanoid copepod (Seebens et al.
2007) and on the influx of nutrients in lakes of the English
Lake District (George et al. 2004). Likewise, the effect of
climate on nitrate concentrations in lakes was revealed after
accounting for the effects of a long-term decrease of
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atmospheric nitrate deposition in a multiple regression
model (Weyhenmeyer et al. 2007). Jankowski et al. (2005)
used high-pass filtering to remove long-term nonlinear
anthropogenic effects from nitrate time series in order to
focus on the effects of comparatively high-frequency
climatic forcing. Detrending is also a useful option when
separating the effects of nonclimate stressors from climate
effects due to climate oscillations such as El Niño Southern
Oscillation, the North Atlantic Oscillation, or the Pacific
Decadal Oscillation, thus allowing these large-scale climatic
phenomena to be used as proxies for the effects of climate
change (George et al. 2004; Jankowski et al. 2005;
Blenckner et al. 2007). Detrending or high-pass filtering
will also remove any long-term trend in the data that might
result from climate warming, which suggests that in lakes
with ongoing changes in other stressors, many chemical
and biological state variables will be of only limited use as
indicators of climate change. When this is the case,
mechanistic simulation models may help to disentangle
the effects of warming from other stressors (Elliott and
May 2008; Huber et al. 2008). Hydrodynamic models can
also be used to distinguish between the effects of changes in
air temperature and changes in wind speed and light
attenuation on the thermal regimes of lakes (Tanentzap et
al. 2008). Simulation models can quantify the effect sizes of
confounding variables on response variables. For example,
Schalau et al. (2008) showed that a 10-fold increase in algal
carrying capacity mimicking eutrophication had only a
minor effect on the timing of maximum Daphnia abun-
dances and the clear-water phase as compared to changes
in the onset of vernal warming.

Overall, our synthesis indicates that lakes have a strong
potential as sentinels of current climate change and, as
such, can contribute to our understanding of global climate
effects. We identified a suite of response variables that can
act as effective indicators of climate change. These
indicators have response times that allow them to reflect
the rapid rates of current changes in climate and to reflect
changes in many different properties of lake ecosystems
(Table 1). Not all indicators can be used broadly across all
lakes; there are certain indicators that are particularly
suitable for different lake types and regions (Table 2). Even
so, the global distribution of lakes contributes substantially
to their utility as sentinels and allows them to stand out
from many other current indicators of climate change that
are typically biome-specific, such as the retreat of alpine
glaciers, the melting of permafrost, or the reduction in sea
ice. As sentinels, lakes provide a way to detect and monitor
the effects of climate change at the ecosystem scale in
locations that are under-represented in climate studies or
are influenced by other environmental changes.

Part of the strength of using lakes as sentinels comes
from the fact that lakes are able to provide information
about the effects of climate change on the terrestrial
landscape as well as the lake itself. By using combinations
of indicators and by comparing responses among lakes, it is
possible to tease apart the effects of climate on the
catchment from those on the lake. The value of lakes for
detecting changes within the terrestrial landscape enhances
their use as sentinels, particularly for cases when it would

otherwise be difficult to determine these changes in the
catchment, i.e., weathering rates. By using lakes as sentinels
of catchment changes, we may be able to increase our
mechanistic understanding of terrestrial aquatic linkages.

The efficacy of lakes as sentinels of climate change
depends upon our understanding of internal lake processes.
For the key indicators, listed in Table 1, we have a
reasonably solid understanding of the mechanistic link
between climate and lake response that allows us to use
these indicator variables effectively. The application of
these indicators to different lakes depends on our ability to
distinguish the signal from noise, which can be affected by
interannual lake variability, terrestrial aquatic linkages,
species life histories, and other factors. Therefore, the use
of lakes as sentinels not only allows us to detect global
effects of climate change, but it can also further our
understanding of ecosystem processes in lakes.
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