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ABSTRACT: A pilot-scale membrane bioreactor (MBR) was installed and operated for one year at a 

Swiss hospital. It was fed an influent directly from the hospital’s sanitary collection system. To study the 

efficiency of micropollutant elimination in raw hospital wastewater that comprises a complex matrix 

with micropollutant concentrations ranging from low ng/L to low mg/L, an automated on-line SPE-

HPLC-MS/MS analytical method was developed. Among the 68 target analytes were: 56 

pharmaceuticals (antibiotics, antimycotics, antivirals, iodinated X-ray contrast media, antiinflamatory, 

cytostatics, diuretics, beta blockers, anesthetics, analgesics, antiepileptics, antidepressants, and others), 

10 metabolites, and 2 corrosion inhibitors. The MBR influent contained the majority of those target 

analytes. The micropollutant elimination efficiency was assessed through continuous flow-proportional 

sampling of the MBR influent and continuous time-proportional sampling of the MBR effluent. An 
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overall load elimination of all pharmaceuticals and metabolites in the MBR was 22%, as over 80% of 

the load was due to persistent iodinated contrast media. No inhibition by antibacterial agents or 

disinfectants from the hospital was observed in the MBR. The hospital wastewater was found to be a 

dynamic system in which conjugates of pharmaceuticals de-conjugate and biological transformation 

products are formed, which in some cases are pharmaceuticals themselves. 

KEYWORDS: 4-acetamidoantipyrine, 4-aminoantipyrine, 4-dimethylaminoantipyrine, 

4-formylaminoantipyrine, 4-methylaminoantipyrine, acetaminophen, amidotrizoic acid, 

aminophenazone, aminopyrine, analgesic, anesthetic, antibiotic, antidepressant, antiepileptic, 

antiinfective, antiinflamatory, antimycotic, antipyretic, antipyrine, antirheumatic, antiviral, anxiolytic, 

atenolol, atenolol acid, azithromycin, barbiturate, benzalkonium chloride, benzotriazole, beta blocker, 

bezafibrate, biodegradation, biological degradation, carbamazepine, cilastatin, ciprofloxacin, 

clarithromycin, clindamycin, clofibrate, clofibric acid, conjugate, corticosteroid, cyclophosphamide, 

cytostatic, D617, depletion, dexamethasone, diatrizoate, diatrizoic acid, diazepam, diclofenac, 

dimethyldidecylammonium chloride, diuretic, elimination efficiency, erythromycin, fluconazole, 

fluoroquinolone, fluoxetine, furosemide, gabapentin, hormonal preparation, hospital wastewater 

treatment, HPLC-MS/MS, hydrochlorothiazide, ICM, ifosfamide, indometacin, industrial chemical, 

internal standard, iodinated X-ray contrast media, iohexol, iomeprol, iopamidol, iopromide, ioxitalamic 

acid, levetiracetam, lidocaine, macrolide, MBR, mefenamic acid, membrane bioreactor, metabolite, 

metamizole, methylbenzotriazole methylprednisolone, metoprolol, metoprolol acid, metronidazole, 

micro-pollutant, morphine, N4-acetylsulfamethoxazole, naproxen, non-steroidal antiiflamatory, 

norfloxacin, NSAID, online SPE, opioid, oseltamivir, oseltamivir carboxylate, oxazepam, paracetamol, 

pharmaceutical, phenazone, primidone, propranolol, psychostimulant, QAC, quaternary ammonia, 

ranitidine, removal, ritalin, ritalinic acid, ritonavir, roxithromycin, sampling, sotalol, sulfadiazine, 

sulfamethoxazole, sulfapyridine, sulfonamide, Switzerland, thiopental, tolyltriazole, tramadol, 

transformation product, trimethoprim, valsartan, venlafaxine, verapamil. 
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INTRODUCTION  

While in some countries (e.g. Japan, China, Greece)
1-3

 wastewater from big hospitals is pre-treated or 

biologically treated on-site, in many other countries, including Switzerland, it is connected directly to a 

municipal sewer and treated at municipal wastewater treatment plants (WWTP). Treatment of the 

wastewater at the source has advantages of avoiding dilution due to mixing with the urban sewage and 

avoiding losses into the environment due to sewer leakage and combined sewer overflows.
4, 5

 In case of 

hospital wastewater, concerns are to avoid spread of (multi-resistant or pathogenic) bacteria, viruses, 

and parasite eggs as well as to avoid input of pharmaceuticals, diagnostic agents and disinfectants.  

Membrane bioreactors (MBR) can remove by retention more than 5 and 2 log units of bacteria and 

viruses, respectively.
3
 Hospital wastewater treatment by MBR showed to be feasible in a German full-

scale pilot study and over 95% elimination for four out of nine measured pharmaceuticals was achieved, 

although effluent concentrations were often higher than the target value of 100 ng/L.
6
 Apart from the 

recent study from Germany, only scarce elimination efficiency data for few micropollutants in hospital 

wastewaters are currently available,
7
 whereas considerably more hospital wastewater data is available on 

occurrence and contribution of hospitals to pharmaceutical loads.
1, 8-16

 Even in other environmental 

studies than those focused on hospital wastewater, only a small subset of all pharmaceuticals that are in 

use has thus far been investigated.
17, 18

 An ecotoxicological evaluation of the investigated hospital 

wastewater was published earlier.
17

 

To collect robust data on elimination efficiencies of multiple micropollutants from the complex matrix 

of hospital wastewater, proper tools need to be available. First, a suitable sampling strategy needs to be 

employed to ensure representative results. Secondly, the analytics should enable high sample throughput 

and ideally incorporate numerous micropollutants of interest. Nowadays, with the availability of 

sensitive mass spectrometers, pharmaceuticals and other micropollutants can be analyzed in 

environmental waters down to low or even sub-nanogram per liter levels. One of the trends in the 

environmental analysis of micropollutants is replacement of classical solid phase extraction by 

automated alternatives, such as on-line solid-phase extraction high performance liquid chromatography 
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coupled with tandem mass spectrometry (SPE-HPLC-MS/MS)
19-21

 or large-volume injection HPLC-

MS/MS
22, 23

. The large volume injection and the on-line SPE are conceptually very similar (see SI, 

Figure S1). The advantages over classical SPE are cost-efficiency due to reusable pre-columns or 

cartridges, minimal sample handling, time-efficiency, and elimination of analyte losses and human 

malfunctioning in a multi-step SPE procedure - all resulting in easily achievable high sample 

throughput. The choice between large-volume injection and on-line SPE-HPLC-MS/MS is thus often 

only a question of the lab’s experience and equipment.  

Performance of biological treatment of hospital effluents can be influenced by inhibition of the 

biomass by disinfectants and antibacterial agents present in much higher concentrations in hospital 

wastewater than in municipal wastewater. A typical hospital uses tons of disinfectants per year. In Swiss 

hospitals ethanol, propanol, methyl ethyl ketone, and glutaraldehyde are used in the highest amounts (SI, 

Table S15). Beside these mostly easily degradable compounds the quaternary ammonia compounds 

(QACs) are important disinfectants - strongly adsorbing cationic compounds. QACs are eliminated by 

more than 90% in sewage treatment; however, they have also been shown to have cytotoxic effects.
24-26

 

QACs commonly used are benzalkonium chloride (BAC-C12-18, technical mixture of isomers C12, 

C14, C16, and C18) and dimethyldidecylammonium chloride (DDAC-C10) - see SI, Table S15. As 

reported for those compounds in an Austrian study, QAC-derived risk to sensitive non-target organisms 

cannot be excluded.
26

  

The objective of this paper was to provide data on the general performance and micropollutant 

elimination efficiency of an on-site biological wastewater treatment at hospitals. To meet this objective: 

(i) a pilot-scale MBR was installed to receive and treat wastewater originating in a Swiss hospital and 

was in continuous operation for one year; (ii) an efficient and representative sampling campaign was 

designed and employed to representatively collect influent and effluent samples from the MBR; and (iii) 

an automated and robust on-line SPE-HPLC-MS/MS analytical method was developed and optimized to 

quantify the concentrations of approximately 68 target analytes including pharmaceuticals, human 

metabolites, and industrial chemicals. As disinfectants present in hospital wastewater at high levels have 
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the potential to inhibit biological treatment, maximal tolerable concentration of the abundant QAC 

benzyldimethyldodecylammonium (BAC-C12) to prevent inhibition of nitrification was determined in a 

batch study and several QACs measured in the wastewater. The elimination efficiency of the present 

target micropollutants was determined from the loads of the MBR influent and effluent sampled 

continuously and flow-proportionally over 3 weeks. Sampling was adjusted to the hydraulic residence 

time of the MBR. De-conjugation and transformation processes in the sewer and the MBR were 

specifically addressed, as these abundant mechanisms are sometimes neglected or overlooked when 

evaluating elimination efficiencies of micropollutants. 

 

MATERIALS AND METHODS 

Pilot-scale MBR. The pilot plant was installed at a representative Swiss hospital, the Cantonal 

hospital of Baden (346 beds, water consumption 673 L.bed
-1

.day
-1

 in 2009) with the help of Holinger 

AG (Liestal, Switzerland). It was operating continuously for one year from April 2009 to March 2010 

with an average influent of 1.2 m
3
 of wastewater per day (app. 0.5% of the hospital wastewater amount), 

pumped directly from the hospital sewer collection system.  The influent was pumped flow-

proportionally based on real-time measurements of hospital drinking water consumption, which are 

proportional to the wastewater level in the sewer (Figure S3). The pilot plant, as shown in Figure 1, 

consisted of a primary clarifier and an MBR with an anoxic and an aerobic compartment for 

denitrification and nitrification, respectively (Picatech Huber AG, Kriens, Switzerland). Submerged 

ultrafiltration flat sheet membrane plates (Huber MembraneClearBox
®
, PP carrier, PES membrane, 7m

3
, 

15-30 L.m
-2

.h
-1

, 38 nm pore size, 150 kDa) were used. Wastewater from the aerobic compartment was 

recycled to the anoxic compartment (6-8 m
3
/day). The excess sludge amount accounted for 20-50 L/day. 

The sludge concentration in the MBR was on average 2 g/L, the sludge age 30-50 days (organic sludge 

load 0.06-0.1 gCOD.gTSS
-1

.d
-1

 corresponding to 0.03-0.05 gBOD5.gTSS
-1

.d
-1

), the average operating 

temperature was 29°C (temperature of wastewater 27-28°C), pH 7.8, and the conductivity 1100 µS/cm. 

Oxygen concentration in the aerobic compartment was maintained by aeration at 3±2 mg/L.  
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Sampling. A peristaltic pump (average flow rate <2 mL/min) was used for continuous, flow-

proportional sampling of the pilot plant influent. Sampling flow was synchronized with the real-time 

drinking water consumption at the hospital. Fresh MBR-effluent was sampled continuously and time-

proportionally by a peristaltic pump before it entered the MBR permeate tank. The flow from the 

sampling pumps was directed into cooled glass bottles located in a refrigerator at 4°C. Cooling elements 

were used during 1-hour sample transport from the pilot plant to the lab. 

Several sampling campaigns took place: a preliminary over two days in April 1-2, 2009 (12-h 

composite samples); one over 2 weeks in June 15–29, 2009; and the main campaign over three weeks in 

August 10 – September 1, 2009. Daily 24-hours composite samples (9:00-9:00) were mixed to obtain 

flow-proportional composite samples over 48 h (Mon/Tue), 72 h (Wed/Thu/Fri) and 48 h (Sat/Sun) for 

the pilot plant influent. For the main sampling campaign, the samples of the MBR permeate were 

sampled with one day delay relative to the samples in the raw influent of the MBR to account for the 

hydraulic residence time of waste water in the MBR. The hydraulic behavior of the pilot was determined 

by a bromide tracer experiment (see SI, Page S42). 

Sample Preparation. Within 3-6 hours after each sampling day, the wastewater samples were filtered 

through a 0.7-µm GF/F glass–fiber filter (Whatman, Dassel, Germany) and further through a 0.2-µm 

regenerated cellulose filter (Sartorius AG, Göttingen, Germany). For the analysis of 68 micropollutants 

(Table S1 and S4), samples were diluted in ratio 1:100 and 1:10 with nanopure water or left undiluted, 

depending on the matrix (Table S9). Subsequently, 50 isotope labeled internal standards in three 

mixtures were spiked (Table S2). Prepared samples were stored at 4°C in the dark for 1-20 days before 

they were analyzed. For analysis, 20 mL of the filtered and internal standard containing sample in an 

amber glass vial was inserted into a cooled auto-sampler rack, and automatically acidified by formic 

acid (0.1% formic acid in a sample, v/v) just before injection into the on-line SPE-HPLC-MS/MS 

system to avoid hydrolysis. 

Analytical method. The analytical hardware and the final SPE-HPLC-MS/MS method are described 

in SI, Page S18-S19. Shortly, in-house filled on-line SPE cartridge contained Isolute ENV
+
 and Oasis 
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HLB solid phase materials, HPLC column Atlantis T3 (Waters) was used for chromatographic 

separation, and a triple quadrupole mass spectrometer detector TSQ Quantum Ultra (Thermo Fisher 

Scientific) for detection. Loading of the sample to a loop, enrichment onto the SPE cartridge, elution and 

chromatographic run was automated simultaneously in three time steps with an already existing SPE-

HPLC-MS/MS set-up used earlier for sulfonamides in surface waters.
20

 Quality control (QC) was 

assured by measuring two transitions for each analyte and each internal standard, comparing retention 

time of an analyte with the retention time of the internal standard in each sample, duplicates, numerous 

blanks, and QC standards. Details on QC, uncertainty, relative recoveries, and limits of quantification 

can be found in the SI. 

Elimination Efficiency Calculation. The term “elimination” refers in this study to the change in the 

load of a given substance in the effluent (SP-3) compared to the load in the influent (SP-1) usually 

determined over 3 weeks regardless of whether it is mineralized, transformed, or even formed in the 

system. Negative elimination efficiencies arise if a substance shows higher loads in the effluent 

compared to the influent (e.g. in case of de-conjugation of conjugates). Figure S4 contains a detailed 

description of the elimination efficiency calculation.  

Disinfectants. Quaternary ammonia disinfectants were analyzed during one week in August 24 – 

September 1, 2009 at the Austrian Federal Environmental Agency as previously described.
27

  The set-up 

of the inhibition batch study is described in the SI. Shortly, seven aerobic batches of activated sludge 

were spiked with the disinfectant BAC-C12 at increasing concentration in the range of 1-50 mg/L. 

Oxygen consumption rates were used to assess the effect of a disinfectant on the nitrification process.  

 

RESULTS AND DISCUSSION 

Hospital wastewater specificity and the general performance of the MBR.  

DOC and COD in the wastewater of the Cantonal hospital of Baden (120 and 380 mg/L, respectively) 

are higher than values of receiving municipal wastewater by factors of 4 – 5. Verlicchi et al. also 

reported differing values for COD between hospital and municipal wastewaters as well as for BOD, 
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suspended solids, and chlorides, however other general parameters were similar.
5
 Significantly bigger 

differences than for general parameters are in the concentrations of certain pharmaceutical classes. For 

example in hospital wastewater we detected in average 32 µg/L of the antibiotic ciprofloxacin and up to 

2600 µg/L of iodinated X-ray contrast media (ICM), which is around 70-times more than the 

concentrations reported in the municipal wastewater for ciprofloxacin, or hundreds of times for ICM.
28, 

29
 Elevated concentrations of antibiotics but also disinfectants that are used in hospitals in large amounts 

could cause bacterial inhibition in case of hospital wastewater treatment on-site. Most relevant 

disinfectant in that respect are QACs (Table S15), as the alcohols, aldehydes and ketones used for 

disinfection in the highest amounts are well biodegradable. 

Our results of the inhibition study with the quaternary ammonia disinfectant BAC-C12 show that its 

maximal tolerable concentration to prevent inhibition in the given hospital wastewater is 150 µg/L (SI, 

Page S54). Comparable results were obtained in an Austrian study where the tests were done with 

activated sludge from a municipal WWTP with no significant contribution of hospitals or industry.
30

 

The measured concentration of the mixture BAC-C12-18 in the wastewater of the Cantonal hospital of 

Baden was 49±11 µg/L, of which 34±9 µg/L was BAC-C12. Those concentrations are more than 3-

times below the determined maximal tolerable concentration and thus no inhibition of nitrification by 

BAC-C12 is expected. DDAC-C10 was found in concentrations 102±9 µg/L, also below inhibition 

concentrations.
30

 Nevertheless, this might not apply to other hospitals as the disinfectant use routine and 

water consumption can vary greatly between hospitals and countries and a broad range of yearly loads of 

disinfectants per bed has been reported for European hospitals (SI, Table S16).
31

 

The on-site wastewater treatment MBR was in operation at the Cantonal hospital of Baden for one 

year and ran under stable conditions during the entire period. The DOC and COD removal was 94% and 

92%, respectively (SI, Table S11). Full nitrification (>99% N-elimination) and denitrification (>85%) 

was achieved. This shows that the hospital wastewater specificity does not significantly disturb 

biological processes in the MBR and a good performance can be maintained.  

Tools for obtaining robust elimination data.  
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1. Analytical on-line SPE-HPLC-MS/MS method. The analytes of our study listed in Tables S1 and S3 

contain very polar compounds such as ICM (log Kow around -2) as well as apolar compounds such as 

valsartan or ritonavir (log Kow above 4), and anionic, cationic, zwitterionic, and uncharged species are 

present at an arbitrary pH (Table S5). The aim of the study was to analyze all of the compounds with one 

automated multi-compound method to allow high sample throughput. When designing the method, the 

challenge was to find conditions that would provide satisfactory results for the majority of the analytes. 

The conditions to be considered were: the SPE material or material combination, pH of the sample at 

loading, suitable SPE eluent which serves also as part of the HPLC mobile phase, SPE cartridge 

washing solvents, the time of valve switching, the HPLC column material and column dimensions, the 

HPLC mobile phase composition and the gradient. Additionally, the parameter that could be varied 

depending on the sample matrix was the volume of loaded sample (alternatively the dilution factor).   

The major problems were encountered with the acidic ICM, as they were not retained well on most of 

the SPE materials, they eluted from the SPE cartridge in broad peaks and due to weak interactions with a 

chromatographic material they were not subject to sufficient focusing on the HPLC column. An 

improvement in the SPE retention was achieved by using combination of two SPE materials: an Isolute 

ENV
+
 material as a main sorbent, on which problematic ICM retained well, but loading the sample first 

through the Oasis HLB material, on which most of the other analytes retained.  

In total seven different SPE materials in eight different combinations and at three different pH values 

(pH 3, 7, 9) were investigated. The optimized method used a layer of ENV
+
 and Oasis HLB materials, 

samples were loaded at pH 3, and eluted with methanol. The chromatographic separation run with 

methanol and water at pH 3 on an Atlantis T3 column (6 column materials tested). As the method was 

based on satisfactory conditions for all analytes, rather than on optimal conditions for each of the 

analytes, using available labeled internal standards for the majority of the analytes was crucial to obtain 

reliable results.  

The relative recoveries of the final analytical method were in the range 80-120% for the majority of 

compounds in various wastewater matrices (SI, Table S9). Limits of quantification are listed in Table 
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S10 - the sensitivity of the method satisfied or exceeded the requirements of the study for all the analytes 

with exception of three: dexamethasone, methylprednisolone, and fluoxetine (as discussed in SI, Page 

S41). Over 40 analytes could be quantified with an expanded analytical uncertainty smaller than 30% at 

a confidence interval of 95% (SI, Table S7 and Page S29). The compounds with high uncertainty were 

in general compounds without matching internal standards, for which the bias of relative recoveries and 

intraday precision are higher. Extremely high uncertainties were calculated for metamizole metabolites 

for which no matching internal standards were available and transformation in stock solutions in minor 

extend over longer time was observed. Further, iomeprol and iopamidol showed poor intraday precision 

due to poor interaction with SPE and chromatographic material. The uncertainty range for each 

compound is stated in the main result table (Table 1). 

2. Wastewater sampling. For pharmaceuticals that are used relatively rarely and by a few patients (e.g. 

cytostatic cyclophosphamide) non-representative sampling can occur when a single toilet flush 

generating an input pulse is missed or when the sampling event by chance happens only during a single 

toilet flush input pulse. As discussed in previous studies, even flow-proportional sampling with 

insufficient sampling frequency intervals can miss a toilet flush pulse and a sampling frequency of less 

than 1 min for hospital wastewater (less than 5 min for municipal wastewater), or continuous flow-

proportional sampling is recommended.
16, 32

  

We opted for long-term continuous flow-proportional sampling in this study. A tracer test showed that 

the MBR behaved like a fully mixed reactor and the hydraulic residence time in the MBR between the 

primary clarifier and the permeate tank was up to 98 hours (95 percentile, Figure S2). Due to long 

hydraulic residence time in the MBR, sampling of at least one week is necessary for calculation of 

reliable elimination efficiencies for pharmaceuticals that exhibit variable influent concentrations and are 

not easily biodegradable, e.g. iopromide or tramadol (Figure 2, and Figure S4). As shown in Figure 2 for 

iopromide, even 2- or 3-days composite flow-proportional samples with a 24-hour shift between influent 

and effluent are not representative enough for an MBR elimination calculation, and longer sampling 

time is required. Iopromide elimination efficiencies of nine individual samples (each 48 or 72-hour 
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composite) vary due to strong variation of concentrations within week days from apparent no 

elimination to elimination of 60% with very high standard deviation. Such an influence of sampling 

strategies on the obtained results is crucial but often neglected.
32

 If the elimination is calculated from 

weekly composite loads, it varies only between 29% and 33%, with standard deviation of less than 2%. 

On the other hand, for easily degradable compounds like paracetamol, the individual composite samples 

of 48 or 72-hours show the same elimination efficiency as the elimination calculated from weekly 

influent and effluent loads, which is in both cases  more than 99% elimination (see Figure 2). 

 

Conjugates and Transformation Products 

1. Conjugates. Negative elimination efficiencies were observed for some pharmaceuticals that form 

conjugates and are not easily biodegradable, e.g. sulfadiazine, furosemide or propranolol (see Table S14 

for the list of pharmaceuticals which form conjugates that are excreted in urine or feces). In general, 

conjugates of some pharmaceuticals with glucuronic acid, sulfate, glutathione, or acetyl coenzyme A are 

formed in the human body during phase 2 metabolism to increase solubility and to facilitate excretion. 

Excreted conjugates then decompose in the wastewater and during the wastewater treatment back into 

the parent pharmaceuticals and the effluent concentrations of the parent compound can be higher than 

those in the influent. Such an increase in the loads of the parent pharmaceuticals has been previously 

observed for sulfamethoxazole and others in municipal wastewater treatment plants
33, 34

 and is expected 

to be even more common in hospital wastewater, as the travel time of conjugates between the source and 

the treatment is much shorter than it usually is for municipal WWTPs.  Sulfamethoxazole as well as its 

conjugate N4-acetylsulfametaxazole were measured in this study. The elimination efficiency of 

sulfamethoxazole without consideration of de-conjugation is 7%, while the real elimination efficiency of 

sulfamethoxazole calculated from the sum of sulfamethoxazole and N4-acetylsulfamethoxazole in the 

influent and effluent is 36% (Table 1). Literature studies report -280% to >98% elimination of 

sulfamethoxazole in municipal wastewater
35

, which suggests that several previous studies have ignored 

de-conjugation processes when calculating elimination efficiencies of sulfamethoxazole.  
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For easily biodegradable compounds that form conjugates (e.g. paracetamol or morphine) significant 

decreases of load after the MBR treatment is observed, despite de-conjugation. However, we observed 

an increase of paracetamol loads due to de-conjugation in the primary clarifier, where the microbial 

activity is lower compared to the MBR (Figure 2). A study of Mohle et al.
36

 showed that in a batch 

experiment with 1:10 diluted activated sludge, paracetamol glucuronide was completely de-conjugated 

to paracetamol within 5 hours. The paracetamol concentration reached a maximum after 8 hours and 

was further biologically degraded within 18 hours after the beginning of the experiment. 

2. Transformation products. Besides the formation of pharmaceuticals by de-conjugation, loads of 

human drugs or metabolites can increase during biological treatment if biological or abiotic reaction 

processes result in their formation from other compounds. For example, atenolol acid is formed during 

wastewater treatment as a microbially-mediated reaction product of atenolol
37, 38

 whereas it is also found 

in the influent as the human metabolite of metoprolol
39

.  Another example is the human metabolite  

D617 which is also formed during wastewater treatment from verapamil
40, 41

. Oseltamivir carboxylate, a 

human active metabolite of oseltamivir, is also the biodegradation products formed during the 

wastewater treatment
42

. The same could also apply to oxazepam – a pharmaceutical on its own but also 

a human metabolite of diazepam. The true elimination of such substances is difficult to assess, as both 

formation and elimination are occurring. Further, we also observed load increases of clindamycin, 

oseltamivir, phenazone, and primidone after biological treatment. The compounds are pharmaceuticals 

for which formation of conjugates is not reported. For oseltamivir, the negative elimination efficiency 

exhibits a high variation due to the lack of data points and therefore no further conclusion can be drawn. 

An increase of clindamycinand phenazone loads after municipal wastewater treatment has been 

previously reported without giving a possible cause.
43-45

 We assume that phenazone is formed from 

metamizole or metamizole metabolites (e.g. 4-methylaminoantipyrine). Such transformation could be 

just a minor reaction path, although significant when regarding loads of detected metamizole 

metabolites in the hospital wastewater in hundreds of g/day and phenazone loads in the order of few 

mg/day. Phenazone is not widely used in Switzerland (only as an eardrop solution in combination with 
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other pharmaceuticals
46

), and is biologically degradable under aerobic conditions.
47

 The measured loads 

of phenazone in the hospital wastewater were too high to come from the phenazone consumption, which 

further supports the hypothesis of phenazone formation from metamizole, or metamizole metabolites. 

This means that phenazone is either a minor human metabolite of metamizole or it is formed in the 

sewer before reaching the MBR. As for clindamycin formation, we assume transformation of the main 

human metabolite clindamycin sulfoxide back to clindamycin in the denitrification process, as an 

analogous process was previously described for biodegradation of dimethyl to dimethyl sulfide sulfoxide 

by Hyphomicrobium denitrificans.
48

 

MBR Elimination Efficiencies.  

It is known that many factors can influence reported elimination efficiencies. Among them are the 

sludge age and concentration, existence of anoxic and anaerobic compartments, composition of the 

wastewater, inoculum source and character, technical set-up (conventional activated sludge treatment or 

MBR), operating temperature, pH, and conductivity - as previously addressed in literature and not 

discussed further here.
35

 Additionally, as already discussed above, the sampling strategy, although often 

neglected, plays a major role. Keeping this in mind, comparison of elimination data has to be handled 

with care.    

Literature on elimination efficiencies for the target analytes investigated within this study in hospital 

wastewater treatment is available for a few compounds in an MBR system with a sludge age of 100 

days,
6
 and are compared in the following accordingly. Furthermore, results of this study are compared to 

available literature values for conventional activated sludge and MBR municipal wastewater treatment 

(SI, Table S12). Additionally to data comparison, it is pointed out for individual compounds whether the 

elimination is due to biological elimination or sorption (SI, Table S12) according to available Kd and 

Kbiol values that were summarized in a literature review (SI, Table S13). In the following text, 

elimination within pharmaceutical groups is discussed. This could, if desired, lead the medical 

professionals to more environmentally friendly alternatives for interchangeable active substances, e.g. 

ICM or anti-inflammatory preparations. 
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1. Iodinated X-ray contrast media. This group of pharmaceuticals used in remarkably high quantities 

consists of compounds with similar structures which are persistent to biological treatment. Out of 6 

measured substances all with the exception of iohexol were detected in the majority of influent samples 

and in µg/L-mg/L levels, with effluent concentrations of the same order of magnitude. The highest 

elimination efficiency within this pharmaceutical class was detected for iopromide (31%), while the 

elimination was negligible for the other ICM. Detected elimination is rather due to biodegradation than 

due to sorption to activated sludge, as the compounds are too polar to adsorb readily and 

biotransformation products have been previously identified.
49, 50

 Reported data from municipal 

wastewater treatment are in a broad range
35

 into which elimination efficiencies from this study fit. While 

ICM are not toxic themselves, the main environmental concern is their persistency and the formation of 

toxic disinfection by-products in case of chlorination or chloramination, as ICM are found in ambient 

waters used as feed water for drinking water production.
51

  

2. Antibiotics and other antiinfectives. Eleven out of twelve measured antibiotics (antibacterials) were 

eliminated with efficiencies below 60%, while 96% elimination was detected for trimethoprim. All 

available literature data for trimethoprim report much lower elimination than determined in our study, as 

well as low Kd and Kbiol values (Tables S12 and S13).  Trimethoprim elimination was found to be 

dependent on the sludge age,
52

 what can explain the high elimination observed in the hospital MBR. . 

Clindamycin and the sulfonamides are formed, rather than eliminated, as discussed in the section on 

transformation products and conjugates, respectively. Reported elimination of sulfamethoxazole varies 

to a high extend from one WWTP to another, even if de-conjugation from N4-acetylsulfamethoaxazole 

is taken into account (Table S12). Norfloxacin, ciprofloxacin, and metronidazole were eliminated by 

around 50%. Fluoroquinolones are mainly eliminated by sorption to sludge,
53

 and the lower elimination 

in the hospital MBR is probably due to the lower sludge production in MBR than in conventional 

activated sludge. Ciprofloxacin and metronidazole elimination of 60-96% and <30%, respectively was 

previously reported for municipal wastewaters,
35, 54

 and 80% and 100% for hospital wastewater MBR
6
.
 

The elimination of macrolides azithromycin, clarithromycin, and erythromycin (sum of erythromycin 
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and erythromycin-H2O) was ranging from 20% to less than 60%. Complete elimination of 

clarithromycin in hospital wastewater MBR was reported,
6
 pointing to an influence of sludge age as 

previously observed for clarithromycin.
52

 Minor or no elimination was observed for the antiviral 

oseltamivir, its metabolite oseltamivir carboxylate, and the antimycotic fluconazole, while the antiviral 

ritonavir was eliminated by over 78%. The reported elimination efficiencies are comparable with the 

available municipal WWTP data (Table S12), although no data were found for ritonavir, distinguished 

by Escher et al. to have a high risk quotient.
17

 

3. Non-steroidal antiinflamatory drugs (NSAIDs) and analgesics. This group of pharmaceuticals, 

some of which are used and excreted in high quantities, consists of numerous chemically diverse drugs 

and contains persistent as well as easily degradable pharmaceuticals. Diclofenac, tramadol, and 

indomethacin loads in the influent are almost identical to those in the effluent, while mefenamic acid, 

paracetamol (acetaminophen), morphine, and metamizole metabolites are easily biodegradable and their 

loads were decreased by more than 92% after the MBR treatment. Mefenamic acid was found to also 

partly sorb to sludge.
55

 Our results are well comparable with municipal WWTP literature data for the 

majority of pharmaceuticals from this class (Table S12). Tramadol elimination up to 35% was 

previously reported for municipal wastewaters
56

  and 75%for a hospital wastewater MBR.
6 

Elimination 

of diclofenac varies to a high extend from one WWTP to another (see Table S12), and Beier et al. also 

found only 20% elimination in their hospital wastewater MBR.
6
 Sludge age itself was found to have no 

influence on the elimination in some studies,
6, 57

 whereas others found diclofenac elimination to increase 

with higher sludge age;
5, 58, 59

 the factors that influence elimination are therefore still unclear. Phenazone 

formation, possibly from metamizole metabolites, is discussed in the section on transformation products. 

No literature for biological elimination efficiencies of 4-methylaminoantipyrine from wastewater was 

found, although a study with river water and natural river water biofilms reports its rapid degradation.
60

 

4. Beta-blockers and other cardiovascular system preparations. Beta-blockers (with the exception of 

atenolol and atenolol acid), diuretics, and the verapamil metabolite D617 were not eliminated well in 

our MBR system, with efficiencies of less than 55%. Other cardiovascular system preparations 
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(bezafibrate, verapamil, and valsartan) were eliminated by over 80%. These data mostly compare well 

with the municipal WWTP literature data (Table S12). Propranolol is the only beta-blocker forming 

conjugates
46

 and was rather formed than eliminated in our MBR system. For atenolol a relative high 

elimination was observed (99%), and elimination in conventional municipal WWTP (0-96%) and in 

municipal MBR (57-97%) was found to vary a lot from site to site (Table S12). Alder et al. observed 

higher elimination efficiencies in municipal WWTPs with a sand filter than without.
61

 They concluded 

that a highly effective biofilm might be present on the sand particles of these WWTPs, what could also 

be the case in the hospital MBR with higher sludge age. No literature data were found on biological 

elimination efficiencies of D617, although Trautwein et al. pointed out that D617 presumably possesses 

microbial toxic properties or is persistent and recommended its further research.
41

 

5. Anesthetics and other nervous system preparations. The anesthetics thiopental and lidocaine are 

eliminated by 91% and 56%, respectively in the MBR. To our best knowledge, no literature on the 

biological elimination efficiencies of the two anesthetics is available for comparison. Our results for 

ritalinic acid, oxazepam and venlafaxine show poor elimination and are in a good agreement with data 

for municipal WWTPs. 
62-64

 The measured antiepileptics, with exception of levetiracetam (95%), were 

very persistent to biological treatment (<23%). Carbamazepine was not eliminated at all, as observed in 

municipal WWTPs
35

 and in the hospital wastewater MBR.
6
 Gabapentin elimination (23%) differs from 

municipal WWTP literature data, where elimination of above 99% is reported.
35

  

6. Other pharmaceutical classes. From the two measured cytostatics only cyclophosphamide was 

used in the hospital during the main sampling campaign, showing poor elimination. The target 

pharmaceuticals from the group of hormonal preparations were not detected. The enzyme inhibitor 

cilastatin and H2-receptor antagonist ranitidine were eliminated by more than 90% and by 71%, 

respectively. 

7. Industrial chemicals. The target industrial chemicals, the corrosion inhibitors benzotriazole and 

methylbenzotriazole (tolyltriazole), detected in the MBR influent summed up to 0.82 kg/day. 

Benzotriazole and methylbenzotriazole were better eliminated in this study (57% and 82%, respectively, 
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or 80% together) than in municipal WWTP studies where the elimination was less than 40% in a 

conventional activated sludge treatment, however similar in MBR (61%).
65, 66

 Methylbenzotriazole was 

measured as the sum of 4-methylbenzotriazole and 5-methylbenzotriazole because the two isomers were 

chromatographically not fully separated. The peak height ratio between the easily degradable 5-

methylbenzotriazole and more persistent 4-methylbenzotriazole was 1.33±0.06 and 1.34±0.07 in SP-1 

and SP-2, respectively, while after the MBR treatment only the peak of 4-methylbenzotriazole was 

visible. In the technical mixture of methylbenzotriazole the two isomers occur in the ratio of 1.2 – 1.3. 

This suggests that if the hospital uses only the technical mixture with the given isomer ratio, the two 

isomers in the studied hospital wastewater did not degrade during the short traveling time in the hospital 

sewer or during approximately 1 day in the primary clarifier. These findings for hospital wastewater 

differ from the findings in municipal wastewater, where the isomer ratio of 0.62 was found in a German 

study.
66

 Further, while we found 9-times more methylbenzotriazole than benzotriazole, two studies of  

influents of municipal WWTPs from Germany and Switzerland report 3 – 70 times more benzotriazole 

than methylbenzotriazole. 
66, 67

 

8. Sum of all measured pharmaceuticals and metabolites. All target pharmaceuticals and metabolites 

detected in the MBR influent summed up to 1.15 kg/day and an overall elimination of 22% was 

observed. However, 0.94 kg/day of this load (82%) is due to ICM which are generally persistent to 

biological treatment and only 2% elimination was found for their sum. When only pharmaceuticals and 

metabolites without ICM are considered, there is an overall mass elimination of 90%. Such a high 

elimination was achieved despite the fact that only 11 compounds were eliminated by more than 90%, 

while 20 compounds were eliminated by less than 20%. This was caused by the presence of a few 

compounds occurring in high quantities which were eliminated well e.g. paracetamol, ciprofloxacin, and 

the metamizole metabolites which sum up to almost 90% of the load. 

The on-site biological wastewater treatment of hospital wastewater by MBR is insufficient to 

eliminate the majority number of the target pharmaceuticals (especially ICM, antibiotics, and 

antiepileptics) as well as insufficient to eliminate most of the pharmaceutical load (due to ICM). 
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Nevertheless, biological treatment is necessary as a step for DOC elimination, if further on-site 

treatment of hospital wastewater is considered (e.g. ozonation, advanced oxidation processes, membrane 

processes, activated carbon, or photo-degradation). 
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Figure 1. The wastewater treatment pilot plant. Sampling points are represented by circles (SP-1 – 

SP-3). 
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Figure 2. Mass-flow and elimination of iopromide and paracetamol in hospital wastewater during 3 

weeks (SP-1 influent, SP-2 after primary clarifier, SP-3 MBR effluent). Elimination was calculated 

between SP-1 and SP-3. 
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Table 1. Influent concentrations and eliminations achieved in the hospital MBR. 

        

 Freq(1) Influent(2) Elimination(3)  Freq(1) Influent(2) Elimination(3) 

 (%) (ug/L) (%)  (%) (ug/L) (%) 

4-Acetamidoantipyrinec 100 225 ±  89 95 ± 1 Iopromidec 100 170.6 ± 156.3 31 ± 2 

4-Aminoantipyrined 100 101 ±  44  83 ± 3 Ioxitalamic acidc 88 342.0 ± 197.0 0 ± 15 

4-Dimethylaminoantipyrinec 0 < 0.14 n.a. Levetiracetama 100 11.02 ± 6.546 95 ± 1 

4-Formylaminoantipyrinec 100 47.88 ± 12.39  90 ± 1 Lidocainea 100 9.133 ± 8.071 56 ± 13 

4-Methylaminoantipyrined 88 218 ± 208  99 ± 1 Mefenamic acida 100 6.140 ± 1.779 92 ± 0 

4/5-Methylbenzotriazoled 100 223 ± 132  82 ± 8 Methylprednisolonea 12 1.420 ± 0.768Apr n.a. 

Atenolola 94 2.315 ± 0.632 99 ± 1 Metoprolola 100 1.325 ± 0.330 55 ± 13 

Atenolol acida 100 9.840 ± 1.859 81 ± 3 Metronidazolec 100 3.388 ± 1.322 45 ± 56 

Azithromycinb 59 0.139 ± 0.156 21 ± 95 Morphineb 100 3.679 ± 1.834 >96 

Benzotriazoleb 100 23.57 ± 9.09 57 ± 6 N4-Acetylsulfamethoxazolea 100 2.394 ± 2.261 81 ± 4 

Bezafibratea 29 0.063 ± 0.075  >91  Naproxenc 0 < 5.6 n.a. 

Carbamazepineb 94 0.222 ± 0.118 -6 ± 12 Norfloxacinc 88 5.933 ± 3.390 47 ± 5 

Cilastatinc 76 1.037 ± 1.032  >90   Oseltamivirc 35 0.025 ± 0.018 -42 ± 149 

Ciprofloxacinc 100 31.98 ± 14.06 51 ± 13 Oseltamivir carboxylateb 35 0.151 ± 0.081 18 ± 62 

Clarithromycina 100 2.555 ± 1.558 50 ± 12 Oxazepama 100 1.123 ± 0.335 6 ± 12 

Clindamycinc 100 0.983 ± 0.945 -18 ± 40 Paracetamolb 88 107.0 ± 85.7  >99   

Clofibric acidb 0 < 0.07 n.a. Phenazonec 100 0.162 ± 0.079 -158 ± 99 

Cyclophosphamidea 71 0.161 ± 0.026 <20 Primidoneb 41 0.383 ± 0.390 -57 ± 87 

D617b 100 0.155 ± 0.114 8 ± 31 Propranololb 88 0.116 ± 0.041 -20 ± 39 

Dexamethasonea 18 0.147 ± 0.013 n.a. Ranitidineb 100 1.565 ± 0.763 71 ± 7 

Diatrizoatec 100 348.7 ± 241.0 -5 ± 16 Ritalinic acidb 76 0.295 ± 0.142 28 ± 4 

Diazepama 6 0.069 n.a. Ritonavirb 47 0.108 ± 0.094 78 ± 16  

Diclofenacb 100 0.833 ± 0.179 -5 ± 3 Roxithromycinb 6 0.023 n.a. 

Erythromycin + Eryt.-H2O
c 24 0.188 ± 0.297  <60   Sotalola 82 0.700 ± 0.551 18 ± 17 

Fluconazolea 100 3.445 ± 1.569 -8 ± 7 Sulfadiazinea 41 1.896 ± 4.003 -23 ± 235 

Fluoxetineb 0 < 0.03 n.a. Sulfamethoxazolea 100 3.476 ± 4.588 7 ± 57 

Furosemideb 100 2.037 ± 0.595 -21 ± 11 SMX + N4-AcSMXa (4) 100 5.870 ± 6.849 36 ± 28 

Gabapentinb 88 19.40 ± 24.15 23 ± 8 Sulfapyridinec 6 0.251 n.a. 

Hydrochlorothiazidea 100 1.995 ± 0.547 8 ± 6 Thiopentalc 53 0.763 ± 0.860 91 ± 2 

Ifosfamideb 12 0.895 ± 0.293 n.a. Tramadola 100 0.958 ± 0.264 7 ± 17 

Indomethacina 53 0.069 ± 0.080 7 ± 44 Trimethoprimc 94 0.930 ± 0.890 96 ± 1 

Iohexolc 0 < 12 n.a. Valsartanb 100 3.032 ± 1.282 85 ± 2 

Iomeprold 100 439.0 ± 443.9 2 ± 38 Venlafaxinea 100 0.811 ± 0.316 16 ± 9 

Iopamidold 100 2599 ± 1512 -29 ± 218 Verapamila 94 0.030 ± 0.022 82 ± 3 

 (1) Frequency of detection, n=17 samples (April n=2, June n=6, August n=9). Morphine, Oxazepam, Thipental: n=15. (2) Average concentration in MBR influent 

during 2 weeks in June and 3 weeks in August ± variation within this period. Samples in which micropollutant was not detected were not taken into average 
(max. n=15). (3) Total load elimination of 3 weeks in August ± variation among weeks (n=3). The term “elimination” refers in this study to the change in the 

load of a given substance in the effluent compared to the load in the influent, regardless of whether it is mineralized, transformed, or even formed in the system. 
(4) Sum of sulfamethoxazole and N4-acetylsulfamethoxazole (Apr) Preliminary sampling campaign April.   n.a. – value not available. 

Analytical uncertainty:  a less than 14%;  b 15 - 29%; c 30 - 100%; d above 100%.  
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