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Abstract 
The presented approach aims to overcome the scarce data problem in service life modeling of 
water networks by combining subjective expert knowledge and local replacement data. A 
procedure to elicit imprecise quantile estimates of survival functions from experts, 
considering common cognitive biases, was developed and applied. The individual expert 
priors of the parameters of the service life distribution are obtained by regression over the 
stated distribution quantiles and aggregated into a single prior distribution. Furthermore, a 
likelihood function for the commonly encountered censored and truncated pipe replacement 
data is formulated. The suitability of the suggested Bayesian approach based on elicitation 
data from eight experts and real network data is demonstrated. Robust parameter estimates 
could be derived in data situations where frequentist maximum likelihood estimation is 
unsatisfactory, and to show how the consideration of imprecision and in-between-variance of 
experts improves posterior inference. 
 
Keywords 
scarce data, expert knowledge elicitation, expert aggregation, Bayesian inference, water 
supply network, service life modeling  

mailto:lisa.scholten@eawag.ch


PUBLISHED MANUSCRIPT: Scholten et al. 2013. Combining expert knowledge and local data for improved 
service life modeling of water supply netwoks. Environmental Modelling & Software 42: 1-16. 

2 
 

1 Introduction 

1.1 Challenge 
The coming of age of the water infrastructure poses an increasing challenge for utility 
managers. One of the key issues is to assess the long-term development of network 
rehabilitation demand. The motivation is to ensure that sufficient funding is raised and 
appropriately allocated to achieve the foreseen level of service. As a result, the last decade of 
water infrastructure management has seen increased development, testing, and application 
of mathematical models in rehabilitation planning and network failure  estimation (Alvisi 
and Franchini, 2010; Dridi et al., 2009; Eisenbeis et al., 1999; Fuchs-Hanusch et al., 2008; 
Kleiner and Rajani, 2001; Pelletier et al., 2003; Rajani and Kleiner, 2001). 

1.2 Network rehabilitation and survival modeling with scarce data 
Within these models, the expected service life of water supply pipes (also referred to as “pipe 
lifetime” or “pipe survival”), is inferred from historic failure or replacement data. A 
shortcoming of these models is  that they are only applicable for rather well-kept and 
extensive data sets, which are not ubiquitous in many utilities, as for example in Switzerland 
(>50 % of the population served by utilities with < 10.000 customers, (SVGW, 2009)) where 
even the best documentation does not help to overcome the prevalence of short network 
length and thus small sample size. 

Different strategies have been proposed to handle scarce data situations (i.e. situations in 
which model parameters cannot be identified or are too uncertain to be of use for practical 
rehabilitation planning):  

Purely data-based methods. Renaud, De Massiac et al. (2009) tried to overcome the scarce 
data difficulty by amalgamating the data from a number of French water utilities to calibrate 
the model, but found that this did not result in models that were more effective.  

Purely expertise-based methods. The survival model for rehabilitation prediction and its 
parameters or quantiles are directly elicited from experts, for example based on cohort 
survival (Herz, 1995, 1998). Even though the value of subjective expert judgment is largely 
unquestioned in practice, only few have proposed its use in water infrastructure engineering 
(Dridi et al., 2009; Korving and van Noortwijk, 2008).  

Bayesian combination of subjective expert knowledge with data, e.g. (Dridi et al., 2009). 
Especially for small data sets, Bayesian inference might be advantageous over frequentist 
(purely data driven) inference. While the likelihood function is often discussed in detail, e.g. 
(Mailhot et al., 2000), the elicitation and influence of the prior probability distribution are 
rarely explored. This work does not only discuss the derived likelihood function for left-
truncated and right-censored data, but also shows a meaningful procedure for quantitative 
expert knowledge elicitation and combination with locally available data. The performance 
of the Bayesian approach is compared to using a purely data-driven frequentist estimation, 
on the basis of different amounts of data.  

1.3 Background on expert knowledge elicitation and aggregation 
Regarding the elicitation of expert knowledge (referred to as “expert elicitation”), a wealth of 
publications and guidelines exist. Recent reviews on the role of expert knowledge in 
modeling and important elicitation aspects are the works of Krueger et al. (2012), Kynn 
(2008) and Low Choy et al. (2009). The former not only provides an overview about the 
formal use of expert opinion in modeling practice, but also a discussion about common 
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critiques such as the definition of expertise, and the representativeness of experts. Kynn 
(2008) offers a critical review of the past decades of psychological research on expert 
elicitation, as well as relevant work from other fields. She concludes that over a decade of 
research into heuristics and biases has been almost completely ignored by the statistical 
literature on expert elicitation. (Interestingly, in the literature regarding elicitation of Herz’s 
cohort survival model for pipe survival estimation, the wealth of publications on expert 
elicitation seems to have gone similarly unnoticed.) The latter work of Low Choy et al. (2009) 
comprises a review of applications of expert elicitation throughout the ecological literature. 
Apart from these, the reader is referred to the works of (Ayyub, 2001; Cooke, 1991; Cooke 
and Goossens, 2008; O'Hagan et al., 2006) for more in-depth information on the historical and 
theoretical background. Even though the effect of imprecision in the elicited data itself is 
sometimes discussed (O'Hagan, 2012; O'Hagan et al., 2006; Oakley and O'Hagan, 2007), it 
seems that the possibility of explicit elicitation of such imprecision has been overlooked in 
the past. The elicitation guideline developed hereafter includes the elicitation of imprecise 
estimates. 

Consulting multiple experts can be interpreted as an artificial increase in sample size of the 
experiment (Clemen and Winkler, 1999) with the objective of getting an approximation to the 
intersubjective knowledge of the expert community rather than the subjective knowledge of 
a single expert (Gillies, 1991; Rinderknecht et al., 2012). A key decision is the way to 
aggregate this information into one single distribution, which is also reflected in numerous 
publications, e.g. (Ayyub, 2001; Clemen and Winkler, 1999; Cooke, 1991; Genest and Zidek, 
1986; Jouini and Clemen, 1996; Kuhnert et al., 2010; O'Hagan, 2012; O'Hagan et al., 2006; 
O'Leary et al., 2009).  

Following the categorization of Clemen and Winkler (1999), aggregation can be achieved by 
mathematical and behavioral combination. Unless a mutual consensus of the experts is 
envisaged, elicitation is performed on an individual basis and later mathematically 
aggregated. Mathematical combination approaches are often further subdivided into 
axiomatic (also named classical or pooling) approaches and Bayesian approaches (Clemen 
and Winkler, 1999; Cooke, 1991). 

Many of the axiomatic approaches consist of linear pooling (e.g. simple weighted averaging) 
and differ only in the weighting of the elicited probabilities. Weights can be equal, or 
different for individual experts, , e.g.assigned according to  confidence levels or calibration. 
In comparative aggregation studies equal weighting performed reasonably well, though it 
was outperformed by more complex weighting rules in specific situations (Cooke, 1991; 
Cooke and Goossens, 2008). Clemen and Winkler (1999) conclude that simpler aggregation 
methods such as the simple equally-weighted arithmetic average perform just as well as 
more complex methods, a notion widely supported by others (Larrick and Soll, 2006; 
O'Hagan et al., 2006).  

Therefore,  two axiomatic aggregation methods were chosen for comparison. In approach A 
the differences between experts are considered to stem from the variability between different 
networks, whereas in approach B it is assumed that all experts refer to the same network (but 
the expert statements are uncertain and therefore different). The experts were assumed to be 
equally qualified, thus assigning equal weights. 

1.4 Elicitation of the parameters from a multivariate survival function  
When it comes to practical elicitation, it is often not possible to elicit the unknown 
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probability distribution directly, but only the observable quantities (Lele and Allen, 2006; 
O'Hagan et al., 2006). This is because the experts can neither be expected to define a specific 
distributional form nor to estimate distributional parameters of possible functional models 
directly unless specifically trained. In the case of multivariate survival models, correlation 
between model parameters makes direct elicitation of parameters even more unreliable. To 
overcome this limitation, an approach to elicit the model parameters indirectly from experts’ 
judgment on selected quantiles of the survival distribution was developed. 

1.5 Goal and structure of the paper  
The objective of this paper is to present an approach to overcome the scarce data problem in 
water pipe lifetime modeling by combining expert knowledge and local data.  

The methodic contribution of this approach consists of 

1. nomination of considered survival models (section 2.1), 
2. a specifically developed elicitation guideline to obtain (imprecise) survival function 

quantiles from experts (2.2), 
3. inference of a bivariate prior distribution of the survival function parameters from the 

stated quantiles, 
4. mathematical aggregation of the experts statements into a single prior distribution for 

the survival model (2.3), 
5. formulation of a novel likelihood function of the survival model for censored and 

truncated data (2.4.1), 
6. frequentist parameter estimation under varying amounts of data (2.4.2), and 
7. Bayesian updating of the expert prior using different amounts of data (2.4.3).  

The utility data considered are summarized in section 2.5. In section 2.6, it is presented how 
possible sources of uncertainty were dealt with. Results consequently cover the elicited 
expert knowledge (3.1), parametric model identification (3.2), most appropriate aggregation 
method (3.3), as well as the performance of maximum likelihood estimation (3.4) and 
Bayesian inference (3.5) in light of scarce data. Conclusions for its use in water main survival 
modeling are drawn in section 4. 

As this work is interdisciplinary, the aim is to address readers from different professional 
backgrounds. Please bear with us for making aspects explicit which an expressed specialist 
might judge as banality. For linguistic convenience, experts will be male, the interviewer and 
the analyst female.  
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2 Methods 

2.1 Choice of the survival model  
The age ti is the age of pipe i at the end of its service lifetime. As the service lifetime is 
different for every pipe it seems natural to model ti with a random variable T. Because 
negative lifetimes are impossible, the distribution of T should support only positive values. T 
can be described by its probability density function p(t) or its survival function S(t)=P(T>t).  

In practice S(t) is described by a parametric function that ideally has a small number of 
parameters while being flexible enough to fit the data. Three parametric models that satisfy 
these requirements, and allow for a great variety of shapes, are the Weibull, lognormal and 
gamma distribution (Wayne, 2004).  

These three models are used to infer the survival function from (a) the elicited expert 
knowledge expressed in the form of stated quantiles, (b) the available utility data with 
frequentist inference, and (c) a combination of both by Bayesian inference.  The Weibull 
distribution is parameterized with 𝜽 = (𝛼,𝛽)𝑇 such that 𝐸(𝑇) = 𝛽Γ(1 + 1/𝛼)  and Var(𝑇) =
𝛽2Γ(1 + 2/𝛼)− 𝐸(𝑇)2, the lognormal with 𝜽 = (𝜇,𝜎)𝑇, whereas E(T) =µ and sd(T)=σ, and the 
gamma distribution with 𝜽 = (𝑘, 𝑠)𝑇 , so that E(T) =ks and sd(T)=ks2. 

For Bayesian inference a prior distribution for 𝜽 is required. However, as experts cannot be 
expected to make reliable statements about the distribution of 𝜽, an approach to elicit the 
distribution indirectly has been developed. 

2.2 Expert Elicitation 
A generic elicitation guideline, developed within the “Sheffield Elicitation 
Framework”(Oakley and O'Hagan, 2010), has been a major guidance for the design and 
adaptation of the elicitation procedure described below. Further details can be found in 
(Arreaza, 2011). 

2.2.1 Minimizing cognitive biases 
The elicitation guideline was developed keeping minimization of cognitive biases in mind. 
These are attributable to misunderstanding or discrepancies between the experts’ responses 
and an accurate description of their knowledge (Spetzler and Stael Von Holstein, 1975). The 
underlying research is comprehensively reviewed in (Ayyub, 2001; Cooke, 1991; Eisenführ et 
al., 2010; Kynn, 2008; Low Choy et al., 2009; O'Hagan et al., 2006). According to Kynn (2008), 
following the development of cognitive models to describe the encountered cognitive biases, 
three dimensions are categorized:  

1. Internal consistency (and coherence) is mostly concerned with how well the experts’ 
statements fulfill or contradict the laws of probability.  

2. External consistency deals mostly with the ability of a person to control overconfidence 
in giving probability statements (calibration).  

3. Self-consistency (reliability) deals with the variation in between statements when 
performing repetitive tests.  

Often, not the biases or bias categories themselves, but rather more prominent heuristics 
leading to such biases are cited or even intermixed, e.g.(Kuhnert et al., 2010). Such heuristics 
are availability, adjustment and anchoring, and representativeness, originally reported and 
explained by Tversky and Kahneman (1974). 
Several measures to avoid distortions to the elicitation data are described in (Cooke, 1991; 
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Kynn, 2008; Low Choy et al., 2009), among others. From these measures the guidelines to 
minimize biases (bias category in parenthesis) were compiled:  

a) making the desired mathematical implication of questions explicit (internal 
consistency, especially general additivity), 

b) naming frequencies along with probabilities (internal consistency, especially 
conditional probability, and general additivity), 

c) using tools (also visual) or checks during the elicitation procedure, and discussing 
possible incoherence with the expert to ensure the laws of probability are not violated 
(internal and external consistency), 

d) ordering the questions in such a way that anchoring is avoided, e.g. non-sequentially 
as in bi-section method (external consistency), 

e) calibration of the expert based on training questions which are related to the test 
questions (internal and external consistency),  

f) using different trials, duplicated assessment and different encoding of questions (self-
consistency, i.e. reliability of the results), and 

g) assessing only non-tacit assumptions, i.e. not asking for extreme probabilities of 
distributions (internal consistency). 

An accurate elicitation procedure including checks and repetition can also lead to the 
reduction of uncertainty in the stated quantities, whereas adequate preparation enhances 
consistency and reliability (Low Choy et al., 2009). Kynn (2008), Low Choy, O’Leary et al. 
(2009) and Oakley and O’Hagan(2010) furthermore emphasize the importance of motivating 
the experts to participate with diligence. 

2.2.2 Quantile elicitation method 
When it comes to practical elicitation, it is often not possible to elicit the unknown 
probability distribution directly, but only observable quantities (Lele and Allen, 2006; 
O'Hagan et al., 2006). Given that experts could not be expected to estimate the correlated 
parameters of a bivariate survival model directly, experts were asked to give estimates of the 
age until which a certain proportion of a pipe cohort is expected to last, i.e. the quantiles of 
the age distribution (e.g. “How long does it take until 50 % of the members of this pipe group have 
been taken out of service?”). This quantile elicitation method is equivalent to the analyst stating 
probabilities or relative frequencies of a cumulative distribution and the expert estimating 
the expected age at replacement, see (Rinderknecht et al., 2011) for more details. This is 
different from the typical application of the quantile elicitation method, because the expert 
does not state the quantiles of a distribution describing the expert’s uncertainty about a 
quantity to be elicited, but the expert states point estimates of the quantiles of a pipe survival 
distribution. The elicitation of marginal distributions characterizing the expert’s knowledge 
of all quantiles of the elicited age distributions would be much too demanding and would 
still leave the problem of missing information about the dependence structure of these 
marginal distributions. 

The quantiles selected for the interview are, in this sequence, the 95 %, 5 %, 50 %, 75% and 
25% quantiles, characterizing the tails, the position, and two easily interpretable quantiles in 
between, which allow for adjustment of the shape of the curve, respectively. Winkler (1967) 
also suggests this sequence in order to avoid anchoring and adjustment effects. The 
motivation for 95 % and 5 % quantiles as outer ranges is based on the reported limited ability 
of experts to correctly express the extreme tails of distributions, e.g. when asking for 99 % 
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and 1 % quantiles (Alpert and Raiffa, 1982 in (Oakley and O'Hagan 2007)). Experts might 
find it easier not to specify their opinion with absolute precision. Thus, the elicitation 
guideline was developed for both precise (point estimates) and imprecise values (stated 
intervals). 

2.2.3 Selection of experts 
To ensure enough diversity of opinion and expertise while at the same time avoiding 
redundancy of information (Ayyub, 2001), eight individual expert interviews, at a duration 
of approximately two hours each, were performed. The experts were selected following 
suggestions from the Swiss Gas and Water Association (SVGW/SSIGE). People from different 
parts of Switzerland with major experience in the fields of planning, construction, operation 
and maintenance of water supply networks were chosen. All of them carry a higher 
education degree. An overview of the experts and their specific qualification is given in Table 
9, Appendix A. 

2.2.4 Choice of pipe groups 
It is effective to differentiate the pipe network by material and laying period for pipe survival 
analysis (Fuchs, 2001; Kleiner and Rajani, 1999; Roscher et al., 2008). Stratification based on 
other criteria such as diameter, pressure zone, soil conditions etc. is possible, but was not 
done because this might likely overtax the abilities of the experts and make the elicitation 
overly complicated. Though diameter can be a useful grouping criterion (Carrión et al., 2010) 
it was neglected in this study because the focus is on small networks in which diameter 
differences are small and diameters larger than 300 mm are generally rare. Additionally, the 
more stratification of data, the smaller the sample sizes for parameter inference. Out of 
thirteen possible pipe groups formed from material and laying period, five were chosen 
based on their frequency of occurrence in Swiss water supply networks, familiarity of 
experts with them, and the time these pipe groups had been in service. They are: grey cast 
iron (3rd generation only, GI3), ductile iron (1st generation only, DI1), asbestos cement (AC), 
steel (ST), and polyethylene (PE). 

2.2.5 Pre-elicitation information 
As preparation for the interviews, all experts were supplied with pre-elicitation information 
material at least three weeks prior to elicitation. Therein, the purpose of the study and 
background were stated, along with further information. The information covered the five 
pipe groups to be elicited, a rough scheme of the elicitation procedure, and suggestions on 
how to prepare for the interview. The experts were asked to provide feedback on the selected 
pipe groups. Furthermore, they were requested to thoroughly read through an elicitation 
example on the service life of an imaginary pump group with formulated questions and 
potential answers. The reason for pumps instead of pipes was to stay within the domain of 
the expert, while at the same time avoiding anchoring effects. 

2.2.6 Elicitation procedure 
First, an elicitation briefing is done. It includes setting the scene (purpose and procedure of the 
interview, expert’s expertise, clarification of questions, selection of the four most familiar out 
of the five proposed pipe groups), focusing (characteristics of the pipe groups, motivation), 
and training. Goal of the training is to familiarize the expert with the question layout and to 
sensitize the experts to possible biases. The training example is the survival of women born 
in Switzerland in the year 1940 (for the reasoning behind this see Appendix A). Cross-checks 
with real data (Cordazzo, 2006) help to highlight specific features potentially leading to 
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biases during pipe survival elicitation. Using a different domain for training avoids 
anchoring of the interviewees. 

After this follows the main elicitation, for each pipe group separately. In the beginning, the 
experience of the expert with the specific pipe group is explored. Then the quantiles are 
elicited.  

Quantities are roughly visualized using 100 paper clips (representing 100 % of the pipe 
group) and a paper sheet with a time bar. Experts are requested to disregard replacement 
because of initial laying failures (e.g. within the first year after laying), and replacements 
following managerial or other considerations not related to age or condition, such as 
coordinative ground works with other infrastructure providers. This helps to focus on 
technical lifespans and not on effects of different management decisions.  

For a second round, the 75 %, 50 %, and 25 %- quantiles are re-elicited using bets, adjusting 
the stated ages until the expert is indifferent between the bets. This technique is used to 
confirm the statements by making the experts think differently about the quantities. After the 
bets, the elicited values are read out and confirmed with the expert. These checks and 
repetitions ensure that experts’ statements are reliable, consistent and correctly documented. 
Lastly, the experts are asked for a qualitative description of the imaginary density curve (if 
possible), which in turn reveals whether it can be assumed unimodal. 

Experts are requested to assess half of the pipe groups with imprecise estimates and the 
other half using precise estimates. At the end, experts are asked for feedback on the difficulty 
of the interview, and their preference regarding precise and imprecise estimates.  

A more detailed description of the entire elicitation procedure is given in Appendix A and in 
(Arreaza, 2011). 

2.3 Derivation of experts’ priors of survival function parameters and aggregation 
To combine the experts’ statements and to construct an intersubjective prior distribution for 
the survival model parameters, axiomatic, equally-weighted pooling was chosen. Therefore, 
the elicited quantiles are considered as data to which the survival functions are fitted using 
nonlinear least squares regression. The resulting estimates and variance-covariance matrix of 
the survival function parameters were used to parameterize a bivariate lognormal 
distribution then called expert prior. The ages 𝑡𝑘 that the expert assigns to the cumulative 
probabilities 𝜋𝑘 are treated as dependent variables. The goodness of fit of the Weibull, 
lognormal, and gamma distributions can be directly compared based on the residual sum of 
squares (RSS) because they have the same number of parameters. 
At least two aggregation options for combining the different experts into one intersubjective, 
general prior for Swiss water networks arise (terms are according to the classification of 
Gelman and Hill (2009) for hierarchical model regression):  

A) Partial pooling: Fitting a distribution to each expert’s estimates separately, and 
subsequently aggregating these distributions into one prior distribution. 

B) Complete pooling of all experts’ estimates before fitting a distribution to the stated 
quantiles. 

With regard to pipe service life estimation, all experts are considered to be equally credible. 
They should thus receive equal weights. The possibility of correlation among experts caused 
by similar training or exchange of experience cannot be excluded (Jouini and Clemen, 1996) 
and is thus to be accommodated in the aggregated prior. 
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It is expected that for this example, partial pooling will be more appropriate than complete 
pooling, because the individual expert priors take better into account the expectedly different 
underlying environmental conditions in the experts domains throughout Switzerland. 

Aggregation option A: partial pooling 
The experts gained their knowledge on different water distribution networks whose 
deterioration is determined by diverse local conditions. Thus, dissimilar distributions can be 
expected to result from elicitation and fitting. To ensure these different conditions are 
accordingly reflected in the prior, not only the individual imprecision, but also the in-
between-variance of the single experts’ fitted distributions shall be considered. The 
procedure to obtain this prior is: 

1. The inverse S-1 of the parametric survival function S is fitted to the ages quantified by the 
expert with a non-linear least squares regression for each expert separately: 

 𝑡𝑒,𝑘~𝑆−1�𝜋𝑒,𝑘|exp (𝜃𝑒∗)�+ 𝜀𝑒,𝑘;  𝜀𝑒,𝑘~𝑁(0,𝜎𝑒) (1)  

Thereof for each expert e, e = 1…E, an approximate multivariate normal distribution 
p𝑒(𝛉∗|µe,Σe)  for 𝜽𝑒∗ = ln (𝜽𝑒)  is obtained with normal distributed error 𝜀𝑒,𝑘 . Accordingly, the 
parameters of the survival distribution eθ  (Weibull, lognormal or gamma) are lognormal 
distributed: p𝑒(𝛉|µe, Σe). If the expert stated intervals, both endpoints of the intervals are 
used for the regression. 

2. The mixture of all E distributions  p𝑒(𝛉|µe,Σe) can then be used as prior distribution: 

 
𝑝(𝜽|𝜇1, … , 𝜇𝐸 , Σ1, … , Σ𝐸) = �𝑤𝑒𝑝𝑒(𝜽|𝜇𝑒 , Σ𝑒)

𝐸

𝑒=1

 
(2)  

where 𝑤𝑒 is the weight of expert e and ∑ 𝑤𝑒 = 1.𝐸
𝑒=1  

This model is a mixture of the fitted individual prior distributions of the experts. It is 
sometimes referred to as the density version of the linear opinion pool (Genest and Zidek, 1986).  

3. Because the mixture of the experts priors is likely to be multimodal, it is approximated (or 
rather smoothed) with a two-dimensional lognormal distribution 𝑝�(Θ|𝜇, Σ) that has the mean 
𝜇 and covariance Σ, calculated as follows: 

The (raw) moments of a mixture are the weighted average of the same moments of the 
component distributions (Frühwirth-Schnatter, 2006). Therefore the first moment (the 
expected value) of the mixture is 

 
𝐸(𝜽) = �𝑤𝑒𝐸𝑒(𝜽)

𝐸

𝑒=1

= �𝑤𝑒𝜇𝑒 = 𝜇
𝐸

𝑒=1

 
(3)  

where 𝐸𝑒(𝜽) is the expected value of the distribution of expert e. The second moment is 
derived from the covariance of each component distribution: 

 𝐸𝑒(𝜽𝜽𝑇) = Σ𝑒 + 𝜇𝑒𝜇𝑒𝑇 (4)  
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The second moment of the mixture is the weighted average of the second moments of the 
component distributions: 

 
𝐸(𝜽𝜽𝑇) = �𝑤𝑒𝐸𝑒(𝜽𝜽𝑇)

𝐸

𝑒=1

 
(5)  

Thereof, the covariance of 𝑝�(𝜽|𝜇, Σ)  is calculated: 

 Σ = 𝐸(𝜽𝜽𝑇) − 𝐸(𝜽)𝐸(𝜽)𝑇 (6)  

This prior does not necessarily become narrower when more experts are considered. It might 
even become wider if new experts have gained their knowledge from different systems with 
other conditions. 

Aggregation option B: complete pooling 
Another approach is to pool the data beforehand to perform one single regression over all 
the data at once. This only makes sense if experts are considered as independent 
measurement devices and if they assess values based on experience from the same or very 
similar systems. In this case, the variance between experts is interpreted as measurement 
imprecision. Practically, aggregation consists of one single weighted non-linear least squares 
regression for all experts together: 

 𝑡𝑘~𝑆−1�𝜋𝑘|𝑒𝑒𝑝(𝜽∗)� + 𝜀𝑘 ,    𝜀𝑘  ~ 𝑁(0,𝜎) (7)  

Quantiles from experts who stated intervals estimates (two measurements per distribution 
quantile, endpoints of the intervals used) received half the weight compared to quantiles 
from experts who stated precise estimates (one measurement per quantile). From the 
weighted non-linear least squares regression a multivariate normal distribution 
p(Θ∗|µe, Σe) of the estimated parameters 𝜽∗ = ln (𝜽)  is obtained. Therefrom a log-normal 
distributed p(𝜽|µe, Σe) is derived for the parameters 𝜽.  

Complete pooling has the effect that the more experts are asked, the smaller the uncertainty 
of the prior becomes. This is because the number of measurements (experts) increases while 
the number of parameters to be inferred remains the same. 

2.4 Model parameter estimation 

2.4.1 Likelihood function for left-truncated and right-censored data 
The likelihood function of a model is required for frequentist and Bayesian parameter 
estimation. The likelihood function expresses the probability density to observe life-spans 
𝑡 = {𝑡1, … , 𝑡𝑁} given the parameters 𝜽. 

As in most utilities, historic failure and replacement data have not been systematically 
documented in the studied utility until rather recently. This causes a left-truncation-right-
censoring (LTRC) data scheme (Figure 1).  
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Figure 1: Left truncation and right censoring of a pipe group. The shaded area is the observation 
window between start tobs and end ttoday of observations. 

Klein and Moeschberger (2003) describe right-censoring as an event which is only observed if 
it occurs before some pre-specified time, e.g. the end of a study. Consequently, pipes that are 
still in service at the end of the observation interval ttoday are right-censored observations. Left 
truncation describes a situation where only subjects that have not yet experienced the event 
enter the study at a particular age and that are followed from this delayed entry time until 
the event occurs (or until the subject is censored). That means that data of pipes replaced 
before the start of observations are not available to the analyst, leading to only the more 
resistant of the pipes being observed. 

The probability density to observe an uncensored age ti of pipe i is written as:  

 𝑝�𝑡𝑖�𝑇 > 𝑡𝑜𝑜𝑜,𝑖,𝜽� =
𝑝(𝑡𝑖|𝜽)

𝑆�𝑡𝑜𝑜𝑜,𝑖|𝜽�
 (8)  

where tobs,i is the age of the pipe i at the beginning of the observation period.  

In situations where the end of lifetime could not be observed the likelihood for a single pipe 
becomes: 

          𝑃�𝑡𝑖 > 𝑡𝑡𝑜𝑡𝑡𝑡,𝑖�𝑡𝑖 > 𝑡𝑜𝑜𝑜,𝑖,𝜽�  =
𝑆�𝑡𝑡𝑜𝑡𝑡𝑡,𝑖|𝜽�
𝑆�𝑡𝑜𝑜𝑜,𝑖|𝜽�

 (9)  

where ttoday,i denotes the age of pipe i at the end of the observation period. 

A censoring indicator δi allows for a short notation for the likelihood for all N pipes. δi equals 
zero if the datum is censored and one if uncensored. With this and the assumption that the 
pipes are independent the joint likelihood function for all pipes is: 

 p(𝐭,𝜹| 𝜽) = ��
𝑝(𝑡𝑖|𝜽)
𝑆(𝑡𝑜𝑜𝑜|𝜽)�

𝛿𝑖𝑁

𝑖=1

�
𝑆�𝑡𝑡𝑜𝑡𝑡𝑡|𝜽�
𝑆(𝑡𝑜𝑜𝑜|𝜽) �

1−𝛿𝑖

 (10)  

This likelihood function is used for frequentist and Bayesian parameter inferences.  
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2.4.2 Frequentist parameter inference 
Maximum likelihood estimation (MLE) is a common method to infer model parameters. The 
parameters that maximize the likelihood function for given data are used as best estimate. 
Large sample size properties of MLE allow the estimation of the variance-covariance matrix 
of the parameters from the inverse expected Fisher information matrix (Harrell, 2001), see 
Appendix B for more details.  

Practically, this is done by a search through the parameter space by different optimization 
algorithms implemented in the R package optimx (Nash and Varadhan, 2011). The parametric 
models fitted are Weibull, lognormal, and gamma, as described in section 2.1. Multiple runs 
with different initial parameter values were performed to ensure stable estimates.  

2.4.3 Bayesian inference 
The aim of Bayesian inference is to update the prior probability distribution 𝑝(𝜽)  with 
observed data {𝐭, δ}. The resulting posterior probability distribution is calculated with the 
Bayes theorem: 

 p(𝜽|𝐭,𝜹) =  
p(𝐭,𝜹| 𝜽)p(𝜽)

∫ p(𝐭,𝜹| 𝜽′)p(𝜽′)𝑑𝜽′
 (11)  

More in-depth information on Bayesian inference can be found in (Gelman et al., 2004). In 
this study, informative priors were derived based on expert elicitations and two different 
aggregation options (see sections 2.2 and 2.3). It can be shown that the choice of the prior 
distribution strongly influences the posterior result and is thus to be carefully chosen 
(Berger, 1990; Gelman et al., 2004).  

The posterior distribution is derived by means of iterative Markov-Chain Monte-Carlo 
sampling (MCMC) with 6000 draws. The first 1000 draws are discarded as burn-in period 
and the acceptance rate is kept between 0.3 and 0.4 with the help of an adaptive sampler 
(Scheidegger, 2011; Vihola, 2011). 

2.4.4 Graphical validation with a non-parametric survival estimate 
Wayne (2004) suggests the use of a non-parametric survival estimate to visualize the fit of the 
parametric model. A Nelson-Aalen estimator adapted for LTRC data (also referred to as 
extended Nelson estimator) is used as described in Pan and Chappell (1998) and applied to pipe 
survival in Carrión et al. (2010). More details are given in the Appendix B.  

The Nelson-Aalen estimator is capable of dealing with small sample sizes and can handle 
both censored and incomplete data as in our case of LTRC pipe survival (Klein and 
Moeschberger, 2003).  

2.5 Utility data 
The data used in this study consists of replacement records from a large Swiss water utility. 
Only pipe groups that were used in the prior elicitations were extracted from the provided 
pipe inventory. Reliable recording of pipe replacement started in this utility in 2000, so that 
only replacement entries between 2001-01-01 and 2010-12-31 were used for inference. The 
characteristics of the pipe groups are summarized in Table 1.  

The effect of a decreasing amount of data (sample size) on parameter estimation is simulated 
by randomly reducing the available data to 500, 300, 150, and 50 pipes. These numbers 
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correspond to the amount of data expected in mid-size or small water utilities for which 
Bayesian combination of expert opinion with local data is proposed. The ratio of replaced 
pipes to the overall number of pipes is kept constant. Shorter observation periods (more 
truncation, Figure 1) are also studied. They are accounted for by shifting the start of 
observation to 2003, 2005, 2007, 2008, and 2009 and removing replacement entries before this 
date, respectively.  
 
Table 1: Summary characteristics of the examined pipe groups. Legend: GI3- 3rd generation grey 
cast iron (1930-1965), ST- steel, DI1- 1st generation ductile iron(1965-1980), PE- polyethylene, AC- 
asbestos cement incl. Eternit. 

group pipes (no.) 
total length 
(km) 

laying date 
(min-med.-max) 

removal year 
(min-med.-max) 

inner diameter  
# no. in mm 

of which 
replaced 

GI3 1295 104.5 1930-1951-1965 2001-2005-2010 [0- 100[: 181 
[100-300[: 854 
[>300): 260 

571 (44.1 %) 

DI1 1009 87.45 1968-1976-1980 2001-2007-2010 [0- 100[:12 
[100-300[: 865 
 [>300): 132 

134 (13.3 %) 

AC 153 22.45 1900-1958-1977 2001-2006-2010 [0- 100[: 31 
[100-300[: 117  
 [>300): 5  

38 (24.8 %) 

ST 991 89.83 1875-1965-2009 2001-2004-2010 [0- 100[: 39 
[100-300[: 594 
 [>300): 358 

318 (32.1 %) 

PE 195 18.02 1972-2004-2010 2006-2008-2009 [0- 100[: 25 
[100-300[: 140 
 [>300): 30 

6 (3.1 %) 

3 Results and Discussion 

3.1 Expert elicitation 
The developed guideline was used for interviews with eight experts, numbered E1… E8. 
They provided estimates for grey and ductile cast iron (GG3 and DI1), whereas for steel (ST), 
polyethylene (PE), and asbestos cement (AC) only three, five, and six experts, respectively, 
provided their opinion. E4 estimated the service life of three pipe groups only, because in his 
network domain the two other materials were too rarely used. The obtained estimates are 
given in detail in Table 8 (see Appendix A) and summarized in Table 2. Two estimates were 
not considered in the later analysis: E1 for polyethylene, because the expert was highly 
uncomfortable about giving estimates for this material and could not imagine in which way 
it might deteriorate; E4 for steel pipes, because they were declaredly based on a past decision 
of this expert’s utility to replace all steel pipes within only five years. 

During the feedback at the end of the interview, five out of eight experts said they favored 
giving intervals instead of point estimates (Arreaza, 2011).  
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Table 2: Summary statistics for stated quantile values (ages) from experts for given cumulative 
probabilities, mean = arithmetic mean of stated ages, sd= standard deviation. Pipe groups are 
explained in 2.2.4. 

group GI3 DI1 AC ST PE 
probability mean sd mean sd mean sd mean sd mean sd 
0.05 38.3 15.3 22.9 8.5 36.3 14.1 32.0 8.4 38.8 22.5 
0.25 54.2 16.4 37.9 12.0 64.4 19.0 48.2 8.9 68.1 38.0 
0.5 78.3 15.3 55.0 9.8 81.3 22.5 60.4 11.4 86.9 35.1 
0.75 90.0 16.4 68.6 9.7 98.1 26.7 74.6 19.5 98.8 30.8 
0.95 105.4 18.3 81.1 11.5 115.6 30.6 87.0 24.9 117.5 44.0 
 
The summary statistics in Table 2 show that the quantile estimates between pipe groups, 
visible from the quantile means, are clearly different. With regard to the quantile standard 
deviations, not only a pronounced difference between materials is visible, but also an 
increasing uncertainty towards the upper quantiles. E4 and E5 gave distinctively lower 
estimates than other experts (Table 8 in Appendix A). Contrarily, estimates from E8 were 
consequently larger for all pipe groups. These visible differences between material groups 
and single expert values indicate the experts’ awareness and ability to differentiate the 
ageing behavior of the selected pipe groups. E4 and E5 named specific influences, such as 
strong deficits in laying or bedding quality, or difficult environmental conditions that could 
explain lower estimates (Table 9 in Appendix A). The longer lifetime suggested by E8 might 
also stem from anchoring to rather high values established by a former study this water 
supplier had commissioned. Other than this, the additional information given by the experts 
roughly allows us to explain differences between experts’ statements and is thus considered 
as reflection of the encountered variability of conditions in the utility networks.  

The usefulness of an expert is usually judged upon his contribution to an increase in 
knowledge. Measuring this usefulness based on the precision of statements or contribution 
to noise reduction, e.g. (Lele and Allen, 2006; Runge et al., 2011) is not appropriate in a case 
like ours. Rich knowledge is not necessarily equivalent to a high density of the mean and 
little spread of the fitted expert distribution. If the expert bases his knowledge on a variety of 
different water networks (or other objects of study), he might well accommodate this in more 
imprecise statements. Also, personal confidence and interrogation layout may play a role. An 
overconfident expert is likely to state shorter intervals than necessary to reflect his 
confidence levels (Speirs-Bridge et al., 2010). In this study, experts were encouraged to 
adequately consider their uncertainty in giving interval statements. The more useful expert is 
thus the expert stating wide enough intervals that contain his uncertainty about the quantity. 

3.2 Parametric model identification 
Non-linear least squares regressions were performed with the Weibull, lognormal, and 
gamma parametric models over the individual experts’ statements. The goodness of fit 
measures were calculated (see residual sum of squares (RSS) in Table 11, Appendix B). The 
Weibull distribution provides the best fit for 23 out of the 28 single expert assessments. In 
one case, the RSS of the Weibull distribution is equal to the lognormal (E2 for polyethylene), 
and only inferior to the gamma or lognormal distribution in four single regressions (E8 for 
grey cast iron and polyethylene, as well as E5 in the case of ductile cast iron).  

Similarly, maximum likelihood estimations (MLE) were done with the available pipe 
replacement data (see description in 2.4) for all three distribution models. Table 3 shows that 
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the Weibull distribution for DI1, ST, and PE leads to smaller likelihoods than the lognormal 
or gamma distributions. In the case of GI3 and AC, the lognormal model fits the data slightly 
better.  

Table 3: Obtained parameters and likelihood values of pipe group data from a large Swiss water 
supplier. Bold numbers indicate the model that maximizes the likelihood value log 𝐩(𝐭,𝜹| 𝜽). Pipe 
groups are explained in 2.2.4. 

 Weibull distribution lognormal distribution gamma distribution 
 α β ln p(𝐭,𝜹| 𝜽) µ σ ln p(𝐭,𝜹| 𝜽) k s ln p(𝐭,𝜹| 𝜽) 

GI3 2.07 45.54 -2206.70 3.88 0.33 -2204.74 6.96 6.98 -2514.00 

DI1 5.48 47.45 -686.89 3.86 0.31 -687.48 13.23 3.78 -687.13 

AC 2.46 60.90 -172.59 4.07 0.29 -170.50 12.34 6.26 -171.27 

ST 2.46 48.77 -1259.96 3.73 0.40 -1275.74 6.38 7.08 -1263.49 

PE 1.81 65.72 -36.29 4.65 1.45 -36.82 1.85 58.73 -36.45 

 
Though the Weibull likelihoods for GI3 and AC are only slightly larger than the lognormal, 
important deviations between the two models exist. This can be visualized by graphically 
comparing the nonparametric extended Nelson-Aalen estimation (see section 2.4.4) with the 
parametric models (Figure 2). 

 
Figure 2: Comparison of a Weibull fit (black solid lines) and a nonparametric fit (blue step lines) 
for five pipe groups. The lognormal fit (green dashed lines) was added to the plot where it 
provided the best fit. The dash-dotted lines correspond to the 95 % confidence intervals of the 
mean (solid line). 

The advantage of a nonparametric estimation is that it reflects the lifetime distribution more 
realistically within the observed time interval and can be used as a control for the possible 



PUBLISHED MANUSCRIPT: Scholten et al. 2013. Combining expert knowledge and local data for improved 
service life modeling of water supply netwoks. Environmental Modelling & Software 42: 1-16. 

16 
 

parametric models. If both parametric and nonparametric models are overlaid, the parameter 
estimates satisfactorily approximate the „true“ parameter values. Nevertheless, the 
nonparametric estimation model cannot replace parametric models because the outcome is a 
discrete estimate of the survival function (Coolen, 1996). It cannot be extended to unobserved 
intervals in time, something especially important for materials with a rather short history (for 
example for newer materials such as ductile cast iron or polyethylene). This is inconvenient 
for forecasting and especially for error propagation. Theoretical parametric models can be 
found that allow for extrapolation outside the data range and error propagation in 
combination with coupled predictive models. The structural deficiencies of the model are 
reflected in larger parametric uncertainty. 

The Weibull model is best at approximating the nonparametric survival curves of DI1 and 
ST, but inferior to a lognormal distribution for GI3 and AC. Therein, the tail behavior of the 
lognormal distribution allows for an overall steeper survival curve whereas the Weibull 
model leads to underestimation of about 40 % to 50 % of the studied GI3 and AC cohort 
survival. The graph for polyethylene shows that the available data are clearly not sufficient 
to infer a trustworthy predictive distribution by means of MLE. This is also reflected in the 
uncertainty of the estimated parameters as specified in Table 4 (see MLE for all data), given a 
Weibull survival model for all materials. Despite the better fit of a lognormal model to GI3 
and AC data, in the following sections regression and inference of parameters from the 
utility data is done for the Weibull model, unless otherwise stated. 

3.3 Expert prior aggregation 
Table 4 shows the mean parameter estimates of the Weibull shape (𝛼� ) and scale ( �̂� ) 
parameters and corresponding uncertainty measures using a lognormal error distribution, 
𝑠𝑑(𝛼�)  and 𝑠𝑑(�̂�)  respectively, for individual and pooled experts (see section 2.3). The 
parameters reflect the differences between pipe materials and experts as described for the 
elicitation results in 3.1. The parameter estimation of the complete and partial pooling prior 
results in similar means.  Judging from a comparison of the aggregated scale parameters, the 
63.2 % quantile, AC pipes are believed to have the longest service life, followed by GI3, then 
PE, ST, and DI1 pipes. These observations are in line with survival estimates from the 
literature for German and Austrian water utilities (Fuchs, 2001; Roscher et al., 2005; Trujillo 
Alvarez, 1995), where AC and GI3 are usually judged most durable and DI1 least durable of 
the five considered pipe groups (Table 10, Appendix A). The impact of smoothing the 
experts’ mixture on the prior used for inference is visible in Figure 3. The simple mixture 
according to equation (3) has a multi-modal density whereas the smoothed mixture, equation 
(4), is unimodal. 
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Figure 3: Bivariate probability density distribution of the aggregated prior (partial pooling) before 
smoothing (left, multimodal) and after smoothing (right, unimodal) for GI3.  
 
Figure 4 shows the expert statements and mean survival function including 95 % confidence 
intervals for partial pooling as compared to the confidence intervals for complete pooling 
(exemplary for GI3). Unsurprisingly, the partial pooling yields larger standard deviations. 
This is because partial pooling incorporates the in-between variances, thus allowing for a 
better representation of the underlying differences in the experts’ domains. The variance is 
not simply attributable to the experts’ measurement error. As discussed in section 3.1 and 
3.2, not only did the experts state diverse reasons for different ageing behaviors in their 
utilities, these differences are also reflected in their statements. It is important to make clear 
that the experts do not have to agree in this context. If the expert judgments represent 
different distributions, of which each describes the underlying pipe survival in the expert’s 
water utility, both in-between-differences and individual uncertainty are important sources 
of information. As opposed to this, complete pooling does not accommodate the in-between 
variance. It considers all judgments as measurements resulting from assessment of the same 
underlying distribution and its parametric uncertainty reproduces the error attributable to 
lack of fit from the model.  

Although presumably obvious in a Bayesian learning framework, the aggregation approach 
chosen is not Bayesian. This is mainly owing to the need to formulate an unbiased prior to be 
combined with the individual priors, and that furthermore accurately considers the 
dependence structure between experts (Clemen and Winkler, 1999; O'Hagan et al., 2006). The 
definition of such a supra-prior is not only demanding, but also the analyst’s independence 
from the experience gained during elicitation and data analysis cannot be expected.  
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Figure 4: Comparison of GI3 priors and estimates from experts. Blue crosses represent quantile 
values as stated by the expert indicated on the right edge (E1…E8). Solid error bars give the 95 % 
confidence intervals for complete pooling, dotted error bars for partial pooling. The survival curve 
is calculated from the mean parameters (𝜶�= 3.97; 𝜷�= 81.22) of the partial pooling prior, see Table 4. 
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Table 4: Results from 1) non-linear least squares regression over experts E1…E8 (“Single experts”), 2) parameters obtained for the two aggregation methods 
complete pooling and partial pooling (“Aggregation”), and 3) maximum likelihood inference for all data, shortened observation windows, and artificial data 
reductions (“MLE”). The survival model is a Weibull distribution with parameters S(θ)= (α,β)T.  

  Grey cast iron (1930-64) Ductile iron (1965-80) Asbestos cement Steel Polyethylene 
 

 
α� β� sd(α�) sd�β�� α� β� sd(α�) sd�β�� α� β� sd(α�) sd�β�� α� β� sd(α�) sd�β�� α� β� sd(α�) sd�β�� 

Si
ng

le
 e

xp
er

ts
 

E 1 2.96 69.16 0.28 2.18 2.04 57.15 0.19 2.40 3.49 99.24 0.51 4.27 - - - - - - - - 
E 2 3.68 78.20 0.73 4.45 2.53 51.51 0.41 3.21 4.52 99.48 0.84 4.56 - - - - 4.00 85.21 0.23 1.30 
E 3 3.77 82.40 0.53 3.26 4.05 66.02 0.53 2.30 3.87 110.9 0.42 3.27 - - - - - - - - 
E 4 4.13 68.52 0.54 2.33 3.00 47.91 0.51 2.72 - - - - - - - - 4.54 54.91 0.24 0.70 
E 5 3.18 69.62 0.64 4.50 2.97 58.00 0.40 2.60 2.93 55.99 0.14 0.93 - - - - 2.38 44.62 0.22 1.67 
E 6 4.38 80.52 0.56 2.59 4.08 58.73 0.54 2.03 - - - - - - - - 4.71 97.63 1.02 5.06 
E 7 4.61 94.43 0.21 1.03 3.44 60.42 0.41 2.17 3.95 63.90 0.64 2.80 3.67 73.25 0.50 2.87 - - - - 
E 8 5.05 107.2 0.93 4.46 3.88 73.17 0.51 2.64 - - - - 3.88 73.17 0.51 2.64 4.85 110.5 0.42 2.24 

A
gg

re
- 

ga
tio

n complete pool 3.92 81.31 0.36 2.05 3.16 59.34 0.22 1.30 3.79 86.01 0.60 3.83 3.75 73.19 0.34 1.84 4.22 78.78 1.02 4.90 

partial pool 3.97 81.22 0.91 12.70 3.25 59.11 0.88 7.83 3.75 86.05 0.74 24.14 3.77 73.21 0.52 2.76 4.11 74.40 1.21 26.73 

M
LE

 

All data 2.07 45.54 0.20 3.14 5.48 47.45 0.74 1.82 2.46 60.90 0.85 6.21 2.46 48.77 0.13 1.58 1.81 57.38 0.58 33.60 
≥ 2003 1.79 38.88 0.24 5.19 5.85 46.60 0.99 1.87 2.17 59.79 1.41 15.71 2.92 53.48 0.18 1.73 - - - - 
≥ 2005 2.37 49.81 0.32 4.23 5.20 47.85 1.27 2.52 3.21 2866 0.52 2272279 2.97 55.45 0.24 2.13 - - - - 
≥ 2007 2.49 49.81 0.42 5.27 3.98 51.10 1.96 4.34 - - - - 2.79 51.95 0.30 2.84 1.21 145.06 0.64 359.62 
≥ 2008 2.37 52.85 0.59 8.03 4.68 50.45 2.64 4.89 - - - - 2.96 53.52 0.39 3.40 - - - - 
≥ 2009 - - - - - - - - - - - - - - - - - - - - 
500 pipes 1.95 43.81 0.33 5.88 3.66 53.94 1.08 5.24 - - - - 2.42 47.68 0.18 2.21 - - - - 
300 pipes 2.22 48.04 0.41 5.97 5.51 47.67 1.40 3.40 - - - - 2.61 52.01 0.23 2.83 - - - - 
150 pipes 2.91 55.32 0.65 5.53 3.24 60.22 2.44 13.82 1.81 56.25 0.99 16.51 2.37 46.70 0.30 4.07 2.39 39.29 0.70 13.71 
50 pipes 2.39 49.72 1.30 18.52 5.64 51.45 5.13 12.36 6.25 63.05 3.01 3.61 3.42 54.59 0.61 5.04 - - - - 
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3.4 Maximum likelihood estimation from data 
A maximum likelihood estimation (MLE) of the parameters of the survival function was 
done with the available pipe replacement data. The underlying model used is Weibull, the 
same model as used for describing the prior distributions of the experts. However, it must be 
noted that MLE of the parameters is independent of these priors. 

For GI3, DI1, and ST, reasonably certain parameter estimates were derived (Table 4). 
Regarding AC and PE, a set of parameters was obtained as well, but with larger uncertainty 
due to the smaller number of data. The parameters from MLE show substantial differences 
as compared to the aggregated experts. Taking the Weibull scale parameter ( �̂� ) as 
representative for the age reached by 63.2 % of pipes in this group, basically the same 
ranking as given by the experts is observed: AC reaches higher ages than (in this order) PE, 
ST, DI1, and GI3. The exception is GI3, which is second most durable according to the 
aggregated experts, but least durable if only inferring from the data. Compared to the 
characteristic lifetime inferred by MLE from data, the aggregated experts estimates are 
approximately 11 (DI1) to 35 (GI3) years longer. 

The results from randomly reducing the data to 500, 300, 150, and 50 pipes, while keeping 
the ratio of replaced to in-service pipes constant, demonstrate that the fewer data are 
available, the more uncertain the parameter estimates get. Analogously, increasing 
truncation when reducing the observation period to seven, five, three, two, and one year(s) 
leads to increasingly uncertain parameter estimates. This truncation is mirrored in the 
diminishing ratio of documented pipe replacements to pipes in service, given in Table 5.  

Table 5: Effect of truncation on the ratio of replaced pipes to pipes in service. Ratios for which no 
MLE parameter estimates were obtained are highlighted. 

 GI3 DI1 AC ST PE 
2000 0.44 0.13 0.25 0.32 0.03 
2003 0.36 0.12 0.18 0.23 0.03 
2005 0.26 0.10 0.15 0.16 0.03 
2007 0.18 0.06 0.08 0.11 0.05 
2008 0.10 0.04 0.07 0.07 0.00 
2009 0.04 0.02 0.04 0.03 0.00 

For less than two years of observations, no parameters could be identified. As visible in Table 
5, this can be attributed to ratios of less than ca. 10 % (GG3), 4 % (DI1), and 7 % (ST). Records 
of less than five years for AC (ratio of approx. 15 %), did not allow for any reliable parameter 
estimates, possibly explicable by the small sample size (153, Table 1). The scale parameters 
for PE and AC (�̂�) can only be estimated with very large uncertainty sd(�̂�), an effect possibly 
caused by the small sample size and increasing truncation leading to a flat likelihood surface, 
such that the parameters are difficult to estimate.  

Consequently, if a utility has only recently started reliably recording pipe replacement (high 
truncation), or if the number of pipes in the network is small, no reliable parameters can be 
found with MLE. 

Furthermore, the considerable differences between the distribution parameters inferred from 
expert statements and utility data cannot merely be attributed to more extreme local 
conditions, but rather are an effect of local management strategies on pipe survival. For 



PUBLISHED MANUSCRIPT: Scholten et al. 2013. Combining expert knowledge and local data for improved 
service life modeling of water supply netwoks. Environmental Modelling & Software 42: 1-16. 

21 
 

example DG1 was often referred to by the interviewed experts (Table 9) as the “problem 
child”. Lacking corrosion protection and aggravating exposure to electrical currents from 
households grounding electric appliances on the water pipelines has led to major pro-active 
replacement campaigns. It could furthermore explain the much steeper survival curve of this 
material in the investigated data set. From consultation with a local expert from whose utility 
the data was taken, a substantial fraction of pipes is usually replaced before the end of its 
technical service life, owing to coordination efforts by different network utilities. For 
instance, the rehabilitation of the sewer system often requires the removal of the above lying 
water supply pipes. If a substantial part of the replacement is for reasons other than technical 
end of life, the consequence are considerably shorter observed lifetimes.  

The available data neither indicate the reason nor the condition of the replaced pipes. The 
available survival data does not allow for the description of ageing-induced technical (or 
structural) service life, as it is managerial replacement which is recorded. This means that the 
expert prior and the data to be combined by Bayesian inference describe two unalike 
phenomena: the prior describes technical ageing and replacement according to the experts’ 
experience, whereas the data represent the ageing and replacement process distorted by 
managerial replacement strategies. 

The easiest way to avoid this discrepancy is to solely use survival data of pipes that were 
replaced due to technical end-of-life, thereby creating congruent information pools.  

Nevertheless, this problem easily develops into a philosophical one. Someone may perhaps 
anyway distrust experts’ capacity of differentiation between observed managerial 
replacement and the replacement caused by structural ageing processes. This would mean 
that the obtained prior and the recorded data do not contradict each other. But who can be 
trusted if not the interviewed experts who show themselves very able to give such estimates?  

Otherwise, the analyst could try to rectify the recorded managerial replacement with a 
correction factor, thus making it comparable to the experts prior and suitable to describe 
technical replacement needs. Additional prior estimates for all pipe groups, however, would 
be needed; something which is already hard to expect from the current managerial strategy. 
But how to quantify the impact of former management? A way out seems to be basing 
models on events more capable of describing technical/structural ageing, e.g. failure instead 
of replacement records. Such records are increasingly available and used in different 
modeling approaches. Instead of priors for technical replacement, priors about the time of a 
failure or between failures of different orders could be elicited from experts, if not from other 
utility data. This does not mean, however, that problems induced by former management 
such as replacement biases in the data can be completely avoided, so that adaptations to the 
existing models might be necessary.  

Although the obtained prior and data might not entirely describe the same phenomenon 
resulting in pipe replacement, it is nonetheless important to show the performance of 
Bayesian inference and the prior impact on the posterior. Even if expert and data can be 
reconciled, prior data conflicts may arise, for example owing to especially unfavorable 
conditions inducing faster replacement in the study utility than predicted by the experts. 
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Table 6: Resulting posterior parameters from Bayesian inference with data from a large water utility in Switzerland. The survival model is a Weibull model 
with parameters θ= (α, β)T. Parameters are given for the case of inference with all data, and artificial data reductions for a prior either derived from complete 
pooling or partial pooling. MLE gives the parameters obtained by frequentist MLE from all data.  

 Grey cast iron (1930-64) Ductile iron (1965-80) Asbestos cement Steel Polyethylene 

 
α� β� sd(α�) sd�β�� α� β� sd(α�) sd�β�� α� β� sd(α�) sd�β�� α� β� sd(α�) sd�β�� α� β� sd(α�) sd�β�� 

a) With complete pooling prior 

Prior 3.92 81.31 0.36 2.05 3.16 59.34 0.22 1.30 3.79 86.01 0.60 3.83 3.75 73.19 0.34 1.84 4.22 78.78 0.34 0.27 
All data 3.36 62.10 0.13 0.84 3.06 58.10 0.16 1.01 2.93 77.36 0.34 3.04 2.97 59.98 0.12 0.98 1.95 74.94 0.24 4.77 
500 pipes 3.50 67.48 0.20 1.20 3.04 58.55 0.16 1.12 - - - - 3.03 63.44 0.16 1.29 - - - - 
300 pipes 3.61 70.91 0.24 1.46 3.08 58.76 0.18 1.17 - - - - 3.25 67.01 0.19 1.43 - - - - 
150 pipes 3.70 74.66 0.28 1.66 3.09 59.01 0.19 1.17 2.83 77.70 0.33 2.93 3.22 68.91 0.22 1.56 2.16 74.82 0.28 4.43 
50 pipes 3.71 78.54 0.31 1.83 3.14 59.26 0.19 1.31 3.32 81.90 0.45 3.53 3.66 71.50 0.29 1.75 3.48 76.11 0.68 4.41 
0 pipes 3.90 81.32 0.36 2.11 3.16 59.36 0.22 1.29 3.81 86.03 0.59 3.72 3.74 73.26 0.33 1.84 4.22 78.85 1.02 5.03 

b) With partial pooling prior  

Prior 3.97 81.22 0.91 12.70 3.25 59.11 0.88 7.83 3.75 86.05 0.74 24.14 3.77 73.21 0.52 2.76 4.11 74.40 0.40 1.55 
All data 2.26 48.33 0.17 2.34 3.88 52.61 0.52 2.31 2.94 63.51 0.40 3.77 2.84 56.06 0.12 1.14 2.26 43.31 0.28 7.18 
500 pipes 2.38 50.55 0.23 3.09 3.01 56.85 0.45 3.19 - - - - 2.93 58.85 0.16 1.51 - - - - 
300 pipes 2.62 53.70 0.29 3.25 3.27 55.64 0.52 3.36 - - - - 3.11 63.43 0.19 1.67 - - - - 
150 pipes 3.11 58.12 0.43 3.47 2.87 56.67 0.50 3.73 2.74 64.10 0.36 4.30 3.05 65.62 0.25 2.15 2.46 42.40 0.33 6.90 
50 pipes 3.07 60.40 0.49 4.82 2.96 56.80 0.57 4.85 3.50 65.90 0.60 5.77 3.63 69.66 0.40 2.53 3.35 48.47 0.65 10.66 
0 pipes 3.95 80.78 0.95 12.82 3.26 59.10 0.86 7.79 3.74 86.21 0.73 23.80 3.79 73.15 0.52 2.74 4.08 73.84 1.17 25.87 
MLE 2.07 45.54 0.20 3.14 5.48 47.45 0.74 1.82 2.46 60.90 0.85 6.21 2.46 48.77 0.13 1.58 1.81 57.38 0.18 2.37 
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3.5 Bayesian inference 
Bayesian inference was performed using the pooled results from expert elicitation as prior 
and the pipe replacement data. This was also done for different amounts of data. The 
resulting posterior mean parameters and standard deviations are given in Table 6. Important 
remark: Following the discussion in section 3.4, the survival functions from Bayesian 
inference described below are not valid for the prediction of technical rehabilitation demand 
in the studied utility, as the data is about actual replacement that includes replacement for 
reasons other than technical aging. Nevertheless, the discussion regarding the suitability of 
the MLE and Bayesian approaches for scarce data situations is valid, as are the observations 
regarding different prior aggregations.  

The most important observation from Table 6 is that in contrast to MLE, reasonably certain 
parameter estimates could be determined even for small numbers of pipes. This applies 
especially to pipe groups with few records where MLE returns parameter estimates with 
high uncertainty (e.g. AC and PE with 150 or less records, or 50 pipes for GI3 and DI1). 
There, the posterior distributions are more informative than any of the obtainable 
distributions from MLE alone. For larger data sets however, MLE does lead to reliable 
parameter estimates which are closer to the mean parameters obtained from MLE of the full 
data set, making Bayesian combination of data and expert knowledge unnecessary. 

Furthermore, as typical for Bayesian inference, the posterior mean values lie between the 
prior and the MLE (utility data) mean. Also, the standard deviations of the inferred 
posteriors are smaller than the prior and MLE standard deviations (except for DI1 and PE, 
see Table 4), meaning that something could be learned from the data. Analogous to MLE, the 
uncertainty of the parameter estimates increases with decreasing number of pipes used for 
inference. The smaller the number of pipes, the more the posterior approximates the expert 
prior (see Figure 5).  

In Table 6 and Figure 5, the influence of the prior distribution on the posterior parameter 
estimates is clearly visible. The wider, partial pooling prior naturally causes wider posterior 
distributions than the posterior calculated from the more precise complete pooling prior. It 
also approximates the mean parameters obtained from MLE more closely than the posterior 
obtained with the complete pooling prior (compare the vertical lines in Figure 5 representing 
the means of MLE and posterior). In some cases however, the complete pooling posterior 
coincidentally performs slightly better (being nearer to the MLE estimate).  

Regarding the influence of prior aggregation on the posterior, the effect of prior choice is 
exemplarily shown for 3rd generation grey cast iron in Figure 5. The posterior obtained from 
inference with the more uncertain partial pooling posterior is notably closer to the MLE than 
the posterior obtained from inference with the complete pooling prior (Table 6). This effect is 
attributable to arising prior-data conflicts resulting from discordant information from the 
observed data and the prior (Bousquet, 2008, among others). Even though the parameter 
means (𝛼� ,  �̂� ) of the complete and partial pooling prior are nearly identical, the larger 
standard deviations (𝑠𝑑(𝛼�), 𝑠𝑑(�̂�)) of the partial pooling prior reduce the conflict with the 
data. No satisfactory approximation towards the MLE shape parameter (𝛼�) of DI1, however, 
was achieved with any of the two priors. The conceptually more appropriate partial pooling 
prior (see 3.3) leads to a compromise between the prior and the data (posterior 𝛼� ≈ 3.88 as 
opposed to prior 3.25 and MLE 5.48) and the complete pooling to hardly any change 
(posterior 𝛼� ≈ 3.06, prior ≈ 3.16). Checking for conflicts in the distributions in Figure 6 (dotted 
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and dashed lines) as opposed to the distribution obtained from MLE (shaded), it is visible 
that partial prior and data distributions only partly overlap with approximately similar 
densities, but the complete pooling prior and the data widely disagree. 

 
Figure 5: Bayesian inference with a complete (left) and partial (right) pooling prior for GI3. Prior (red 
dash-dotted), posterior (blue filled), and MLE (black dotted) marginal density distributions of the Weibull 
scale parameter µβ are shown. Vertical lines indicate the position of the corresponding means. The top 
row shows the inference results using all data. Note that for no utility data (0 pipes, not shown), the 
posterior and prior marginal distributions are coincident. 

 
Figure 6: Shape parameter µα distributions of the two priors compared with the MLE (grey- shaded, 
solid) for DI1. Partial pool: blue dotted lines; complete pool: green dashed lines. Vertical lines 
indicate the position of the corresponding means. 
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4 Summary and Conclusions 

4.1 Improved service life modeling under scarce data 
We suggest a systematic approach to water pipe service life modeling that uses expert 
information from several utilities as prior which is then updated with local utility data. For 
this purpose available methods of expert elicitation of an unknown probability distribution 
were adapted and furthermore extended to imprecise quantile estimation of the pipe 
survival function. Contrary to currently existing approaches,  encouraging experts to state 
interval estimates for the quantiles, leads to the imprecision or uncertainty of the expert 
being explicitly included in the analysis. From these statements, a bivariate expert prior for 
the survival function parameters is inferred, thus overcoming the difficulties confronted in 
elicitation of multivariate (i.e. correlated) distributions. The resulting expert priors can be 
aggregated with a linear pooling approach to get an intersubjective prior approximating the 
state of knowledge across experts and environmental conditions. For both Bayesian and 
frequentist inference of the parameters of the survival function from utility data, a likelihood 
function for the commonly encountered left-truncated right-censored pipe network data is 
derived.  

The results from section 3.5 testify that the proposed approach improves estimation of the 
expected service life of water networks under scarce data, leading to the ability to identify 
parameters where otherwise not possible or to derive more informative estimates than with 
using MLE alone. This is a  key improvement for more effective rehabilitation planning and 
water distribution network management.  

4.2 Expert elicitation and prior aggregation 
Priors for the parameters of the survival function characterizing technical service life of five 
pipe groups were obtained from interviews with eight water utility experts, ordered by 
perceived durability, most durable to least: asbestos cement, grey cast iron (1930-1965), 
polyethylene, steel, and ductile cast iron (1965-1980). This durability order is in agreement 
with literature estimates from Germany and Austria; the specific lifetime may vary 
depending upon local conditions.  

An important aspect of our approach is the incorporation of the between-experts-variance 
into the aggregated prior distribution from individually fitted expert distributions. It is 
shown that not only the uncertainty of the single-expert, but also the deviation between 
experts is a valuable source of knowledge in itself, as it covers the different network 
conditions from various utilities. The resulting partial pooling prior of the experts’ 
distributions leads to an intersubjective prior that covers these different water distribution 
network conditions as well as the different opinions of the experts. Only if the aim was a 
specific prior for a single utility and if more than one expert representing this utility was 
available, the complete pooling prior would be more appropriate because differences 
between experts are interpreted as measurement errors. 

4.3 Frequentist and Bayesian inference 
The results reviewed in section 3 suggest that Bayesian inference of survival function 
parameters by considering expert knowledge is a suitable approach to bridge the scarce data 
situation encountered in many water utilities. Frequentist estimation remains the less 
demanding approach if sufficient data is available (roughly more than 150 pipes with at least 
5 years of data for this utility). To avoid prior-data conflicts, the validity of prior and 
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posterior distributions for the locally encountered conditions can be discussed with a local 
expert. 

4.4 Ambiguity of model selection 
The problem of ambiguity arising in model selection is addressed by fitting three standard 
parametric survival models to the experts’ data and choosing the best fitting for all experts. 
The Weibull model overall provided the best fit to experts statements, but did not prove the 
best choice for all pipe groups and experts.  

Following the discussion in section 3.4, the use of pipe replacement data for prediction of a 
network’s technical rehabilitation demand needs to be revised. Replacement data alone are 
not suitable to predict structural ageing only, but also reflect managerial decisions. In order 
to adopt more efficient rehabilitation approaches, a predictive model needs to be able to 
quantitatively describe these two factors separately. As the presented model might be prone 
to systematic biases induced by these limitations, it is not meaningful to discuss its predictive 
capability. The model’s goodness of fit is nevertheless demonstrated by the close overlay of 
the non-parametric and parametric model shown in section 3.2. 

4.5 Consideration of uncertainty 
Tackling uncertainty on different levels and during different steps is useful to get an overall 
assessment of uncertainty the assessed quantities. This involves the use of examples and 
visual support tools to help the experts correctly express their belief in a quantitative 
manner. Cognitive biases can be reduced through training and control during elicitation, 
besides double-checking and repetition of the stated values. Influence of model selection can 
be elucidated by fitting several models and choosing the one that minimizes the deviation 
between measurements and modeled data. Lack of fit to the stated expert quantiles is made 
explicit by measurement of the error in the parameters. 
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7 Appendices 

Appendix A- Expert elicitation 

Table 7: Description of pipe groups based on common differentiation criteria 

pipe group 
abbre-
viation differentiation criteria chosen for elicitation and underlying rationale 

asbestos cement 
incl. Eternit 

AC years 1930-1985 

Yes, although no longer produced. Has proved to 
be very resistant if appropriately installed and is 
still common in Swiss water networks, especially in 
smaller communities, under the name of “Eternit”.  

1st generation 
grey cast iron GI1 

from horizontal sand molds, 
corrosion-resistant, varying wall 
thickness; before 1880 

No, because close to no occurrence in today’s Swiss 
networks. 

2nd generation 
grey cast iron GI2 

vertically cast, more corrosion 
resistance, ca. 1880-1930 

No, mostly in bigger cities only; building of 
networks in smaller communities rather later. 

3rd generation 
grey cast iron GI3 

centrifugal casting, susceptible to 
corrosion, 1930-1965 Yes, slowly being replaced, but still common. 

1st generation 
ductile cast iron 

DI1 
centrifugal casting, lacking 
external corrosion protection, 
high tensile strength, 1964-1980 

Yes, slowly being replaced, but still common. 

2nd generation 
ductile cast iron 

DI2 
similar to DI1, but improved 
external corrosion protection, 
after 1980 

No, because probably only little replacement up to 
today and time constraints. Interesting in hindsight 
because of the rather large proportion in today’s 
networks. 

1st generation 
steel 

ST1 
welded or seamless, lacking 
external corrosion protection,       
before 1930 

Yes, but without differentiation into generations 
because occurrence of this material varied in the 
networks the experts were familiar with and they 
were not confident in making further 
differentiations. 

2nd generation 
steel 

ST2 insufficient external corrosion 
protection, ca. 1930 - 1980 

3rd generation 
steel ST3 

enhanced external corrosion 
protection, after 1980 

PVC 
polyvinylchloride 

PVC  approx. 1930-1990 No, only rarely used in Switzerland’s water supply 
systems. 

1st generation 
polyethylene PE1 

PE-LD; PE-HD; and PE 63; before 
1980 Yes, but also without differentiation because it is a 

rather new application in Switzerland and because 
of the high expected service life. Not yet many 
replacements if installed correctly (leading to a lack 
of experience of experts with this material). 

2nd generation 
polyethylene 

PE2 PE 80 and PE 100; after 1980 

3rd generation 
polyethylene 

PE3 
PE-X, cross-linked PE, high toe-
crack resistance; after 1992 

 
Table 8: Stated quantile values from expert elicitation, l = lower value, u = upper value. If only one 
value is given, the expert stated precise estimates. The first column indicates material and quantile. 

 E1 E2 E3 E4 E5 E6 E7 E8 
group l u l u l u l u l u l u l u l u 
GI3 
0.05 30 20 40 30 30 40 20 30 40 50 60 70 
0.25 40 40 60 65 40 50 30 50 55 70 60 90 
0.5 60 70 90 80 60 70 60 80 80 90 90 110 
0.75 80 80 100 85 70 85 70 90 90 100 100 130 
0.95 100 90 110 110 85 90 80 110 100 120 130 140 
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 E1 E2 E3 E4 E5 E6 E7 E8 
group l u l u l u l u l u l u l u l u 
DI1 
0.05 20 10 15 25 30 10 20 20 30 20 30 20 30 40 
0.25 30 20 30 40 55 20 30 30 40 40 50 45 40 60 
0.5 45 40 60 60 70 45 55 40 60 50 60 55 60 70 
0.75 65 60 70 70 80 55 60 60 70 60 70 70 80 90 
0.95 100 70 80 80 85 60 70 80 90 70 80 80 90 100 
AC 
0.05 30 50 40 40 60 - 20 - 20 30 - 
0.25 60 80 80 75 85 - 35 - 40 60 - 
0.5 80 100 100 90 110 - 50 - 55 65 - 
0.75 100 120 110 115 135 - 65 - 65 75 - 
0.95 120 150 120 140 150 - 80 - 75 90 - 
ST 
0.05 - - - 20 - - 30 40 30 40 
0.25 - - - 41 - - 45 55 40 60 
0.5 - - - 42 - - 60 70 60 70 
0.75 - - - 43 - - 70 90 80 90 
0.95 - - - 45 - - 90 110 90 100 
PE 
0.05 0 50 40 - 30 15 50 60 - 65 
0.25 50 150 60 - 40 25 60 80 - 80 
0.5 100 150 80 - 50 35 80 100 - 100 
0.75 100 150 95 - 60 55 100 110 - 120 
0.95 100 200 110 - 70 70 100 150 - 140 
 
Table 9: Description of experts and locally specific influence factors of network deterioration 

expert Position/qualification mentioned influence factors 
E1 Planning & construction engineer; 

head of local engineering company 
servicing several small water 
suppliers in the Zürcher Oberland 

- DI1 is ”problem child“ 
- GI3 has mostly been removed (only about 5-10 % of today’s 

network) 
- bedding 
- AC: connections deteriorate faster than pipes 

E2 Planning & construction engineer of 
the same local engineering company 
as expert 1; but servicing different 
communities 

- GI3 ca. 30 % of current network 
- settling and corrosion problems  with GI3  
- bedding 
- electrical grounding of house installations on DC1 pipes 
- PE more or less 20-30 % of network, some problems with 

earlier PE pipes 
- AC: connections deteriorate faster than pipes, mostly used 

for large diameter transport pipes 
E3 Operation & maintenance engineer; 

head of distribution network 
department of the public water 
supply for a medium size city in NE 
Switzerland 

- close to no PE and ST in current network 
- electrical grounding of house  installations on DC1 pipes 

until late 90s 
- GI3 approx. 18 % of network 
- DI1 approx. 20 % of network, usually 45 years of service life 

assumed 
- AC: laying depth is rather deep, mostly used for larger 

diameter transport pipes 
- favorable soil conditions 
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expert Position/qualification mentioned influence factors 
E4 Project and construction manager; 

head of distribution network 
department of a private water supply 
company serving a medium size city 
in central Switzerland 

- laying depth of AC is rather deep 
- mechanical impacts by traffic 
- DC1 problems with bedding (wood used as support under 

the pipe) 
- many different pressure zones 
- because of large financial losses caused by GI3 failures, this 

material is replaced earlier based on risk considerations 
- ST was massively replaced in the 90s because of failures 

probably caused by inappropriate bedding 
E5 Operation & maintenance engineer of 

a consortium of small municipal 
water suppliers in central 
Switzerland 

- strongly varying soil conditions from rugged rocks over river 
gravel to heavy clay and aggressive moor soils 

- problems with quality of PE installation, especially welding 
has been an issue; rather early use of PE; PE only used if 
conditions do not allow for metal pipes (mostly soil) 

- rather soft water (12-13 °fH eq. to 1,2-1,3 mmol/L) 
- tank traffic is problematic for GI3 
- overall many different pressure zones 

E6 Network utility engineer from a 
public water supplier of a small city 
in NW Switzerland 

- usually assume fixed service life of 60 years for pipes 
- strongly favoring PE for replacements; rather high 

percentage of the network are PE pipes (> 20 %) 
- problems with both bedding (timber, wooden support) and 

electrical grounding of house  installations on DC1 pipes 
E7 Facility manager and engineer of a 

consortium of small water suppliers 
in NW Switzerland 

- strongly favoring cast iron, PE only for household 
connections 

- difficult ground because of soil variations from strongly 
settling to peaty soils 

- problems with bedding in 60’s and 70’s when most of their 
pipes were installed 

- have experienced many failures in both GI3 and DI1 pipes 
 

E8 Head of distribution network 
department of the public water 
supply of a larger city in NE 
Switzerland 

- assume 100-120 years of service life for GI3 
- systematic defects in pipes built shortly after Second World 

War 
- earlier PE types expected to have much shorter duration 

than newer PE types; longer service life assumptions 
supported by a recent material study of DVGW 

- heterogenic soil and ground properties 
- electrical grounding of house  installations on DC1 pipes  
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Detailed description of the elicitation procedure 
The interviews were attended by at least three persons: the expert, the interviewer and the 
analyst. If more people were attending the interviews (e.g. assistants), they were not allowed 
to actively participate or alter the elicitation procedure. The interviewer and analyst 
completely abstained from any kind of coaching regarding the order of magnitude of the 
answers.  
 
Setting the scene: At the beginning, the interviewer repeated the purpose of the study, and 
explained the way she would proceed during the interview. The aim of the elicitation was 
clearly stated. Then, the quantity to be elicited was clarified, and the five pipe groups were 
presented.  It was reaffirmed that the named pipe groups actually occurred in the expert’s 
domain. The four most familiar (in one case three) were then selected for elicitation. After 
this was done, the expert was asked several questions regarding his expertise and familiarity 
with probability.  
If the expert had not read or understood the pre-elicitation information, there was time to go 
through it in detail. 
 
Focusing: Then, the expert was requested to name the most important influencing factors for 
pipe ageing in his area (see Table 9). This was not only done to learn about special 
circumstances of the different localities, but also to make him concentrate on the upcoming 
task. Then, he was motivated by stating that his knowledge was an important source of 
information for the estimation of pipe service life. It was made explicit that he was not 
expected to be all-knowing, but that his expertise was crucial for the study. This was to 
encourage him to answer as best according to his knowledge while adequately stating his 
uncertainty.  
 
Training: Before elicitation of the quantities of interest started, an elicitation round identical 
to the assessment to come of pipe service life was done to train the expert. To avoid 
anchoring, the survival of women born in Switzerland in the year 1940 as provided by the 
Swiss Federal Statistics Office (Cordazzo, 2006) was used. It was used to familiarize the 
expert with the elicitation procedure and to avoid possible misunderstandings. It also helped 
to cross-check for calibration (which was clearly not possible for pipes because of a lack of 
factual measurement data for the experts utility). This procedure allowed the interviewers to 
point out features to keep in mind which can lead to biases that might well arise during 
elicitation of pipe survival. 
 
Elicitation of pipe groups: After this training, the pipe group being addressed was again 
specified. The expert was asked about his experience with this group in his area of 
responsibility. Then, the quantiles were elicited in a first round following the sequence:  

1. Define the overall interval defined by the age at which most pipes are expected to 
have been replaced (95 %) and at which close to all pipes of a group/ cohort are still in 
service (5 %).  

2. The age at which half (50 %) of the pipes are replaced and half remain in service is the 
median. This is the third quantity elicited.  

3. Finally, the values for three-quarters (75 %) and a quarter (25 %) are assessed.  

At the same time, the addressed quantities were roughly visualized using 100 paper clips 
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(representing 100 % of the pipe group) and a paper sheet with the time bar. Experts were 
requested to disregard replacement because of initial laying failures (e.g. within the first year 
after laying), as well as replacements following managerial or economic considerations, such 
as coordinative ground works with other infrastructure providers. This helped to focus on 
technical ageing and not on effects of different management decisions.  
Secondly, the quantiles for 75 %, 50 %, and 25 % were re-elicited using bets, adjusting the 
stated ages until the expert was indifferent between the bets. This technique was used by the 
interviewer to confirm the statements by making the experts think differently about the 
quantities. After the bets, she read out the documented values and individually confirmed 
them with the expert. These checks and repetitions were done to ensure that experts’ 
statements are reliable, consistent and correctly documented. At the end, the experts were 
asked to provide a qualitative description of the imaginary density curve, if possible. The 
description should reveal whether it could be assumed unimodal. 
This elicitation procedure was repeated for the selected pipe groups. During the interview, 
the experts were asked to assess half of the pipe groups stating imprecise estimates and the 
other half using precise estimates. 
 
Feedback: At the end of the interview, the experts had to assess the difficulty of the 
interview, how realistic they think their stated answers are, and if they preferred stating 
point estimates or intervals.  
 

Table 10: Estimates of pipe survival in the literature as reported from Austria and Germany 

 Roscher et. al (2005) Fuchs (2001)* Trujillo Alvarez (1995)* 
 0% 50 % 90 % 0% 50% 90% 0% 50% 90% 

AC - - - 20-50 60-90 80-110 5-80 50-90 60-110 

GI1 
60-70 65-90 80-110 

- - - 
5-70 40-101 80-150 GI2 30-80 100-160 130-190 

GI3 40-60 65-90 80-100 10-30 50-90 70-110 
DI1 20-30 45-65 70-100 5-20 40-70 70-90 10-60 30-90 50-120 
DI2 40-50 75-90 100-130 80-120 100-140 120-160 6-100 50-140 90-165 
ST1 

40-50 60-80 80-110 
- - - 

4-60 25-100 55-120 ST2 - - - 
ST3 100 120 140 
PVC  10-30 30-50 50-70 10-30 40-85  

5-60 40-80 50-100 PE1 15-30 50-75 50-70 - - - 
PE2 40-50 75-90 100-130 - - - 
PE3 40-50 75-90 100-130 20-30 50-70 80-90 - - - 
* Originally, intervals for an optimistic and pessimistic estimate were given which were herein merged together. 
Thus, the upper bound of the stated interval is the upper bound of the optimistic estimate; the lower bound 
equals the lower bound of the pessimistic estimate.  



PUBLISHED MANUSCRIPT: Scholten et al. 2013. Combining expert knowledge and local data for improved 
service life modeling of water supply netwoks. Environmental Modelling & Software 42: 1-16. 

35 
 

Appendix B- Parametric model fit and parameter uncertainty 

Table 11: Goodness of fit of  Weibull, lognormal, and gamma distribution from non-linear least 
squares regression over the elicited quantiles. Bold numbers indicate the model which minimizes 
the residual sum of squares (RSS) and residual standard error (RSE), dependent on available 
degrees of freedom (doF).  

group expert doF Weibull lognormal gamma 
RSS RSE RSS RSE RSS RSE 

GI3 E1 3 59.6 4.458 95.8 5.65 61.9 4.542 
GI3 E2 8 1380 13.14 1930 15.53 1740 14.74 
GI3 E3 3 140 6.837 342 10.68 272 9.515 
GI3 E4 8 384 6.932 526 8.112 467 7.641 
GI3 E5 8 1370 13.1 1780 14.91 1610 14.18 
GI3 E6 3 89.5 5.463 240 8.937 190 7.963 
GI3 E7 3 14.1 2.169 100 5.781 65.2 4.663 
GI3 E8 8 1420 13.32 1390 13.18 1360 13.03 
DI1 E1 3 62.1 4.548 11.6 1.964 15.4 2.267 
DI1 E2 8 650 9.015 1030 11.37 850 10.31 
DI1 E3 8 375 6.851 698 9.338 595 8.626 
DI1 E4 8 497 7.885 780 9.873 664 9.108 
DI1 E5 8 452 7.515 462 7.6 430 7.328 
DI1 E6 8 292 6.046 482 7.765 419 7.236 
DI1 E7 3 61.5 4.526 217 8.506 159 7.285 
DI1 E8 8 492 7.846 668 9.138 590 8.591 
AC E1 8 1270 12.58 1680 14.48 1490 13.67 
AC E2 3 277 9.61 694 15.21 582 13.93 
AC E3 8 754 9.705 1220 12.35 1030 11.35 
AC E5 3 10.8 1.899 96.3 5.665 53.1 4.205 
AC E7 8 551 8.302 809 10.06 723 9.506 
ST E7 8 577 8.491 620 8.805 577 8.489 
ST E8 8 492 7.846 668 9.138 590 8.591 
PE E2 3 22 2.709 162 7.343 108 5.998 
PE E4 3 6.54 1.476 23.2 2.782 13.5 2.125 
PE E5 3 32.5 3.293 68.8 4.789 3.711 41.3 
PE E6 8 1820 15.09 1860 15.26 1820 15.07 
PE E8 3 67.3 4.736 63.3 4.593 42.9 3.782 
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Estimation of the variance-covariance matrix from the Fisher information matrix 
The inverse expected Fisher information matrix is essentially equivalent to the negative of 
the Hessian matrix of the obtained estimate, i.e. the second order partial derivatives. In the 
case of a two-parametric model the Hessian is a 2,2-square matrix calculated from:   

 𝐻(ln 𝐿) =
𝛿𝜃22𝛿𝜃1
𝛿𝜃12
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� (12)  

where θ1,θ2 are the parameters of the parametric model. The Hessian (matrix) describes the 
local curvature of the logL function. This, and the reasoning behind it are well described in 
Harrell (2001, pp. 180-183).  
 
Description of the extended Nelson-Aalen estimator 
A Nelson-Aalen estimator adapted for left-truncated and right-censored data (also referred 
to as extended Nelson estimator) as described in Pan and Chappell (1998) and applied to pipe 
survival in Carrión, Solano et al. (2010)) is used.  

𝐻�𝑡(𝑡) =  ∑ �𝑡𝑖
𝑌𝑖
�𝑡≤𝑡𝑖≤𝑡 , 𝑡 ≥ 𝑎,  (Klein and Moeschberger, 2003) 

t … age at replacement or censoring (=end of study) 
ai… age at entering the study 
di…number of events(=deaths/replacements) at time ti 
Yi … number of individuals entering the study before ti and for which a< ti ≤ t 
the survival can then be estimated with: 

�̂�𝑡(𝑡) = 𝑒−𝐻�𝑎(𝑡) 

With this layout, over-estimation through right-censoring and underestimation caused by 
left-truncation is reduced/avoided. According to (Klein and Moeschberger, 2003), this 
estimator can be interpreted as an estimator of the probability of survival beyond time t 
conditional on the smallest of the entry times: Pr[T > t|T > a]. T: time to event. 
 
Calculation of point-wise confidence intervals of nonparametric fit 
(Klein and Moeschberger, 2003) from S.105ff:  
log-transformed confidence intervals are chosen because of better reported performance in 
small samples 

��̂�𝑡0
1
𝜃� , �̂�𝑡0

𝜃 � ;  𝜃 =  𝑒
�
𝑍1−𝛼 2� ∙𝜎𝑆(𝑡0)
ln [�̂�(𝑡0)] �

 

with 𝝈𝑺𝟐(𝒕) = 𝑽��𝑺�(𝒕)�
𝑺�𝟐(𝒕)

 

The resulting confidence interval is not necessarily symmetric about the estimate of the 
survival function. 
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Figure 1: Bivariate probability density distribution of the aggregated prior before smoothing (left, multimodal) 
and after smoothing (right, unimodal) for ductile cast iron (1965-1980). 

 

Figure 2: Bivariate probability density distribution of the aggregated prior before smoothing (left, multimodal) 
and after smoothing (right, unimodal) for asbestos cement. 

 

Figure 3: Bivariate probability density distribution of the aggregated prior before smoothing (left, multimodal) 
and after smoothing (right, unimodal) for steel. 
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Figure 4: Bivariate probability density distribution of the aggregated prior before smoothing (left, multimodal) 
and after smoothing (right, unimodal) for polyethylene. 
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Figure 5: Comparison of DI1 priors and estimates from experts. Blue crosses represent quantile values 
as stated by the expert indicated on the right edge (E1…E8). Solid error bars give the 95 % confidence 
intervals for complete pooling, dotted error bars for partial pooling. The survival curve is calculated 
from the mean parameters �𝜶�,𝜷�� of the partial pooling prior, see Table 4.  
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Figure 6: Comparison of AC priors and estimates from experts. Blue crosses represent quantile values as 
stated by the expert indicated on the right edge (E1…E8). Solid error bars give the 95 % confidence intervals 
for complete pooling, dotted error bars for partial pooling. The survival curve is calculated from the mean 
parameters (α ̂,β ̂ )  of the partial pooling prior, see Table 4. 
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Figure 7: Comparison of ST priors and estimates from experts. Blue crosses represent quantile values as 
stated by the expert indicated on the right edge (E1…E8). Solid error bars give the 95 % confidence intervals 
for complete pooling, dotted error bars for partial pooling. The survival curve is calculated from the mean 
parameters (α ̂,β ̂ )  of the partial pooling prior, see Table 4. 
 

 

Figure 8: Comparison of ST priors and estimates from experts. Blue crosses represent quantile values as 
stated by the expert indicated on the right edge (E1…E8). Solid error bars give the 95 % confidence intervals 
for complete pooling, dotted error bars for partial pooling. The survival curve is calculated from the mean 
parameters (α ̂,β ̂ )  of the partial pooling prior, see Table 4. 
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Figure 9: Bayesian inference with partial-pooling prior for grey cast iron (GI3): Posterior (blue filled),  
and prior (red dash-dotted) marginal distributions of the Weibull shape (left column) and scale (right 
column) parameters for varying amounts of data (top level = all data). As a reference, the distributions 
resulting from MLE with all data (black dotted) are also plotted. Vertical lines indicate the position of 
the corresponding means. 
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Figure 10: Bayesian inference with partial-pooling prior for ductile cast iron (DI1): Posterior (blue 
filled), and prior (red dash-dotted) marginal distributions of the Weibull shape (left column) and scale 
(right column) parameters for varying amounts of data (top level = all data). As a reference, the 
distributions resulting from MLE with all data (black dotted) are also plotted. Vertical lines indicate 
the position of the corresponding means. 
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Figure 11: Bayesian inference with partial-pooling prior for asbestos cement: Posterior (blue filled), 
and prior (red dash-dotted) marginal distributions of the Weibull shape (left column) and scale (right 
column) parameters for varying amounts of data (top level = all data). As a reference, the distributions 
resulting from MLE with all data (black dotted) are also plotted. Vertical lines indicate the position of 
the corresponding means. 
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Figure 12: Bayesian inference with partial-pooling prior for steel: Posterior (blue filled), and prior (red 
dash-dotted) marginal distributions of the Weibull shape (left column) and scale (right column) 
parameters for varying amounts of data (top level = all data). As a reference, the distributions resulting 
from MLE with all data (black dotted) are also plotted. Vertical lines indicate the position of the 
corresponding means. 
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Figure 13: Bayesian inference with partial-pooling prior for polyethylene: Posterior (blue filled), and 
prior (red dash-dotted) marginal distributions of the Weibull shape (left column) and scale (right 
column) parameters for varying amounts of data (top level = all data). As a reference, the distributions 
resulting from MLE with all data (black dotted) are also plotted. Vertical lines indicate the position of 
the corresponding means. 
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